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CONE ORDER ASSOCIATION AND STOCHASTIC CONE
ORDERING WITH APPLICATIONS TO

ORDER-RESTRICTED TESTING1

BY ARTHUR COHEN AND H. B. SACKROWITZ

Rutgers University

Cohen, Sackrowitz and Samuel-Cahn introduced the notion of cone
order association and established a necessary and sufficient condition for a

Ž .normal random vector to be cone order associated COA . In this paper we
Ž .provide the following: 1 a necessary and sufficient condition for a multi-

nomial distribution to be COA when the cone is a pairwise contrast cone;
Ž . Ž .2 a relationship between COA and regular association; 3 a notion of

Ž .stochastic cone ordering SCO of random vectors along with two preserva-
tion theorems indicating monotonicity properties of expectations as func-

Ž .tions of parameters; and 4 applications to unbiasedness of tests and
monotonicity of power functions of tests in cone order]restricted hypothe-
sis-testing problems. In particular, the matrix order alternative hypothe-
sis-testing problem is treated when the underlying distributions are inde-
pendent Poisson or the joint distribution is multinomial.

1. Introduction and summary. A convex cone is a subset KK : R k such
that if x, y g KK, then l x q l y g KK for all l , l G 0. A closed convex cone1 2 1 2

w x w xKK induces a partial ordering F KK as follows: x F KK y if and only if
y y x g KK. The cone KK is pointed if x g KK and yx g KK implies x s 0. A

Ž . Ž .function W x is nondecreasing with respect to w.r.t. the cone KK, or is said to
Ž w x. Ž . Ž .be cone order monotone w.r.t. KK COM KK , if W x F W y whenever

w xx F KK y.
Ž .Cohen, Sackrowitz and Samuel-Cahn 1995b recognized the important

role COM functions played in the study of a large class of hypothesis-testing
problems. It was seen that the establishment of stochastic properties of such
functions yields useful tools in solving these problems. In particular, Cohen,

Ž .Sackrowitz and Samuel-Cahn 1995a introduced the notion of cone order
Ž .association COA . A p = 1 random vector X is said to be COA w.r.t. KK,

w x w xwritten COA KK , if, for any pair W , W of COM KK functions,1 2

1.1 EW X W X G EW X EW X ,Ž . Ž . Ž . Ž . Ž .1 2 1 2

whenever the preceding expectations exist. Note that if KK is the first quad-
k w xrant of R , then COA KK is simply association A, as introduced by Esary,

Ž .Proschan and Walkup 1967 . The notions of A and COA have a number of
Ž .applications. See, for example, Esary, Proschan and Walkup 1967 , Ahmed,
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Ž . Ž .Leon and Proschan 1981 , Cohen and Sackrowitz 1994 and Cohen, Sack-´
Ž .rowitz and Samuel-Cahn 1995a .

Among the results in this paper, two are connected with COA. In order to
Ž .state the first result, we need to know that the positive dual of a cone KK is

defined as

w x1.2 KK* s u : v9u G 0, all v g KK .Ž .

Hereafter we always assume KK is a closed convex pointed cone. We also let
� 4b , n lying in an index set G, b g KK, be a set of generators of the cone KK.n n

That is, any v g KK can be expressed as a nonnegative linear combination of
the b . Furthermore, no proper subset of b ’s can qualify.n n

THEOREM 1.1. Consider a cone KK and its dual KK*. Let X p=1 be a random
X � 4vector and let Y s a X, where a are a set of generators of KK. Then X isn n n

w xCOA KK* if and only if the Y ’s are A.n

Ž .This result appears in Cohen, Sackrowitz and Samuel-Cahn 1995a for the
special case where KK* is a polyhedral cone with k linearly independent
generators.

