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INTERPOLATION METHODS FOR NONLINEAR WAVELET
REGRESSION WITH IRREGULARLY SPACED DESIGN

BY PETER HALL AND BERWIN A. TURLACH

Australian National University

We introduce interpolation methods that enable nonlinear wavelet
estimators to be employed with stochastic design, or nondyadic regular
design, in problems of nonparametric regression. This approach allows
relatively rapid computation, involving dyadic approximations to wavelet-
after-interpolation techniques. New types of interpolation are described,
enabling first-order variance reduction at the expense of second-order
increases in bias. The effect of interpolation on threshold choice is ad-
dressed, and appropriate thresholds are suggested for error distributions
with as few as four finite moments.

1. Introduction. Nonlinear wavelet methods in statistics provide a
uniquely adaptive tool, offering unsurpassed levels of utility for estimating a
wide range of both regular and irregular functions. See, for example, Donoho,

Ž .Johnstone, Kerkyacharian and Picard 1995, 1996 , Kerkyacharian and Pi-
Ž . Ž .card 1993 and Donoho and Johnstone 1994, 1998 . Despite their adaptivity,

however, wavelet methods are typically restricted by assumptions about the
type of design that may be employed in problems of nonparametric regres-
sion. Usually the design must be not only regularly spaced, but dyadic.

This contrasts with other approaches to curve estimation, where a great
deal of attention has been paid to the problem of irregularly spaced design
points. One of the earliest nonparametric curve estimating techniques, that of

w Ž .Nadaraya and Watson cf. Hardle 1990 , page 25, and Wand and Jones¨
Ž . x1995 , page 119 , is constructed as a ratio that explicitly cancels out most of
the effect of stochastic design. Alternative approaches, for example the convo-

Ž .lution method of Gasser and Muller 1979 and local polynomial smoothing¨
w Ž .xe.g. Hastie and Loader 1993 , conduct the cancellation implicitly.

In the present paper we describe an interpolation-based approach to
nonlinear wavelet methods in the case of stochastic, or regular but nondyadic,
design. We identify threshold parameters that are sufficient for good perfor-
mance when using interpolation, and describe mean squared error properties
for appropriate thresholds. Particular attention is paid to developing results
that hold under minimal conditions on the error distribution, so as to
demonstrate wide applicability of the interpolation approach. Two different
interpolation rules are considered, and their properties elucidated using both
theoretical and numerical arguments. It is shown that, in addition to allow-
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ing wavelets to be employed with stochastic, or regular but nondyadic, design
sequences, interpolation methods admit fast computation. This is achieved by
approximating the interpolation-based estimator, defined in the continuum,
using a dyadic grid. In the context of kernel methods an early interpolation

Ž .approach was considered by Clark 1977, 1980 . A technique for accommodat-
ing stochastic design, modelled on the Nadaraya]Watson kernel method, was

Ž .considered by Hall and Patil 1996a .
We approach the analysis of performance rather differently from Donoho,

Johnstone, Kerkyacharian and Picard in their work cited earlier, since we
wish to stress the impact which different interpolation rules have on perfor-
mance. Critically, choice of interpolation rule affects the size of the variance
term through a constant factor, rather than by changing the rate of conver-
gence. Interpolation has no first-order impact on bias. Such properties cannot
be described accurately by deriving only upper bounds. The approach taken
in the present paper is to produce concise asymptotic formulas, in effect
upper and lower bounds that are asymptotically identical. We do this for a
single, piecewise-smooth target function, although our results may be shown
to hold simultaneously over a large class of such functions. Our focus on
functions that are only piecewise smooth, rather than smooth everywhere,
still allows us to demonstrate that wavelet methods achieve a degree of
adaptivity not enjoyed by traditional techniques such as those based on

Ž .kernels or splines, which for example perform poorly with functions that
have jump discontinuities.

We should stress that the most distinctive features of different interpola-
tion rules, which are present only in constant-factor changes to variance, do
not emerge at all in a traditional minimax description of ‘‘pure thresholded’’
wavelet estimators. This is because pure thresholded estimators are over-

w Ž .xsmoothed by an order of magnitude see, e.g., Hall and Patil 1996b , with
the result that the effect of variance is swamped by that of bias. Hence, the
main conclusions reached in the present paper do not emerge from more
familiar analyses.

