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Local linear density estimators achieve automatic boundary cor-
rections and enjoy some typical optimal properties. Proper choice of the
smoothing parameters is crucial for their performance. A data-based band-
width selector is developed in the spirit of plug-in rules. Consistency and
asymptotic normality of the selected bandwidth are demonstrated. The
bandwidth is very efficient regardless of whether there are non-smooth
boundaries in the support of the density or not.

1. Introduction. Local polynomial fitting is becoming widely accepted as
an appealing tool for nonparametric curve estimation. Estimators generated
by such methods provide many benefits. They are highly intuitive and easy
to implement [see Fan and Marron (1994)]. Theoretically, they achieve auto-
matic boundary corrections and enjoy some important optimal properties [see
Fan (1993), Fan, et al (1996) and Cheng, Fan and Marron (1997)]. Various
density estimators which implement the local polynomial fitting techniques
are introduced in Lejeune and Sarda (1992), Jones (1993), Cheng (1994) and
Wei and Chu (1994). The goal of this article is to find a simple and effective
data-based bandwidth procedure for such estimators. Fan and Gijbels (1992)
and Ruppert, Sheather and Wand (1995) discussed bandwidth selection for
local linear regression.

Sheather (1992) and Jones, Marron and Sheather (1994), among others,
recognized the bandwidth of Sheather and Jones (1991) as a useful and ef-
fective tool in both practice and theory. We attempt to mimic its ideas to
construct a bandwidth for local linear density estimation. Estimation of in-
tegrated squared density derivatives is crucial for plug-in bandwidth proce-
dures. Conventional estimators of these quantities become less efficient when
there are nonsmooth boundaries in the support of the density [see Van Es and
Hoogstrate (1994)]. As a consequence, traditional plug-in bandwidths are not
adequate in that case [see Van Es and Hoogstrate (1993)]. The estimators of
integrated density derivative products introduced in Cheng (1997) automat-
ically adjust for boundary effects. So we incorporate them in our bandwidth
rule such that it will be proper in both boundary and nonboundary cases.

Weak convergence and asymptotic normality of the resulting bandwidth are
established. Interestingly, the rate of convergence depends on the sign of the
integrated product of the second and fourth derivatives of the density. The

Received March 1994; revised May 1996.
1Supported in part by NSC Grant 85-2121-M-194-001.
AMS 1991 subject classification. 62G07.
Key words and phrases. Bandwidth, boundary effects, data binning, local linear density esti-

mation, plug-in bandwidth selector.

1001



1002 M.-Y. CHENG

rate of convergence is n−5/14; the same as that of the Sheather–Jones selector
in nonboundary cases if the quantity is negative, and n−2/7 otherwise. Note
that if the density has essentially no boundary features, the above-mentioned
functional is negative. For example, if the second and third derivatives both
vanish at the boundaries, then integration by parts yields that the quantity
is minus the integrated squared third derivative of the density. However, the
bandwidth selector is always consistent for the optimal bandwidth no matter
whether there is a nonsmooth boundary or not. Ruppert, Sheather and Wand
(1995) developed bandwidth selectors for local linear regression based on the
plug-in ideas and established analogous theory on their asymptotic behavior.

Motivation for our bandwidth procedure is entirely analogous to that for the
conventional plug-in rules for kernel density estimation [e.g., those discussed
in Park and Marron (1990) and Sheather and Jones (1991)]. Yet, contributions
of this work include showing that the same approach is applicable for local
linear estimation, which has many appealing properties both theoretically
and practically, and providing a bandwidth selector that is as effective in the
boundary case as in the nonboundary case.

This article is organized as follows. In Section 2, construction and asymp-
totic performance of local linear density estimators are briefly discussed. Sec-
tion 3 gives the suggested bandwidth and establishes its consistency and
asymptotic normality properties. Section 4 contains some numerical justifi-
cation of the bandwidth. Proofs are given in Section 5.

2. Local linear estimators. Suppose that X1; : : : ;Xn is an i.i.d. sample
observed from a population following an univariate density f: Let xi = T +
�i− 1/2�b; i = 1; : : : ; g; where b is a positive constant which depends on the
sample size, and T; g and b are taken such that there is essentially no data
point falling outside the interval �T;T+gb�. Define the bin counts at the bin
centers �x1; : : : ; xg� as

ci =
n∑
j=1

I�xi−b/2; xi+b/2��Xj�; i = 1; : : : ; g:

Each ci provides information about f�xi� in the sense that

n−1b−1ci→ b−1
∫ xi+b/2
xi−b/2

f�u�du ≈ f�xi� a.s.