Theorem 1.1 has value in the following senses. First, it may be easier to
establish Y are A than to establish X is COA or vice versa. Second, and ofn

greater importance, is the fact that the proof requires showing that any COM
w xKK* function of x can be expressed as a nondecreasing function of the y ’s.n

This proves to be extremely valuable in the construction of good tests of
hypotheses in many practical problems. In fact, this is precisely what is done

Ž .in Cohen, Sackrowitz and Samuel-Cahn 1995b . That is, good tests are
determined by finding monotone functions of the y ’s.n

To state the second result concerning COA, we let the cone KK be aB
polyhedral cone of the form

� k 41.3 KK s u : u g R , Bu G 0 ,Ž . B

where the rows of B r=k are generators of KKU. If the rows of B are contrastsB
Ž .i.e., the sum of the row elements equals 0 with only two nonzero elements,
KKU is called a pairwise contrast cone. Note that a pairwise contrast coneB

� 4corresponds to a partial ordering on the set 1, 2, . . . , k . Also note that many
cones of interest are pairwise contrast cones, for example, the simple order
cone, the simple tree cone and the umbrella cone. See, for example, Robert-

Ž . kson, Wright and Dykstra 1988 . Let H be the equiangular line in R . Our
second result is as follows.

THEOREM 1.2. Let Uk=1 be a random vector with multinomial distribu-
Ž Ž . . Ž Ž . .tion with parameters n, k, 1rk 1 , that is, U ; MM n, k, 1rk 1 , 19 s

Ž . U Ž .1, 1, . . . , 1 . Let KK be a pairwise contrast cone where B has rank k y 1 .B
w U x UThen U is COA KK if and only if KK [ H > KK .B B B
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Our next main result is concerned with the notion of stochastic cone
Ž . k=1ordering SCO of random vectors. A random vector X is stochastically

cone order less than or equal to Y k=1 with respect to the cone KK, written
w x Ž . w xX F KK Y, if for every h X which is COM KK ,st

1.4 Eh X F Eh Y ,Ž . Ž . Ž .
Ž .whenever expectations in 1.4 exist.

k=1 Ž .Now let U ; MM n, k, p . Let KK* be a contrast cone. That is, the genera-
w xtors of KK* are contrasts. Since we study functions that are COM KK* , the

only type of cone which makes sense to consider is a contrast cone. More
specifically, note that if KK* has a generator which is not a contrast, then no
two points within the multinomial sample space are ordered with respect to
that generator. To see this, note that if x lies in the sample space and b is a

Ž .generator of KK*, then x91 s n and so x q lb 91 must equal n for l ) 0.
We have the following preservation theorem.

THEOREM 1.3. The inequality

1.5 E h U G E h UŽ . Ž . Ž .p9 p

w x Ž . w xholds for all p9 G KK* p and all h U that are COM KK* if and only if KK* is
a pairwise contrast cone.

Ž .When 1.5 holds, we say that the family of random vectors U is SCO with
respect to the cone KK*.

Ž .The preservation theorem Theorem 1.3 is particularly interesting when
contrasted with a comparable preservation theorem for the normal or transla-

Ž .tion parameter case. In the case U ; N m, S , KK* can be any convex cone and
the analogous preservation theorem is true.

Another result concerning the notion of SCO extends a result of Proschan
Ž .and Sethuraman 1977 . Let X , i s 1, 2, . . . , k, be independent random vari-i

ables with densities that belong to the same one-parameter family. The
densities are with respect to m, Lebesgue measure in the continuous case and
counting measure on the integers in the integer value case. Let X s
Ž . Ž . Ž .X , . . . , X 9, u s u , . . . , u 9 and let f x; u represent the family of densi-1 k 1 k
ties for each X . The following is another preservation theorem.i

Ž .THEOREM 1.4. Suppose f x; u satisfies

1.6 f x ; u s 0 if x - 0;Ž . Ž .
1.7 f x ; u is totally positive of order 2 TP ;Ž . Ž . Ž .2

f satisfies the semigroup property, that is,

1.8 f y , u q u s f x ; u f y y x , u dn xŽ . Ž . Ž . Ž . Ž .H1 2 1 2
XX

for some measure n on XX .