2. Methodology.

�Ž . 42.1. Model for data. Let data YY ' X , Y , 1 F m F n be generated bym m
Ž .the model Y s g X q j for 1 F m F n, where the design sequence XX 'm m m

� 4X , 1 F m F n represents the ordered values of a random sample from am
w xdistribution with density f having support II s 0, 1 , and the j ’s arem

independent but not necessarily identically distributed random variables. In
our asymptotic model we should, strictly speaking, denote X and j bym m
X and j , respectively, since the value of the mth among them will varynm nm
with increasing sample size.

2.2. Interpolation rules. Let w , 1 F m F n, denote weight functions de-m
pending on the X ’s but not on the Y ’s, and such that for integers n , nm m 1 2
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satisfying n - 0 F n we have w ' 0 unless n F j F n . Define the inter-1 2 j 1 2
polant

2.1 Y x s w x Y for x g X , X .Ž . Ž . Ž . ŽÝ m m yn nyn1 2
m

Ž xAt the ends of the design interval, that is, outside the region X , X toyn nyn1 2

which the above definition applies, Y may be defined in any of several ways.
Ž .For definiteness we shall use horizontal extrapolation, meaning that Y t '

Ž . w x Ž . Ž . Ž xY X on 0, X , and Y t ' Y X on X , 1 .yn yn nyn nyn1 1 2 2

We shall consider two specific rules, respectively, local averaging and local
Ž xlinear interpolation. Assuming x g X , X , in the first rule we definel lq1

Ž . Ž .y1 Ž .w x s 2n if yn q 1 F m y l F n , and w x s 0 otherwise, and in them m
second,

¡ y1n X y x r X y X , if yn q 1 F m y l F 0,Ž . Ž .2 lymq1 2 lymq1 m~ y1w x sŽ . n x y X r X y X , if 1 F m y l F n ,m Ž . Ž .2 lymq1 m 2 lymq1¢
0, otherwise.

Ž . Ž xSubstituting into 2.1 , we obtain, respectively, for x g X , X ,l lq1
n

y12.2 Y x s 2n Y ,Ž . Ž . Ž . Ý lqm
msynq1

n x y X X y xlymq1 lqmy12.3 Y x s n Y q Y .Ž . Ž . Ý lqm lymq1ž /X y X X y Xlqm lymq1 lqm lymq1ms1

2.3. Empirical wavelet transform for interpolated data. Write f and c
Ž .for the ‘‘father’’ and ‘‘mother’’ wavelet functions, let p s p n be the primary

i Ž . 1r2 Ž .resolution level, define p s 2 p for i G 0 and let f x s p f px q j andi j
Ž . 1r2 Ž .c x s p c p x q j be the functions that form the orthonormal basis of ai j i i

wavelet expansion. Put b s H gf and b s H gc . We assume that c is ofj II j i j II i j
i Ž .order r, meaning that r G 1 is the smallest integer such that Hx c x dx is

ˆnonzero. Our estimators of b and b are, respectively, b s H Yf andj i j j II j
b̂ s H Yc , and lead to the empirical wavelet transform,i j II i j

qy1

ˆ ˆ ˆ< <2.4 g s b f q b I b G d c .Ž . ˆ Ý Ý Ý ž /j j i j i j i j
j is0 j

ˆ ˆThe empirical coefficients b and b may be approximated to arbitraryj i j

accuracy on a dyadic grid. Indeed, taking N s 2 k for an integer k G 1, we
may define

N N
y1 y1˜ ˜b s N Y mrN f mrN and b s N Y mrN c mrN ,Ž . Ž . Ž . Ž .Ý Ýj j i j i j

ms1 ms1

ˆ ˆwhich represent series approximations to b and b , respectively. Both arej i j
calculable using Mallat’s pyramid algorithm. The resulting analogue of g isˆ

ˆ ˜Ž .g, obtained by replacing each empirical coefficient b in 2.4 by b. In taking˜
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this approach to estimation, we are effectively replacing the data set YY by
X �Ž Ž .. 4YY ' mrN, Y mrN , 1 F m F N , and applying a relatively standard

wavelet estimator to YY X. Provided that Nrn ª `, the first-order asymptotics
of g are identical to those of g.˜ ˆ

2.4. Main theoretical result. Assume of g that it enjoys r piecewise-con-
tinuous derivatives, in the sense that there exist constants 0 s a - a - ???1 2

