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A LARGE DEVIATION THEOREM FOR THE q-SAMPLE
LIKELIHOOD RATIO STATISTIC

BY FRANTISEK RUBLIK
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An upper bound for the tail probability Py(log(L(x(n,,..., ng)? 0)/
,,,, ng)’ 0)) > t) is derived in the case of sampling from g populations.
This estimate is used for establishing the Hodges—Lehmann optimality of
a test statistic for a hypothesis on exponential distributions.

1. Introduction and the main result. Let probabilities {?y; v € E} be
defined on (X, &) by means of the densities

dP,
(1.1 fx,v)= (%).
dv
The parameter space of overall parameters is the g-fold Cartesian product
(1.2) 0 =51,

where in 6 = (6y,...,0,) € O the symbol 6; stands for the parameter of the
jth population. The outcome of the sampling from the jth population will be

denoted by x(j,n;) = (x(lj), ey xﬁﬂj)) Thus

(1.3) X(ny,my) = (x(1, nq), ..., x(q, ngy))

is the pooled sample and its distribution is the product measure P, = ﬁgl Y
—-—n

cox Pyl

For Qq C 0O let

q

14 Lz, nq>,ﬂ)=sup{nr[f<x§j>,ej>; (el,...,aq)en}.

j=li=1

,,,,,,,,,,

can be useful for establishing asymptotic properties of the likelihood ratio test
statistics under validity of the alternative hypothesis. Such upper estimates
were derived in Theorem 3.2 in Kourouklis (1984) and can also be found in
Kourouklis (1987). An essential assumption in these papers is that f(x, y) =
exp(y'x — C(y)), that is, that the densities (1.1) form an exponential family
of distributions. The aim of this paper is to present a theorem not requiring
this property. Moreover, the imposed regularity conditions also admit densities
discontinuous in 6.
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(C1). E is a subset of R™ and the function (1.4) is measurable whenever
O =0nC, where C c R™ is either open or closed.

(C2). Let p denote the usual Euclidean distance and
(1.5) V(v*,8")={y€E; p(v",7) <8},  L(x,V)=sup{f(x,7); vV}

For every vy € E there exist numbers M = M(y), § = §(y) and & = &(y) such
that the inequality

(1.6) fL(x, V(y*, 8)) dv(x) < 1+ M&*
holds for each y* € V(v, §) and 0 < 6* < &.

(C3). Let the total and the relative sample sizes defined by the formulas

o n;
be such that
(1.8) n — oo, p;— p; >0, ji=1...,q.

Let 6 € ©. For every a € (0, +00) there exists a compact subset I' of ® such
that

1
(1.9) limsup —log Py(L(%(n, 5y, ©® —T) = L(x(,, ), 0)) < —a.
n q q

----------
n—oo

We remark that for the sake of simplicity we omit in the notation in (C3)
an index for the experiment. Thus we tacitly assume that n; = n(ju), n=n®
denote sample sizes in the uth experiment, u = 1,2,..., and the limits in

(C3) are related to u tending to infinity.

THEOREM 1.1. Suppose that the conditions (C1) and (C2) hold.

(1) If T is a nonempty compact subset of O, then there exists a constant
C = C(T') such that

L(x(nl wllg)? F) il
(1.10) P9<10g et > nt> < exp(—nt +m ) logn;+ C>
j=1

for all 6 € O, all sample sizes n, ..., n, and all real numbers t.

(ii) Furthermore, suppose that 0 = (6,,..., 0,) belongs to ©, the relations
(1.8) hold and the condition (C3) is satisfied. If A is a positive real number,
then there exists a constant C = C(0, A,{n},...,{n,}) such that

M > nt) < exp(—nt+ m Xq: logn; + C)
L(x(nynp> 0) — )~ J=1 ’

for all t < A and all sample sizes occurring in (1.7).