CONE ORDER ASSOCIATION AND TESTING 2039

Suppose KK* is a pairwise contrast cone. Then the random vector X is SCO
Ž . Ž . w xw.r.t. KK*. That is, the function c u s E h X is COM KK* .u

Theorems 1.1]1.4 have important applications to hypothesis-testing prob-
lems concerned with order-restricted parameters. For example, Theorem 1.2
can be used to identify a class of unbiased tests of the homogeneity of Poisson
parameters versus an alternative that such parameters satisfy a matrix
order. That is, in a two-way table of parameters l , l satisfy l G li j i j Ž iq1. j i j

Ž .and l G l . See, for example, Robertson, Wright and Dykstra 1988 foriŽ jq1. i j
discussions of this alternative. This is a particularly interesting application
from two points of view. First, it is a practical situation of interest and,
second, the number of generators of the dual cone is too large to enable
previous methods to establish the unbiasedness property. This makes the
results of this paper more meaningful.

In Section 2 we will discuss the problem of testing the homogeneity of
Poisson parameters against the matrix order alternative. We will indicate
how each of the theorems of Section 1 can be utilized or applied to this
problem. The connection between the Poisson distribution and the theorems
concerning the multinomial distribution will become clear.

The theorems concerning the multinomial distribution apply to other
hypothesis-testing problems dealing with Poisson parameters or multinomial
parameters. Alternatives other than the matrix order alternative can be
considered including the simple order alternative.

Theorems 1.1 and 1.4 can apply to problems involving distributions other
than the multinomial and Poisson.

In Section 3 we give extensions and further discussion. Section 4 contains
the proofs of the results concerned with COA, while Section 5 contains the
proofs of the results concerned with SCO.

2. Matrix order alternative for Poisson parameters. Let Z bei j
independent Poisson variables with parameters l , i s 1, . . . , R; j s 1, . . . , C.i j

Ž .Test H : l s l s ??? s l all l are equal vs. H y H , where H :0 11 12 RC i j 1 0 1
Ž . Ž .l F l , l F l , all i, j . Let Z9 s Z , Z , . . . , Z be an RC = 1i j Ž iq1. j i j iŽ jq1. 11 12 RC

Ž .vector and let l9 s l , l , . . . , l . The alternative H may be repre-11 12 RC 1
sented as a closed convex cone

� 42.1 KK s l : Bl G 0 ,Ž . B

U Ž .with KK a pairwise contrast cone. The matrix B of rank RC y 1 isB
Ž .determined in Cohen, Sackrowitz and Samuel-Cahn 1995b , Section 5.2,

U wwhere it is also established that KK [ H > KK . Note that the alternative canB B
� 4 Ž .also be represented as v: Bv G 0 , where v s log l , i.e., v is thei j i j

natural parameter when the distribution of Z is expressed in exponential
Ž . xfamily form, and B is the same matrix as in 2.1 .

Next recognize that, under H , T s ÝC ÝR Z is a sufficient complete0 js1 is1 i j
statistic. Therefore, any similar test of size a must have Neyman structure
w Ž .xsee Lehmann 1986 . This means any size a test must have conditional size
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a for every given T s t. Since power functions of tests in this model must be
continuous, any unbiased test must be similar. We seek unbiased tests so we
consider tests performed conditionally for a given T s t. Any test that is
conditionally unbiased will be unconditionally unbiased. Since the distribu-
tion of T in this Poisson model depends only on the sum of the parameters, it
follows that a test that has a conditional monotone nondecreasing power
function will have an unconditional monotone nondecreasing power function.

<Next note that the conditional distribution of Z T s t is multinomial
Ž .M t, RC, p , where RC is the number of cells and p has ijth element

Ž R C .l rÝ Ý l . Our plan is to find conditionally unbiased tests of size ai j is1 js1 i j
Ž .based on Z given T s t. In fact, we want to establish that test functions f Z

w U xthat are COM KK are unbiased. Toward this end Theorem 4.1 of Cohen,B
Ž .Sackrowitz and Samuel-Cahn 1995a states that such tests are unbiased

Ž . w U x Ž .provided 1 Z is COA KK and 2 the ratio, consisting of the density ofB
< < w U xZ T s t under H divided by the density of Z T s t under H , is COM KK .1 0 B

Ž .That condition 2 is true can be seen by writing the densities in the ratio in
exponential family form. The ratio for fixed T s t reduces to

2.2 r z; v , v s b v , v , t ez 9v ,Ž . Ž . Ž .0 0

where v is an alternative point and v is a null point. However,0

r z q b; v , v s b v , v , t eŽzqb.9vŽ . Ž .0 0
2.3Ž .