Ž .- a s 1 such that g has r continuous derivatives on each interval a , ak l lq1
for 1 F l F k y 1, with left- and right-hand limits at a and a , respec-l lq1
tively; of f that it is piecewise-continuous in this sense, possibly with a

w xdifferent k and different a ’s, and is bounded away from zero on II s 0, 1 ; ofi
c and f that they are compactly supported and Holder continuous. Then for¨

w x Ž .some r G 1 and k / 0, and all integers i g 0, r and j g y`, ` ,

y12 ic s 1, x c x dx s k r ! d ,Ž . Ž .H H i r

f s 1, f x f x q j dx s d ,Ž . Ž .H H 0 j

where d is the Kronecker delta; assume of the tuning parameters p and qjk
in the definition of g, that for some u ) 0 and « ) 0,ˆ

Ž .1r 2 rq1y1 y1 y1 y2 rrŽ2 rq1.p s o n log n , p s o n ,Ž .Ž .½ 5 q
2.5Ž .

p s O nminŽuq1rŽ2 rq1. , 1.y« ;Ž .q

and of errors j s j in the model of section 2.1 that they may be writtenm nm
Ž . Xas j s s X j , where s is a piecewise-continuous function on II,nm nm nm

j X , . . . , j X are stochastically independent of one another and of X , . . . , X ,1m nm 1 n
X X Ž X.and each j has, for 1 F m F n - `, the distribution of j , with E j s 0,nm

Ž X2 . < X < 2Ž1qu. Ž .E j s 1, E j - `, and u as in 2.5 .
Ž .We refer to the conditions in the previous paragraphs collectively as C .

Ž . < X < 2Ž1qu.Condition 2.5 and the assumption E j - ` are satisfied if we take p
equal to a constant multiple of n1rŽ2 rq1., q equal to the integer part of
Ž . Ž . Ž .1 y « log n for some 0 - « - 2rr 2r q 1 , and u s 2rr 2r q 1 ; and if2

< X < 4E j - `. It will follow from Theorem 2.1 that this size of p is optimal.
Ž . Ž .We shall assume that the interpolation rule is given by either 2.2 or 2.3 ,

although any of several other approaches could be employed. In the case of
Ž . Ž .y1 Ž .the rule at 2.2 put d ' 1 q 2n , and for the rule at 2.3 , letn

y1y1 ly1 y1
y2d ' 2n E Z 2 Z q Z ZŽ . Ý Ý Ýn l r l r½ ž / ž /

lsyn rs2 lq1 rs2 lq1

2y1ny1 2 l 2 l

q Z 2 Z q Z Z ,Ý Ý Ýl r l r 5ž / ž /
ls0 rslq1 rs0

� 4where Z , y` - r - ` are independent exponentially distributed randomr
Ž y1 .variables. For this definition, d s 3r2 and d s 1 q O n as n ª `.1 n
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Ž .Construct g using tuning parameters p, q satisfying 2.5 , and employingˆ
Ž y1 .1r2the threshold d s Dn log n , where the constant D satisfies

2.6 D ) 2u d sup s 2rfŽ . Ž .n

Ž . 2 y1 2Ž y2 n .y1 Ž Žr ..2and u is as in 2.5 . Define D ' d Hs f and D ' k 1 y 2 H g .1 n 2

Ž .THEOREM 2.1. Under conditions C ,

2 y1 y2 r y1 y2 r2.7 E g y g s D n p q D p q o n p q p .Ž . Ž . Ž .ˆH 1 2

2.5. Discussion.

Ž .REMARK 2.1 Variance and bias . The first and second terms on the
Ž .right-hand side of 2.7 represent, respectively, the variance and squared bias

Ž .contributions to mean integrated squared error MISE . If we replace p in
Ž . y1 Ž .2.7 by h , where h is a bandwidth, then 2.7 is transparently an analogue
of the classical formula for mean squared error of a kernel or local polynomial
estimator, albeit with different values of the constants D and D . However,1 2
such formulas for kernel methods fail in the context of g ’s that are only
piecewise smooth.

Of course, the fact that we can decompose MISE so neatly into variance
and squared-bias components is a consequence of our decision to adapt the
order of the wavelet to that of the target function in places where the latter is
smooth. This has enabled us to give a detailed analysis of the effect that
different interpolation rules have on performance. More traditional minimax
analysis would not have permitted us to reach such concise conclusions.

Ž .REMARK 2.2 Effects of n . Larger values of n produce slightly better
mean square performance, since the value of d , and hence D , decreases asn 1
n increases. However, first-order properties of mean squared error do not
capture all the qualitative features of the estimator, and in particular do not
indicate the detrimental second-order effect that using too large a value of n
can have on bias. If interpolation is over a wide range, then a wavelet
estimator applied to interpolated data will recover a slope rather than a
jump. Our numerical work in Section 3 will address this point.