One can also construct the bin counts by linear binning [see Fan and Marron
(1994)] and all the asymptotic results stated in this article will still hold. Then
apply the local linear regression ideas to fit

min
β0; β1

g∑
i=1

(
n−1b−1ci − β0 − β1�xi − x�

)2
K

(
xi − x
h

)
;(1)

where K is a nonnegative weight function and h > 0 is the smoothing param-
eter. Denote the solution of the least squares problem (1) as b̂j�x�; j = 0;1:
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Then the local linear fit estimator f̂h�x� of f�x� is defined as b̂0�x�: Explicitly,

f̂h�x� ≡ b̂0�x� =
Sn;2�x�Tn;0�x� −Sn;1�x�Tn;1�x�
Sn;2�x�Sn;0�x� −Sn;1�x�Sn;1�x�

;

where

Sn;j�x� =
g∑
i=1

K

(
xi − x
h

)
�xi − x�j; j = 0;1;2;

and

Tn;j�x� =
g∑
i=1

K

(
xi − x
h

)
�xi − x�jn−1b−1ci; j = 0;1:

It is assumed that f is supported on �0;∞� whenever boundary effects are
discussed. Then typical boundary points are conventionally parametrized as
x = ch, c ≥ 0. The following theorem is given in Cheng (1994). Throughout
this article, we denote µl�ψ� =

∫
ulψ�u�du, l = 0;1; : : : ; and R�ψ� =

∫
ψ2 for

any real-valued function ψ on R.

Theorem 1. Suppose f and its first two derivatives are bounded, K�l� is
bounded and integrable with finite second moments, l = 0;1;2; and µ0�K� =
1; µ1�K� = 0: As n→∞, h→ 0, nh→∞ and b/h→ 0, when x is an interior
point,

E
(
f̂h�x� − f�x�

)2 = h
4

4
�f�2��x��2µ2�K�

+ 1
nh
f�x�R�K� + o

(
h4 + 1

nh

)
;

(2)

and when x is a boundary point, x = ch; c ≥ 0;

E
(
f̂h�x� − f�x�

)2 = h
4

4
�f�2��0+��2µ2�K∗0; c�

+ f�0+�
nh

R�K∗0; c� + o
(
h4 + 1

nh

)
;

(3)

where

K∗0; c�u� =
S2; c − uS1; c

S2; cS0; c −S1; cS1; c
K�u�I�−c;∞��u�;(4)

with Sj; c =
∫ +∞
−c tjK�t�dt, j = 0;1;2:

Theorem 1 is analogous to the results for local polynomial regression
smoothers given in Ruppert and Wand (1994). Equations (2) and (3) show
that f̂h behaves like the conventional kernel density estimator in the interior
and achieves automatic boundary corrections. Performance of local linear esti-
mators depends on the weight function K and the bandwidth h. Choosing the
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bandwidth is much more important than deciding the weight function since
h controls the amount of the smoothing. We discuss data-based bandwidth
procedures in the following sections.

3. A bandwidth selector. For any nonnegative integers γ and ν, define

θγ; ν =
∫
f�γ��x�f�ν��x�dx:

For kernel estimation of f based on the kernel K; the asymptotically optimal
bandwidth which minimizes the asymptotic mean integrated squared error is

h∗ =
{

R�K�
nµ2�K�2θ2;2

}1/5

:(5)

Plug-in bandwidth rules use the above expression with the unknown quantity
θ2;2 replaced by its estimate. It is shown in Cheng (1994) that the asymptoti-
cally optimal bandwidth for local linear estimation is also equal to (5). Hence
the plug-in techniques can be implemented in bandwidth selection for local
linear density estimation.