G b v , v ez 9v s r z ; v , vŽ . Ž .0 0

U Ž . Ž .for v g KK and b a generator of KK i.e., b9v G 0 . Hence 2.3 establishesB B
Ž . Ž .condition 2 . At this point we invoke Theorem 1.2 to establish condition 1

w U xand thereby conclude that tests that are COM KK of size a are unbiased.B
We must keep in mind that these are the conditional tests given T s t but, as
mentioned before, a test that is conditionally unbiased for T s t a.e. is
unconditionally unbiased.

Theorem 1.3 gives a stronger result for the very same problem. First, we
<will apply Theorem 1.3 with Z T s t playing the role of U, f, a test function,

w U x w U xplaying the role of h and noting that p9 G KK p if and only if l9 G KK l .B B
w U xTheorem 1.3 implies that, for the problem at hand, tests that are COM KKB

of size a are not only unbiased but have monotone nondecreasing power
functions on lines that are determined as follows. Let l be any alternative
point. Since KK ; KKU [ H, l can be expressed as l* q g 1, with l* g KKU.B B B
The power function is monotone nondecreasing on the line from g 1 that
passes through l . This is a consequence of Theorem 1.3 because suppose we
consider alternatives l s a l* q g 1 and l s a l* q g 1, with a ) a .2 2 1 1 2 1

Ž . w U x Ž .Then l y l s a y a l*, which implies l G KK l . The relation 1.52 1 2 1 2 B 1
w U xmeans that the power function of a COM KK test under l is greater thanB 2

or equal to the power function under l .1
The fact that Theorem 1.3 yields a better result for this problem than

Theorem 1.2 does not mean Theorem 1.2 does not have value. When U is COA
it lends itself to other applications such as probability inequalities.
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Theorem 1.4 is also applicable for this hypothesis-testing problem and
yields the same conclusion as Theorem 1.3. The advantage of Theorem 1.3 is
that it has a converse and so we know this stochastic cone ordering result
holds only if KK* is a pairwise contrast cone.

Finally, Theorem 1.1 is applicable to this testing problem. In fact, Theorem
1.1 is valuable in actually determining unbiased tests. A method of construct-

Ž .ing unbiased tests as noted in Cohen, Sackrowitz and Samuel-Cahn 1995b ,
Section 4, is to find test functions that are monotone nondecreasing functions
of the Y ’s of Theorem 1.1. The unbiasedness property ensues when the Y ’sn n

are associated.
We note that the conditional likelihood ratio test for this problem is COM

w U x ŽKK and so this test is unbiased with a monotone power function. TheB
likelihood ratio test performed unconditionally would not be similar and

.could not be unbiased. As a consequence of Theorem 1.1, tests based on
statistics that are nonnegative linear combinations of the Y , or tests basedn

w xon statistics equal to the max r Y , where r are nonnegative weights1F n F p n n n

and p is the number of generators in KK, have monotone power functions. The
determination of a used to define Y is outlined in Cohen, Sackrowitz andn n

Ž .Samuel-Cahn 1995b , Section 5.2.
w xTests based on the statistic M s max r Y have considerable ver-1F n F p n n

Žsatility. If one were interested in a special type of alternative say differences
.in the rows of the matrix of parameters , this would suggest giving greater

Ž . wweight through the r ’s to particular Y ’s. See Cohen, Sackrowitz andn n

Ž .Samuel-Cahn 1995b where this is accomplished in a normal testing prob-
x Ž .lem. If the test required rejection when M ) C t , one could determine thea

Ž .C t , the critical value, by simulation.a

3. Extensions and discussion. A theorem related to Theorem 1.2,
which amounts to an improvement in the sufficiency part of that theorem,
can be given. Before stating the new theorem, we let KK be a closed convex
cone and let KK* denote its dual. Let SU denote the cone generated by theKK

totality of all pairwise contrast vectors that lie in KK*. Clearly, then, KK* > SU .KK