The variance inflation represented by the fact that d ) 1 for finite n isn

Ž .related to that discussed by Chu and Marron 1991 in the case of convolu-
Ž . Ž « .tion-based kernel methods. If n s n n ª ` so slowly that n s O n for all

« ) 0, then Theorem 2.1 remains true without any changes to the regularity
Ž .conditions. We may then replace d by d s 1 in 2.6 for the thresholdn `

constant.

Ž . Ž .REMARK 2.3 Choice of p . We see from 2.7 that the optimal value of
p, in the sense of minimizing the right-hand side, is asymptotic to
Ž .1rŽ2 rq1. Ž .2rnD rD . The first part of condition 2.5 asks that p be of larger2 1
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Ž .1rŽ2 rq1.order than u s nrlog n , which is only marginally less than then
Ž .order of the optimal p. However, it may be proved that 2.7 fails if p is of

size u or smaller; and that, under the conditions of Theorem 2.1 excludingn
Ž .the first part of 2.5 , and assuming that p ª `,

Ž .2 rr 2 rq1 2y1n log n s O E g y g .Ž .Ž . ˆH½ 5
II

Ž .REMARK 2.4 Locally varying thresholds . Theorem 2.1 remains valid,
under identical conditions, if we use a varying threshold in which the

ˆ ˆŽ < < . Ž . Ž < < .indicator I b G d in 2.4 is replaced by I b G d , where d si j i j i j i j
Ž y1 .1r2 Ž .D n log n and, in analogy to 2.6 ,i j

D ) 2u 1 q « d s 2 yjrp rf yjrpŽ . Ž . Ž .i j n i i

Ž 2for some « ) 0. This definition is appropriate if s and f are continuous,
but should be modified at jump discontinuities if those functions are discon-

.tinuous.

Ž .REMARK 2.5 Empirical choice of threshold . Theorem 2.1 is readily ex-
tended to the case of an empirical chosen threshold, as follows. For simplicity,
assume that s is constant on II. Let g , s denote estimators of g ' inf f , s ,ˆ ˆ

ˆ 2respectively, let A ) 2ud be a constant, put D s As rg , and let g denoteˆ ˆ ˜n 1
ˆthe version of g in which the threshold is the random variable d sˆ

ˆ y1 1r2Ž . < <Dn log n . Assume we know a constant B such that g F B, and define
2 2 Ž .g s g if Hg F B , and g s 0 otherwise. Put n s 2rr 2r q 1 .˜ ˜ ˜ ˜1 1

Ž .THEOREM 2.2. If conditions C hold, with s constant, and if for all « ) 0
and some C ) 0,

P Cy1 F g F g q « s 1 y o nyn ,Ž .ˆŽ .
2.8Ž .

P s y « F s F C s 1 y o nyn ,Ž . Ž .ˆ
Ž .then 2.7 holds with g replacing g.˜ ˆ

For example, let U equal the maximal spacing between adjacent X ’s, andi
Ž 2 .let V equal the variance of the Y ’s an overestimate of s . Put g sˆi

Ž . Ž . 2 Ž . Ž .log n r nU and s s V. Then 2.8 holds if in addition to C we assumeˆ
that f is continuous on II; see Section 5. The resulting threshold has a

ˆ 1r2Ž .particularly simple formula: d s AUV .
Likewise, one may develop empirical, locally varying thresholds, and prove

that they have properties similar to those of their nonempirical counterparts
discussed in Remark 2.4.

Ž .REMARK 2.6 Interpolating nonrandom designs . If the design variables Xi
y1Ž .may be written as X s F irn , where F has a piecewise-continuousi

derivative f on II, and f is bounded above zero on II and integrates to 1 on
II, then Theorem 2.1 holds if we replace d by 1 throughout. In the case ofn
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regularly-spaced design, f ' 1. There is now no advantage in using higher
values of n , with the accompanying second-order exacerbation of bias that

Ž .they entail. Methods for this case have also been studied by Cai 1996 .
This point bears restating, for emphasis: the cases of stochastic design and

deterministic-but-irregular design are distinctly different. They have iden-
tical first-order bias properties, but the former produces estimators with
greater variance. These points are analysed in more detail in a longer manu-

w Ž .xscript Hall and Turlach 1995 , obtainable from the authors, on which this
paper is based.

3. Numerical properties. We performed an extensive simulation study
w Ž .xusing the software package wavethresh Nason and Silverman 1994 .