(1.11) P9<log
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An upper bound analogous to (1.11) and valid for all ¢ € (n}, A) is pre-
sented in Lemma 4.4 of Kourouklis (1987), where the underlying class of
probabilities is required to form an exponential family of distributions for
which the maximum likelihood estimate exists with probability 1 for n suffi-
ciently large. In the one-sample setting these exponential families are treated
in Kourouklis (1984), where instead of m the one-sample formulas (3.4) and
(3.13) contain the terms m(m — 1) and m(m — 1) + 1, respectively, and the
resulting inaccuracy is worse than that in (1.11), but on the other hand they
yield bounds uniform in £ > 0. The mentioned exponential families also include
k-dimensional nonsingular normal distributions. A multisample version of the
upper bound uniform in ¢ > 0 for these normal distributions is presented in
Lemma 3.1 of Rublik (1995), where the obtained inaccuracy is asymptotically
a little better than that in the one-sample formula (4.6) of Kourouklis (1984).
For the Poisson distributions a uniform large deviation upper bound has been
established in the multisample setting in Lemma 4.3 in Kourouklis (1987).
Since multinomial distributions can be represented with a compact parame-
ter space, from Theorem 1.1 we obtain that (1.10) holds also for this class of
distributions [the same inequality but with a term C = C(n,, ..., n,) better
than that given by (2.9) can be proved in this case similarly to Theorem 2.1
in Hoeffding (1965)]. As examples of nonexponential classes of distributions
satisfying the assumptions of Theorem 1.1(ii), we mention here the Laplace
distributions and the exponential distributions with unknown lower bound.

The reasoning used in proving (1.10) is of the type related to Bahadur
(1965) and utilizes the structure of the Euclidean space. The inaccuracy order
#(log n), which follows from the inequality (1.11), is better than the order
obtained in the one-sample case in Lemma 5 in Bahadur (1965), which on the
other hand yields an upper bound uniform in ¢.

Theorem 1.1 is the main result of the paper and in this general setting can
be used for proving asymptotic optimality of the likelihood ratio test statistics
for testing simple hypotheses. A formula on large deviation probabilities de-
rived by means of application of the theorem to the exponential distributions
is denoted by (3.2) in Section 3 and is used for proving asymptotic optimality
of a test of a composite hypothesis.

As to the assumptions of Theorem 1.1, we remark that the multisample
conditions (C1) and (C3) can be imposed also in terms of one-sample properties
of the densities (1.1). It is shown in the proof of Lemma 2.4 in Rublik (1989)
that the condition (C1) is fulfilled if the following assumptions are satisfied: =
is a o-compact subset of R™, f(x, ) is an upper semicontinuous function for
each x € X and there exists a countable subset = of = containing for every
v € E a sequence {vy,};2; such that y, — y and f(x,y,) — f(x,y) for each
x € X. Further, according to Lemma 2.2(iii) in Rublik (1989), the validity of
(C1) and the following condition imply (C3).

(D1). For every v € E and every pair of positive real numbers a, ¢ there
exist measurable sets A, C X", a nonempty compact set I' C E, an integer N
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and a constant £ > 0 such that

1
(1.12) limsup — log P,(A,) < —a,
n

n—-oo

1
(1.13) inf{nlogL(xl,...,xn,y); (x1,...,x,) e X" —A,, n> N} > —00,

1
(1.14) sup{logL(xl,...,xn,E—F); (%1,...,x,)eX"—A,, nzN} < -c
n

1 1 L =
(1.15) limsup — log P, | — log (%1, ooy Xy 2) >e) < —a.
nooo N "\ n L(xy,...,%,,7)

Although this condition looks complicated, in some cases it is easier to verify
than (C3).

2. Proof of Theorem 1.1. (i) Since the projection of I onto the jth co-
ordinate space is also a compact set, we see that ' C I'y x --- x I'j, where
I'y,..., T, are compact subsets of E. Hence

(2 1) P, lo L(x(nl""’n")’l—‘)>nt><e—ntlz[/L(x(.n.) F)dv(x(n))
D Po(log e gy 2 ) < e I LG ) i ),

where dv(x(lj), e, ngj)

measure v X -+ X V.
Let j € {1,..., q} be an arbitrary fixed index. Since the set I'; is compact,

there exist finitely many points vy, ..., v, such that in the notation from (C2),

) denotes integration with respect to the n ;-fold product

I';C LUJ V(vi: 8(v:)),

=1

where 8(y)= min{6(y), e(y)}. According to the Lebesgue covering lemma
there exists a positive number 6; such that for each y* € I'; one can find

an index i for which V(y*,5;) is a subset of V(y;,5(y;)). Hence we may

assume that 6; < min{8(y;),...,8(y,)} and therefore in the notation M ; =
max{M(y;), ..., M(y,)} the implication

2.2) y*el 0<6" <5, = /L(x, V(v 8%) dv(x) < 1+ M ;5°

J?

is true. Further, compactness of the set I'; implies existence of real numbers
d; < D; such that

(2.3) r;cld;, D"
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Fori;,=0,...,n; —1let