Kernel-type estimators of θ2;2 are suggested in Hall and Marron (1987),
Jones and Sheather (1991) and others. Those estimators have an efficient rate
of convergence in mean squared error provided that the support of f has either
no boundaries or no nonsmooth boundaries. Otherwise, the estimators become
inefficient and hence the plug-in bandwidths are less efficient. Problems of this
kind are investigated by Van Es and Hoogstrate (1993, 1994). We make use
of the estimators of θγ; ν introduced in Cheng (1997) in our plug-in bandwidth
procedure since those estimators have nice boundary adaptive properties. The
estimator of θ2;2 is

θ̂2;2�a� = b
g∑
i=1

(
f̂
�2�
a �xi�

)2
;

where f̂
�2�
a �x� is the estimator of f�2��x� obtained from a local cubic fit-

ting based on the weight function K and bandwidth a > 0. Define Sn =
�Sn; i+j−2�x��1≤i; j≤4 and Wn

2�t� = eT
3S
−1
n �1; at; a2t2; a3t3�TK�t�; where

Sn;j�x� =
g∑
k=1

K��xk − x�/a��xk − x�j; j = 0;1; : : : ;6;

and eT
3 = �0;0;1;0�: Then

θ̂2;2�a� =
4
n2b

g∑
i=1

g∑
j=1

g∑
k=1

Wn
2

(
xj − xi
a

)
Wn

2

(
xk − xi
a

)
cjck

[see Cheng (1996)]. Write

K∗2�t� = eT
3S
−1�1; t; t2; t3�TK�t�;

where S = �Si+j−2�1≤i; j≤4 with Sj =
∫
ujK; j = 0;1; : : : ;6:



A BANDWIDTH SELECTOR 1005

According to Corollary 1 of Cheng (1997), suppose that R�K∗2�µ4�K∗2� > 0,
the asymptotically optimal bandwidth for θ̂2;2 is

a∗ =
(

24χR�K∗2�
nθ2;4µ4�K∗2�

)1/7

;(6)

where χ equals −1 if θ2;4 < 0 and 5/2 if θ2;4 > 0: From (5) and (6),

a∗ = C�K�D�f�h5/7
∗ ;(7)

where

C�K� =
(

24R�K∗2�µ2�K�2
R�K�µ4�K∗2�

)1/7

; D�f� =
(
χθ2;2

θ2;4

)1/7

:

Analogously to the development of the Sheather–Jones procedure, apply (7) to
(5) and find the solution in h of the following equation:

h =
{

R�K�
nµ2�K�2θ̂2;2�a�h��

}1/5

;(8)

where

a�h� = C�K�D�f�h5/7:(9)

Here D�f� involves the unknown quantities θ2;2 and θ2;4: The following de-
scribes two possible approaches to estimating D�f� and the corresponding
plug-in bandwidths.

If there is information suggesting that the density is close to some scale
parametric model with the scale unknown, then D�f� can be estimated by a
reference value through the model. Let g1 be a fixed density function (e.g.,
the standard normal) that has been normalized so that some measure of scale
such as the standard deviation is equal to 1. It is easy to show that D�gλ� =
λ2/7D�g1�̇ for any λ > 0; where gλ�x� = λ−1g1�x/λ�: Then, from (9), set

aλ�h� = C�K�D�g1�λ2/7h5/7:

The bandwidth ĥ1 is defined as the solution to the analogous equation of (8)
with a�h� replaced by aλ̂�h�; where λ̂ is a

√
n-consistent estimate of λ. The

conventional Sheather–Jones procedure uses parametric reference values in a
latter stage. The next bandwidth is its analogy.

First, construct an estimator of D�f� using the estimators of integrated
density derivative products given in Cheng (1997). Take the degree of local
polynomial fitting as 3 and 5 when estimating θ2;2 and θ2;4, respectively. Let κ1
and κ2 be the corresponding asymptotically optimal bandwidths, expressions
for which are in Corollary 1 of Cheng (1997), with the quantities depending on
f replaced by some scale parametric reference values. The resulting estimators
are denoted as θ̂2;2�κ1� and θ̂2;4�κ2�: Let D̂�f� = �χ̃θ̂2;2�κ1�/θ̂2;4�κ2��, where χ̃
equals−1 if θ̂2;4�κ2� < 0 and 5/2 if θ̂2;4�κ2� > 0. Then our second bandwidth ĥ2
is the solution to the analogous equation of (8) with a�h� replaced by aD̂�f��h� =
C�K�D̂�f�h5/7:
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Condition 1. (i) There exists a constant M > 0 so that, for any x and y
in the support of f;

�f�6��x� − f�6��y�� ≤M�x− y�:

(ii) The weight function K is supported on �−1;1� and its first two deriva-
tives exist.