Three different targets were employed: the polynomial-with-jump function
Ž .from Nason and Silverman 1994 , and the functions ‘‘HeaviSine’’ and ‘‘Blocks’’
Ž .of Donoho and Johnstone 1994 . Following Donoho and Johnstone’s lead we

chose the noise level so that the signal-to-noise ratio on a standard deviation
scale was seven. The design points X were drawn from a Uniform or ai
truncated Normal distribution. We used sample sizes n s 25, 50, 100, 250,
500 and 1000, and varied n between 1 and 9 in steps of 2. We employed the

ˆ 1r2Ž .threshold d s AUV suggested in Remark 2.5, with A s 3. Computation
was performed on a dyadic grid, as suggested in Section 2.3, with N s 2 k and

Ž u v. u vk s max 8, 1.2 log n , where x denotes the smallest integer greater than2
? @or equal to x, and x the largest integer less than or equal to x. We used

i Ž ? @ .p s 2 , q s 1, . . . , k y i i s 1, . . . , kr2 y 1 and Daubechies’ ‘‘extremal
w Ž .xphase’’ wavelet of order six Nason and Silverman 1994 .

For each setup we simulated 1000 realizations. In each case we calculated
the wavelet decomposition, performed the thresholding and computed the
estimator. We calculated integrated squared error, using the trapezoidal rule,

Ž .and estimated mean integrated squared error MISE by averaging over these
1000 values.

Ž . Ž .We implemented both interpolation rules, 2.2 and 2.3 . For small sample
sizes, we obtained slightly better mean integrated squared performance by

Ž . Ž . Ž .using 2.3 , but usually, from n s 250 onward, performance of 2.2 and 2.3
was equivalent. In the following summary of our results we shall concentrate

Ž .on 2.2 and X uniformly distributed. Results in other cases are availablei
from the authors upon request.

Figure 1 shows, for different choices of n and n s 500, five typical realiza-
tions of the wavelet estimator for the polynomial-with-jump target. The
values used for p and q are those which minimized observed MISE. The

Ž .positive decreasing influence on variance for larger values of n is clear. At
Ž . Ž .the same time the negative increasing influence on finite sample bias is

apparent; smaller jumps are ‘‘smoothed away,’’ while larger jumps turn into
slopes. Similar features were observed in other cases.

For n G 250 the tendency of bias to increase with n had an effect on MISE
only in the case of the ‘‘Blocks’’ target. For the other two targets, the decrease
in variance was sufficient to compensate for the increase in bias.
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Ž .FIG. 1. Five typical realizations of the wavelet estimator, defined at 2.4 , for the polynomial-
Ž .with-jump target. Each realization is based on n s 500 observations, interpolation rule 2.2 and

n s 1, 3 or 9.
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4. Outline proof of Theorem 2.1. A fuller account of the argument is
Ž .available in Hall and Turlach 1995 , obtainable from the authors.

4.1. Preliminaries. For the sake of brevity we shall give the proof only in
the case where f is uniformly continuous on II and the function s 2 is a
constant. An additional argument would allow us to overcome the inconve-
nience of jump discontinuities in f and a varying s 2. Let C, C , C , . . . denote1 2
generic positive constants.

In view of the orthogonality properties of f and c ,

2g y g s A q A q A q A ,Ž .ˆH 1 2 3 4

where

qy1
2 2ˆ ˆ ˆ< <A ' b y b , A ' b y b I b ) d ,Ý Ý Ýž / ž / ž /1 j j 2 i j i j i j

j is0 j

qy1 `
2 2ˆ< <A ' b I b F d , A ' b .Ý Ý Ý Ýž /3 i j i j 4 i j

is0 j isq j

4.2. Bounds for moderate deviations. Let v , . . . , v denote weights, which1 n
we shall take here to be nonrandom, and suppose that for some 0 F « - 1r201
they satisfy

n
« y1 21< <4.1 v F C n , n v G C ) 0.Ž . Ýn 1 m 2

ms1

Let j , . . . , j be independent and identically distributed random variables1 n
satisfying

2 2 < <C3q24.2 E j s 0, E j s s ) 0, E j F CŽ . Ž . Ž .1 1 1 4

Ž . y1r2 2for some C ) 4« r 1 y 2« . Define S ' n Ý v j and t '3 1 1 n m m m
ny1s 2Ý v2 .m m

Ž . Ž .LEMMA 4.1. Assume 4.1 and 4.2 . Then for each « ) 0 there exist2
C , C ) 0, depending only on « , « and C , . . . , C , such that5 6 1 2 1 4

2 2 2 2 « q« yC Ž1r2y« .1 2 3 1E S I S G z F C exp y 1 y « z r 2t q nŽ . Ž . Ž .� 4 � 4n n 5 2

uniformly in 0 F z F nC6 for all n.