Let S be the dual of SU .KK KK

Suppose CC is a cone and DD is a cone such that CC ; DD.

w xTHEOREM 3.1. Let U be a k = 1 random vector. If U is COA CC , then U
w x w U x w xis COA DD . In particular, if U is COA S , then U is COA KK* .KK

w xPROOF. Let FF be the class of COM CC functions. Then FF ; FF . Hence,CC DD CC

for any pair of functions h, g g FF , we haveDD

3.1 Eh U g U G Eh U Eg UŽ . Ž . Ž . Ž . Ž .
w xsince U is COA CC . I

In Section 2 we showed how A and COA can be used to establish the
unbiasedness of constant size tests for the Poisson parameter matrix order
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problem. These notions as well as SCO can be used to obtain similar types of
results for other cone order alternatives and for other distributions. In Cohen,

Ž .Sackrowitz and Samuel-Cahn 1995a, b the focus is on the normal distribu-
tion. For the Poisson and multinomial distributions the results in all the
theorems apply to any pairwise contrast cone KK* such that KK* [ H > KK,
which includes the simple order cone. Theorem 1.1 is not limited to a
polyhedral cone and so it can apply, for example, to a problem discussed in

Ž .Pincus 1975 , which deals with a circular cone. See also Cohen, Sackrowitz
Ž .and Samuel-Cahn 1995a where Pincus is also referenced.

A remark is in order regarding the set of distributions satisfying the
conditions of Theorem 1.4. Among exponential family distributions we name
the Poisson, the binomial with different n’s but the same p and the gamma
with the same scale parameter but different degrees of freedom. Further-
more, if Theorem 1.4 is to be applied to a hypothesis-testing problem where
the hypotheses are unchanged when monotone transforms of the X arei
made, other distributions qualify.

Theorem 1.3 is applicable to a hypothesis-testing problem considered by
Ž .Kochar and El Barmi 1994 . The problem is concerned with bivariate sym-

metry against ordered alternatives in a contingency table. Again, unbiased
tests with monotone power functions can be identified as those which are

w xCOM KK* , where KK* is the dual of the cone representing the alternative
space for that problem.

The necessity parts of Theorems 1.2 and 1.3 are valuable in that they
demonstrate that it is only in these situations that one can achieve the strong
properties of COA and SCO. It is interesting and worthwhile to contrast the
result of Theorem 1.4 with other preservation theorems. For example, Theo-

Ž .rem 2 of Boland, Proschan and Tong 1992 is a special case of Theorem 1.4
where KK is a simple order cone, that is,

3.2 KK s u : u g R k , u F u F ??? F u .Ž . � 41 2 k

The SCO property of Theorem 1.4 is equivalent to the SO property of the
vector of partial sums. Another type of preservation theorem of Boland,

Ž .Proschan and Tong 1992 , namely their Theorem 1, is also concerned with
the simple order cone. This theorem is a special case of Theorem 2.1 of Cohen

Ž .and Sackrowitz 1993 , where the same theorem as in Boland, Proschan and
Ž .Tong 1992 applies to a larger class of distributions. In contrast to our

Ž .Theorem 1.4 here, the Cohen and Sackrowitz 1993 result is limited to the
simple order cone, even though the class of distributions is enlarged.

Ž .Theorem 1.4 extends Theorem 1.1 of Proschan and Sethuraman 1977 . In
that theorem, Schur convexity is preserved. Schur convex functions can be
thought of as COM functions where the ordering is majorization, which is, in
a sense, a cone ordering but defined on vectors with ordered components, that

Ž .is, x , x , . . . , x , where x F x F ??? F x .Ž1. Ž2. Žk . Ž1. Ž2. Žk .
We remark that the notions of COM, COA and SCO can be extended to any

partial ordering of points in R k. They need not be limited to cone ordering of
points. However, cone ordering of points has applications of interest.
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4. Proofs of theorems concerned with COA. Let KK be a closed
� 4convex cone and let KK* be its dual. Let a : n g G , G an index set, be an

collection of generators of KK and let y s aX x for all n g G. For ease ofn n

� 4exposition we write y s y : n g G .n

Ž . w xLEMMA 4.1. Let h x be any COM KK* function. Then there exists a
Ž . Ž . Ž .nondecreasing function h* y such that h* y s h x .