(iii) The weight function K vanishes at −1 and 1 and is symmetric about
zero.

Let σ2
K =

∫
u2K�u�du: The following theorem establishes that consistency

and asymptotic normality properties of ĥ2 hold no matter whether there are
boundaries in the support of f or not.

Theorem 2. Suppose that Condition 1 holds. Then as n→∞;

ĥ2

h∗
= 1+Op�n−α�;

where α equals 5/14 if θ2;4 < 0 and 2/7 if θ2;4 > 0: Furthermore,

nα
(
ĥ2

h∗
− 1

)
→D N

(
µPI; σ

2
PI

)
;(10)

where

µPI = −7
150σ

−8/7
K R�K�2/7θ2;2

−9/7C�K�2D�f�2θ2;4µ4�K∗2�I�θ2;4>0�;

σ2
PI = 32

25n
2α−5/7σ

118/35
K R�K∗2 ∗K∗2�R�K�−38/35θ

−5/7
2;2 R�f�C�K�−9D�f�−9:

Remark 1. The rate of convergence of the bandwidth ĥ2 depends on the
sign of θ2;4 [see (10)]. If there is no boundary or the density is smooth near the
boundaries (i.e., second and third derivative of f at zero both vanish), then
θ2;4 = −θ3;3 < 0 and hence the faster rate n−5/14; the same as that of Sheather
and Jones (1991), is attained. Otherwise, the Sheather–Jones bandwidth will
not be consistent [see Van Es and Hoogstrate (1993)], but ĥ2 still is, only with
a slower rate of convergence.

Remark 2. If f is a member of the parametric family �gλ; λ > 0�, then
analogous asymptotic properties for the bandwidth ĥ1 can be established sim-
ilarly.

Since the asymptotically optimal bandwidth (5) is exactly the same as that
for the conventional kernel density estimator, one might ask why not simply
use the Sheather and Jones (1991) bandwidth procedure. However, the esti-
mators of Jones and Sheather (1991) are influenced by boundary effects and
the bandwidth selector will not even be consistent as a consequence. Van Es
and Hoogstrate (1993) showed that the bandwidth selector tends to zero at
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some rate other than n−1/5; the rate of the asymptotically optimal bandwidth,
in the nonsmooth boundary case.

Variance of local polynomial density derivative estimators can be seriously
inflated near the boundary. This can make the bandwidths ĥ1 and ĥ2 very
unstable in practice. The following adjustments, which will not change the
asymptotic results in Theorem 2, are made to address this problem. Let τ ≥ 0
and δ = 0 or δ > 1 be some constants. In the construction of θ̂γ; ν�a�, estimate
the density derivatives using bandwidth δa instead of a at the boundary area
�0; τa� when τ > 0 and δ > 1, estimate the density derivative only in the
interior �τa;∞� when δ = 0 and make no adjustment when τ = 0.

4. A numerical study. The proposed bandwidth selectors were applied
to a real data set to examine their practical performance. The data set was ob-
tained from a study on the public water sources in Malawi. The purpose of the
study was to determine whether there was any difference in coliform counts
between the “improved” and “unimproved” water resources. Hence there are
two sets of data, coliform counts from the improved and unimproved water
sources, whose sample sizes are 166 and 455, respectively. Adjusted versions
of the data sets, with sizes 142 and 305, respectively, were analyzed in the
study.

The kernel function was taken as the standard normal density. The para-
metric scale family for reference values was the family of normal densities
with standard deviation as the scale parameter. For each of the data sets,
both ĥ1 and ĥ2 were computed under the following three adjusting settings:
(i) τ = 0; (ii) τ = 1, δ = 0; and (iii) τ = 1, δ = 3. The Sheather–Jones
bandwidth, which is denoted by ĥSJ, was also computed. Table 1 displays the
selected bandwidths. The bandwidths selected by the procedure ĥ1 are given
in parentheses. Figure 1 depicts local linear density estimates based on the
bandwidths ĥSJ and the three variants of ĥ2. Figure 2 is a zoom-in version of
Figure 1.