PROOF. In this proof the constants C , . . . , C depend only on s 2, « and7 13 1
C , . . . , C . The argument is via two variants of Bernstein’s and Bennett’s1 4

Ž .inequalities, both of which are available in Hoeffding 1963 . To state these
results, let Z , . . . , Z denote independent random variables with zero means1 n
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< < X2 y1 Ž 2 .and satisfying Z F b - ` for each 1 F m F n. Put t ' n Ý E Z andm m m
y1r2 Ž . Ž 1r2 X2 .T ' n Ý Z , and for z ) 0 define h s h z s bzr n t . Thenn m m

1 y2 24.3 P T ) z F exp y b z for all z G 0,Ž . Ž . Ž .n 2

1r2 y1P T ) z F exp y n zrb 1 q h log 1 q h y 1Ž . Ž .� 4Ž . Ž .n
4.4Ž .

for all 0 F z F b.

ŽŽ . Ž . . X Ž < < d . Ž .Fix d g 1r10 y « , 1r2 y « , and put j ' j I j F n , u s u n1 1 m m m 1 1
Ž X . Ž X .' E j and Z ' v j y u . In this notation, the conditions imposed on1 m m m 1

Z in the previous paragraph hold with b ' 2C ndq«1, and so we may provem 1
Ž .from 4.3 that for all n G C , say,7

4.5 P T ) z F exp yC z for all z ) n2Ždq«1. ,Ž . Ž . Ž .n 8

P T ) z F exp yC nminŽ1r2ydy«1 , C3 d .Ž . Ž .n 9
4.6Ž .

for all nminŽ1r2ydy«1 , C3 d .r2 - z F n2Ždq«1. ;

Ž .and from 4.4 that for n G C ,7

1 2 y2 max Ždq« y1r2, yC d .1 3P T ) z F exp y z t 1 y C nŽ . � 4Ž .n 1024.7Ž .
for all 0 F z F nminŽ1r2ydy«1 , C3 d .r2 .

Put s ' ny1Ýv . Then for all z ) 0,m

22 1r2 1r2E S I S G z F E T q n su I T q n su G zŽ .� 4 Ž . Ž .½ 5n n n 1 n 1

y2 2 2 1y2 d 2 < < dq s t q t n E j I j ) nŽ . � 4Ž .1 1
4.8Ž .

F 2 E T 2I T G z y n1r2su q C n1yd ŽC3q2 . ,� 4Ž .n n 1 11

`
2 24.9 E T I T G z s z P T G z q 2 yP T ) y dy.Ž . Ž . Ž . Ž .� 4 Hn n n n

z

Ž . Ž . Ž . Ž .We may use 4.5 ] 4.7 and 4.9 , with d - 1r2 y « chosen sufficiently1
Ž . 2close to 1r2 y « , to prove that for a constant C depending on s , « , «1 14 1 2

and C , . . . , C ,1 4

12 1r2 2 24.10 E T I T ) z y n u F C exp y 1 y « z r 2t ,Ž . Ž . Ž .� 4� 4Ž .n n 1 14 22

provided 0 F z F nminŽ1r2ydy«1, C3 d .r2. Choosing C sufficiently large to remove5
Ž . Ž .the condition n G C , we may deduce the lemma from 4.8 and 4.10 .7

ˆ4.3. Approximations to empirical wavelet coefficients. Observe that b si j
ˆ ˆ y1r2b q B q j , where B ' H Dc , j ' n S ,i j i j i j i j II i j i j i j

nyn
1r2 2 y1 2S ' p rn v j , t ' p n v ,Ž . Ý Ýi j i i j ; m m i j i i j ; m

m msnq1



P. HALL AND B. A. TURLACH1922

Ž . Ž 1r2 .D ' E Y ¬ XX y g and n ' nrp Hw c . Properties of spacings of orderi j; m i m i j
statistics may be used to prove that

k1r2 h¡O p rn n , uniformly in j g JJ « ,Ž .Ž .½ 5i ik ~< <4.11 E B sŽ . ž /i j
hyk¢O n , uniformly in j f JJ « .Ž . Ž .i