F](nJ,ll,,lm)
D D, —d;
B PRI B P P R |
nj nj
Choosing a vy € T'j(nj,iy,...,1,) if this set is nonempty, we see that

p(v,v*)* < m((D; —d;)/n;)* for all y* € T;(n;,iy,...,i,). Hence making
use of (2.2) we obtain that the inequality

/L(xl,...,xnj,Fj(nj,il,...,im))dv(xl,...,xn,)

J

(2.5) n;
< (10, 2o
J
holds whenever
D.—d.
(2.6) n;> M

J

and the set (2.4) is nonempty. The inequalities (2.5), log(1 + z) < z and the
inclusion (2.3) imply that under validity of (2.6),

D;—d;)\"
[ LT dntaton ) < w14 3, /m P50
(2.7 n;j
< n? exp(M ;v/m(D; —d;)).
From (2.1) and (2.7) we easily get (1.10).
(i1) For every positive number ¢,

(2.8) < max{2P0 <log

L(x, , I
2Po(log((1""’q;0; > nt)}

.....

Inserting into (2.8) the compact set I' satisfying (1.9) with ¢ > A and em-
ploying (1.10) we obtain that for all n,, ..., n, sufficiently large and for all
t € [0, A], the second term on the right-hand side of (2.8) is larger than the
first one, and (1.11) follows from (1.10). O
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The constant C in (1.10) can be described by an explicit formula. Making
use of (2.7) and (2.1) we see that (1.10) holds with

a
(2.9 C=Vm) M;yD;—-d;)
=1

provided that the inequality (2.6) is fulfilled for j = 1,..., q. The quantities
appearing in (2.9) are the ones occurring in (2.3) and in the implication (2.2).

3. An application to the exponential distributions. Let

J

and
————
with
F o) =+ exp[ - g,

denoting the density of the E(u, o) distribution. Further, let
Q c 0= {((/“Llao-l)7'~-7(l"(’q7 Uq))7 (/J“j7 O-J) € R x (O> +OO)7 .] = ]-7 aq}

and
K(Q, 0, p) = inf{K(6", 0, p); 6" € O},
K(0,Q, p) =inf{K (0, 6%, p); 0" € Q}.

...........

....................

a.e. Py, where énl ng, = (9n1, s @nq), @nj = (fj,x; — ji;) is the MLE com-

,,,,,

puted from the jth sample and p; is defined in (1.7). Thus the well-known
inequalities

Py(6 € Q) < Py(K(8, 0, p) > K(Q, 6, p))
L(x(nl ..... ng)> ®) A
= P(? log— = I’LK(Q, 07 p)

hold also in this case and we obtain from Theorem 1.1 that under validity of
(1.8) given A > 0 there is a constant C such that

q
(3.2) Py(0p,.n, € Q) < exp[—nK(Q, 0,p)+m Y logn,+ c}
j=1

for all 6 € ® and all measurable sets () C ® for which K({, 0, p) < A.
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Let (), be the null hypothesis that u; = --- = u,, 0y = --- = 0, and let (),
be the set consisting of the parameters for which oy = --- = . Taking into ac-
count the form of the distribution of the differences x(*) — x(~1) of order statis-
tics for sampling from the E(u, o) distribution, denoting 4 = min{dy, ..., i}
and assuming that (u;, o;) = (0, 2) for all i, after some computation we get
that

q n.

P(Z ni(f;—iR) <t M=Mi> = an<2 njf; < t)-
J=1 J#

Thus /(Z‘;:l ni(pj—Rp) = Xg(qA) and under the validity of (), the test

statistic

_(n—q) Xjan(a,; - )

(3.3) T

.....

of the F' distribution.
To establish the Hodges—Lehmann optimality of this test we assume that
(1.8) holds and 6 € Q; — Qy and «a € (0, 1) are fixed. Since

. (3 > _1
log ong ) :nlog<1+q T,, n)
n—gq e

,,,,,

,,,,,

Hence K (6%, Q, p) — K(6%,Qy, p) = 0 and 6" belongs to the set (] consisting
of the parameters with uj = ... = u;. Since for each § € O, the equality

K(Q3, 0, p) = K(Q, 6, p) holds, (3.4) implies that
. 1 N
lnrisogp EIOg PF)(Tnl ..... ng = w) = _K(O > 07 p) = _K(‘QO’ 0’ p)
Thus the statistics (3.3) are Hodges—Lehmann optimal for testing (), against
Q; — Q.
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