The unadjusted ĥ1 and ĥ2, i.e. with τ = 0, are too small for smoothing the
data sets. This is explained as follows. Local polynomial density derivative es-
timates could have arbitrarily large absolute values near the boundary. Hence
θ̂2;2 is too large and the plug-in bandwidth is too small. Under the adjustment

Table 1

Bandwidths ĥSJ; ĥ1 and ĥ2 for the coliform counts data. Bandwidths for both of the
“improved” and “unimproved” data and each of the settings (i) τ = 0; (ii) τ = 1; δ = 0

and (iii) τ = 1; δ = 3; here, ĥ1 is the one parenthesized

Bandwidth Improved data Unimproved data

ĥSJ 7:7088 10:6608
τ = 0 2:0610 �2:9913� 2:0974 �2:3967�
τ = 1; δ = 0 5:7212 �5:1393� 10:8774 �10:6632�
τ = 1; δ = 3 4:7816 �4:7858� 9:9346 �9:9946�
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Fig. 1. Local linear density estimates based on the Malawi data and data-driven bandwidths:
kernel function was the standard normal density. Normal densities with the standard deviation as
the scale were used to compute the reference values. For each of the “unimproved” (upper panel) and
“improved” (lower panel) data, the local linear estimates were constructed using the Sheather–
Jones bandwidth (dotted line), ĥ2 with τ = 0 (solid line), ĥ2 with τ = 1; δ = 0 (closely-spaced
dotted line) and ĥ2 with τ = 1; δ = 3 (short-dashed line).
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Fig. 2. The upper (lower) panel is a zoom-in version of the upper (lower) panel of Figure 1.
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τ = 1 and δ = 0; ĥ1 and ĥ2 yield sensible estimates of the density. This shows
that disregarding the boundary region in the estimation does stabilize behav-
ior of the bandwidths. However, for the unimproved data, the peak at zero is
underestimated; that is, ĥ2 is slightly too large. The reason is that, with the
boundary area �0; a� ignored, θ̂2;2 is adjusted downwards and hence ĥ1 and ĥ2
are adjusted upwards. The above problem does not happen to the bandwidths
when τ = 1 and δ = 3. Since enlarging the smoothing parameter near the
boundary reduces variation of the density derivative estimators while allow-
ing data points near the boundary involved in the procedure.

Examine the adjusted bandwidths ĥ1 and ĥ2 with τ = 1, δ = 3 and the
conventional ĥSJ more closely. For the unimproved data, ĥSJ; ĥ1 and ĥ2 are
comparable to each other. For the improved data, ĥ1 and ĥ2 are smaller than
ĥSJ. Notice that ĥ1 and ĥ2 pick up the steep peak near the boundary better
than ĥSJ does. For populations following a density whose derivatives change
dramatically like this, one might pursue variable bandwidth procedures. We
conclude that our proposed bandwidths are useful as a general tool for explor-
ing data structure, even when the underlying density is not smooth near the
boundary.

Finally, we discuss the choice between ĥ1 and ĥ2 (i.e., use reference values
directly or do one more step of estimation). Theoretically, ĥ2 is superior to ĥ1
since Theorem 2 guarantees that ĥ2 has an efficient rate of convergence in
very general settings. From practical considerations, ĥ2 has the following dis-
advantages. Computation of θ̂2;4 is very involved and slow. The estimator θ̂2;4
could inherit a large variability from the data and hence can make the band-
width more variable. Furthermore, as observed from the numerical results,
ĥ2 is more sensitive to the choice of the adjusting parameters τ and δ than
ĥ1. For small to moderate sample sizes, ĥ1 is recommended as a plausible and
stable procedure.

5. Proofs.

Proof of Theorem 2. Let �K∗2; c�′�t� = �d/dt�K∗2; c�t� and define

An�a� =
−24b
n2a7

g∑
i=1

g∑
j=1

g∑
k=1

K∗2; xi/a

(
xj − xi
a

)
K∗2; xi/a

(
xk − xi
a

)
cjck;

Bn�a� =
−8b
n2a7

g∑
i=1

g∑
j=1

g∑
k=1

xj − xi
a

(
K∗2; xi/a

)′
(
xj − xi
a

)
K∗2; xi/a

(
xk − xi
a

)
cjck:

Proofs of the following lemmas can be found in Cheng (1994).