< < 2Ž1qt .qhLemma 4.1 may be applied to show that if E j - ` for some t, h ) 0,1
Ž . Ž .then for each « ) 0, and for each of the interpolation rules at 2.2 and 2.3 ,

1r22 2 y1 yt< <4.12 sup E S I S ) 2 t 1 q « d s sup f log n s O n .Ž . Ž . Ž .� 4Ž .i j i j nž /
i , j

w Ž .For each pair i, j the conditions of the lemma are readily checked, noting
that the values of v , t 2 and n there are replaced by v , t 2 and am i j; m i j
constant multiple of nrp , respectively. The latter is an upper bound to thei

2 xnumber of nonzero terms in, for example, the series defining t .i j

Ž . Ž .4.4. Calculation of E A . As in step 4.3, put D ' E Y ¬ XX y g. Define1
Ž 1r2 .v ' nrp Hw f ,j; m m j

1r2y1r2ˆB ' Df , j ' n S , S ' p rn v j .Ž . ÝHj j j j j i j ; m m
II m

ˆ ˆ w xThen b s b q B q j . Let yc, c be a compact interval containing thej j j j
Ž .support of c , and let JJ « denote the set of indices j such that, for some x

Ž «y1 «y1.that is a point of discontinuity of g, px q j g yc y pn , c q pn . The
Ž .analogue of 4.11 for B is, for all « , h ) 0,j

k1r2 h¡O p rn n , uniformly in j g JJ « ,Ž .Ž .½ 5k ~< <E B sž /j ¢ hykO n , uniformly in j f JJ «Ž . Ž .
Hence, for all e , h ) 0,

¡ 2 hy2ˆO E j q pn , uniformly in j g JJ « ,Ž .½ 5ž /j2 ~ˆ4.13 E b y b sŽ . ž /j j
2 hy2 2ˆ ˆ¢E j q O n q E j , uniformly in j f JJ « .Ž .½ 5ž / ž /j j

It may be proved that
y12 y1 2 y1ˆsup E j y n s d f yjrp s o n ,Ž . Ž .ž /Ž1. j n

ˆ2 y1 2 y1lim sup sup E j F n s d sup f ,ž /Ž2. j n
nª`

Ž Ž . Ž . .where sup is taken over j such that II ' y c q j rp, c y j rp : II, andŽ1. j

sup is taken over all j such that II l II is nonempty. Combining theŽ2. j
Ž .results from 4.13 down we conclude that for all h ) 0,

2 y1 2 y1ˆ4.14 E A s E b y b ; n ps d f .Ž . Ž . Ý Hž /1 j j n
j
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Ž .4.5. Bound for E A . Let KK denote the set of indices j that are2 i1
Ž .contained in an interval p x y 2c, p x q 2c for at least one of the disconti-i i

nuity points x of at least one of the functions g Ž0., . . . , g Žr ., and let KK be thei2
set of all other j’s. Write A s A q A , where2 21 22

qy1
2ˆ ˆ< <A ' b y b I b ) d .Ý Ý ž / ž /2 k i j i j i j

is0 jgKKik

ˆ ˆIt may be proved by routine calculations from the formula b s b q B q ji j i j i j i j
Ž .see step 4.3 for definitions of the terms that for all h ) 0,

2
hy1ˆE A s O q sup E b y b s O qn ;Ž . Ž .ž /21 i j i j½ 5

0FiFqy1, jgKK1i

ˆ2 ˆ ˆŽ . w � < < Ž . 4x � < < Žand by applying 4.15 to bound E j I j ) 1 y « d and P j ) 1 yi j i j i j

. 4« d , and assuming that the threshold satisfies
1r2X 2 y1 y14.15 d ) 2 t 1 q « d s sup f n log nŽ . Ž .� 4Ž .n

X < < 2Ž1qt .q«
Y Yfor some « ) 0, and that E j - ` for some « ) 0; that1

qy1
yŽ tq1. yŽ tq1.E A s O p n s O p n .Ž . Ž .Ý22 i qž /

is0

Combining these bounds we deduce that

4.16 E A s O qny1 q nhy1 q p nyŽ tq1. .Ž . Ž . Ž .2 q

Ž . Ž . Ž . Ž .4.6. Calculation of E A . Write E A s E A q E A , where3 3 31 32

qy1
2 ˆ< <A ' b I b F d .Ý Ý ž /3k i j i j

is0 jgKKik

2 ˆ 2 ˆ2�Ž . 4Since b F 2 b y b q b , and since the number of elements of KK isi j i j i j i j i1

uniformly bounded, then we have for all h ) 0,
qy1

2
2 hy1ˆE A s O sup E b y b q d s O qn .Ž . Ž .Ý ž /31 i j i j½ 5

jgKKis0 i1

yŽ2 rq1.r2 Žr .Ž . Ž yŽ2 rq1.r2 . Žr .Now, b s k p g yjrp q o p , since g is piecewisei j i i i
Ž . 2Ž y2 r .y1 y2 r Ž Žr ..2 Ž y2 r .continuous. Therefore, E A s k 1 y 2 p H g q o p . Com-32

bining these results we deduce that

y1 22 y2 r y2 r Žr . y2 r hy14.17 E A s k 1 y 2 p g q o p q O qn .Ž . Ž . Ž . Ž . Ž . Ž .H3

Ž . Ž .4.7. Bound for E A . Divide the series into two portions, E A s4 4
Ž . Ž .E A q E A , where41 42

`
2A ' b .Ý Ý4 k i j

isq jgKKik
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< < Ž y1 .Since b s O p uniformly in j g KK , and the number of such j’s isi j i i1
Ž y1 . Ž y1 . < <uniformly bounded, then A s O Ý p s O p . Furthermore, b s41 iG q i q i j

Ž yŽ2 rq1.r2 .O p uniformly in j g KK , and the number of such j’s for which bi i2 i j
Ž . Ž y2 r . Ž y2 r .does not vanish equals O p . Hence, A s O Ý p s O p . Com-i 42 iG q i q

bining these bounds we deduce that

4.18 A s O py1 .Ž . Ž .4 q

Ž . Ž . Ž .4.8. Conclusion. Combining 4.14 and 4.16 ] 4.18 , we deduce that for
all h ) 0,

2 y1 y2 r y1 y2 rE g y g s D n p q D p q o n p q pŽ . Ž .ˆH 1 2
4.19Ž .

q O p nyŽ tq1. q qnhy1 q py1 .Ž .q q

Ž .By taking t s u y z , where u ) 0 is as in condition 2.5 and z ) 0 is
Ž .sufficiently small, we see from conditions C imposed in Theorem 2.1 that

< < 2Ž1qt .qh ŽE j - ` for some h ) 0 which condition is needed in steps 4.3 and1
. Ž . X4.4 of the proof and that 4.15 holds for some « ) 0. Furthermore, for such a

Ž . Ž .t it follows from 2.5 that the O ??? remainder term on the right-hand side
Ž . Ž y2 rrŽ2 rq1.. Ž y1of 4.19 equals o n , and so may be incorporated into the o n p q

y2 r . Ž .p term. Result 2.7 is immediate.

Ž y1 .1r25. Outline proof of Theorem 2.2. Let d s Dn log n be theD
threshold used in Theorem 2.1; let DŽ1., DŽ2. be constants satisfying

Ž 2 . Ž1. Ž2. Ž .22nd sup s rf - D - D - `; and recall the expansion H g y g sˆn

Ž . Ž . Ž .A q A d q A d q A derived in Section 4.1. Using the fact that A d ,1 2 3 4 2
Ž .A d are monotone in d , and A , A do not depend on d , we may modify the3 1 4

Ž . Ž . Ž .proofs of 4.14 and 4.16 ] 4.18 to show that for any constant K ) 0,
˜ Ž1. Ž2.w x � Žand any random variable D taking values in D , D , we have E A I A1 1

.4 Ž . y1 � Ž .4 Ž . Ž y1 y2 r .F K ; E A ; D n , E A d q E A s o n p q p and˜1 1 2 D 4
w Ž . � Ž . 4x Ž Ž .4 y2 r Ž .E A d I A d F K ; E A d ; D p . In view of 2.8 we may˜ ˜ ˜3 D 3 D 3 D 2

Ž1. Ž2. ˆ Ž1. Ž2. ynŽ w x. Ž .choose D , D so that P D g D , D s 1 y o n . The theorem fol-
˜ ˆ ˆ Ž1. Ž2. ˜ Ž1.w xlows from these results, on defining D s D if D g D , D , and D s D

Ž .say otherwise.
Ž .To establish the validity of the first part of 2.8 for the case g sˆ

Ž . Ž .log n r nU , it suffices to prove that for independent exponential random
variables Z , Z , . . . , all « ) 0 and some C ) 1,1 2

P 1 y « F max Z log m F C s 1 y O my1Ž .ž /i½ 5
1FiFm

Ž 1yC .as m ª `. In fact, the left-hand side equals 1 y O n .
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