Lemma 1. As n→∞ and b/a→ 0;

θ̂2;2�a� = −
a

6
An�a��1+ op�1��;

d

da
θ̂2;2�a� = �An�a� +Bn�a���1+ op�1��:
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Lemma 2. As n→∞; a→ 0 and na5 →∞;

E�Bn�a�� =
6
a
θ2;2 +O

(
1
na6

)
+O�a�;

Var�Bn�a�� =
32
n2a11

R�f��R�G ∗K∗2��2�1+ o�1��;

where G�x� = x�K∗2�′�x�:

Lemma 3. As n→∞, a→ 0, na5 →∞ and b = o�a�;

na5(θ̂2;2�a� − θ2;2
)
→D N

(
µ∗; σ

2
∗
)
;

where

µ∗ = 4R�K∗2� + 4a
∫
u�K∗2�2

∫
f�1� + na

7

6
θ2;4µ4�K∗2�;

σ2
∗ = 32aR�f�R�K∗2 ∗K∗2�:

For any P ∈ R, define functions aP and LP as

aP�h� = C�K�Ph5/7;

LP�h� = h
[
σ4
Kθ̂2;2�aP�h��

]1/5 − n−1/5R�K�1/5:
From Lemmas 1, 2 and 3,

Bn�a� =
6
a
θ2;2 +Op

(
1
na6

)
;

An�a� = −
6
a
θ̂2;2�a��1+ op�1�� = −

6
a
θ2;2 +Op

(
1
na6

)
:

Then, for some a∗ between aD̂�f��h� and aD�f��h�;

θ̂2;2�aD̂�f��h�� − θ̂2;2�aD�f��h��

= d

da
θ̂2;2�a�

∣∣∣
a=a∗

(
aD̂�f��h� − aD�f��h�

)

= �An�a∗� +Bn�a∗��
[
C�K�

(
D̂�f� −D�f�

)
h5/7]�1+ op�1��

= C�K�
(
D̂�f� −D�f�

)
h5/7Op

(
1

na∗6

)
:

(11)

From (11), Lemma 3, ĥ2 ∼ n−1/5 and LD̂�f��ĥ2� = 0;

LD�f��ĥ2� = LD�f��ĥ2� −LD̂�f��ĥ2�

= −σ4
Kĥ2

{
θ̂2;2�aD̂�f��ĥ2��1/5 − θ̂2;2�aD�f��ĥ2��1/5

}

=
(
D̂�f� −D�f�

)
Op�n−17/35�:

(12)
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Also,

d

dh
LD�f��h� =

[
σ4
Kθ̂2;2�aD�f��h��

]1/5

+ h
5/7

7
σ

4/5
K C�K�D�f�

[
θ̂2;2�aD�f��h��

]−4/5 d

da
θ̂2;2�a�

∣∣∣
aD�f��h�

=
[
σ4
Kθ2;2

]1/5 + op�1�:

(13)

Next, by Lemma 3 and the δ-method,

nα1Lλ�h∗� →D N�µ1; σ
2
1 �;(14)

where α1 equals 39/70 if θ2;4 < 0 and 17/35 if θ2;4 > 0;

µ1 =
{
O�n−1/14�; if θ2;4 < 0;

7
150σ

−8/7
K R�K�17/35θ

−9/7
2;2 C�K�2D�f�2θ2;4µ4�K∗2�; if θ2;4 > 0;

and

σ2
1 = 32

25n
2α1−39/35σ

118/35
K R�K∗2 ∗K∗2�R�K�−31/35θ

−5/7
2;4 R�f�C�K�−9D�f�−9:

Now,

LD�f��ĥ2� = LD�f��h∗� +
d

dh
LD�f��h∗∗��ĥ2 − h∗�;(15)

where h∗∗ lies in between ĥ2 and h∗: Theorem 2 of Cheng (1997) implies that
D̂�f�−D�f� = op�n−1/14� if κ1 and κ2 are of order n−1/7 and n−1/9, respectively,
which is true by the construction of κ1 and κ2. Combining the above fact and
(12)–(15), we obtain, as n→∞,

nα
(
ĥ2 − h∗
h∗

)
= nα

(
LD�f��ĥ2� −LD�f��h∗�
h∗�d/dh�LD�f��h∗∗�

)

= nα
(

n

R�K�

)1/5

LD�f��h∗��−1+ op�1�� →D N�µPI; σ2
PI�:
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