PROOF. Let Q denote the linear set in y-space representing the range
space of the mapping for which

4.1 x g R k exists with aX x s y for all n g G.Ž . n n

Clearly, dim Q F k.
X X Ž .Now suppose x and x* are such that a x s a x* for all n . Then h x sn n

Ž . X Ž .h x* . To see this, observe that a x y x* s 0 for all n g G so thatn

Ž . Ž . w x w xx y x* g KK* and x* y x g KK*, that is, x F KK* x* and x* F KK* x, imply-
Ž . Ž . w x Ž .ing h x s h x* since h is COM KK* . In light of this we can define h* y

as follows. For y g Q take any x such that y s aX x, all n , and definen n

4.2 h* y s h* aX x: n g G s h x .Ž . Ž . Ž . Ž .n

It is easily verified that h* is a nondecreasing function of y.
The function h* is defined only on Q. It can be extended to be a nonde-

creasing function on all of y-space by letting

4.3 hU y s sup h* u : u g Q, u F y .� 4Ž . Ž . Ž .1

U Ž .If there does not exist any u g Q with u F y, h y s y`. I1

Ž . w xPROOF OF THEOREM 1.1. i Suppose Y is A. Consider COM KK* functions
h and h of X and note1 2

4.4 Eh X h X s EhU Y hU Y ,Ž . Ž . Ž . Ž . Ž .1 2 1 2

where hU and hU are nondecreasing functions of Y that are determined from1 2
Ž .Lemma 4.1. Now use the fact that Y is A along with 4.4 to conclude that X is

w xCOA KK* .
Ž . w xii Suppose X is COA KK* . If g and g are nondecreasing functions of Y,1 2

then
4.5 Eg Y g Y s EgU X gU X ,Ž . Ž . Ž . Ž . Ž .1 2 1 2

U Ž . Ž X X .where g X s g a X, a X, . . . , i s 1, 2. Furthermore, note that if b g KK*,i i 1 2
X X Ž . Xthen a b G 0, which means that a X q b G a X which along with mono-n n n

U Ž . w U x Ž .tonicity of g implies that g X is COM KK . Use this fact, 4.5 and the facti i
w xthat X is COA KK* to conclude that Y is A. I

To prove Theorem 1.2, we need some lemmas.

Ž Ž . . w xLEMMA 4.2. Suppose Z ; MM 1, k, 1rk 1 is COA KK* . Then U ;
Ž Ž . . w xMM n, k, 1rk 1 is also COA KK* .
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n Ž Ž . .PROOF. Note U s Ý Z , where Z are iid and Z ; MM 1, k, 1rk 1 . Wejs1 j j j
use induction and assume the lemma is true for 1, 2, . . . , n y 1 after the

w xhypothesis assures us it is true for 1. Now let h and h be COM KK*1 2
functions and consider

Eh U h UŽ . Ž .1 2

ny1 ny1 ny1

s E E h Z q Z h Z q Z ZÝ Ý Ý1 n j 2 n j j½ 5½ 5ž / ž /js1 js1 js14.6Ž .
ny1 ny1 ny1 ny1

G E E h Z q Z Z E h Z q Z ZÝ Ý Ý Ý1 n j j 2 n j j½ 5 ½ 5½ 5ž / ž /js1 js1 js1 js1

by using the hypothesis of the lemma. Furthermore, let

ny1 ny1 ny1
U4.7Ž . h Z s E h Z q Z Z , i s 1, 2.Ý Ý Ýi j i n j j½ 5ž / ž /js1 js1 js1

U w x ny1Note h are COM KK* . This is true since if b g KK* and Ý Z s z, theni js1 j
Ž . Ž . w xh Z q z q b G h Z q z because h are COM KK* . Now use the induc-i n i n i

Ž .tion hypotheses and 4.6 to complete the proof of Lemma 4.2. I

Ž . UNow let KK be as in 1.3 , where KK is a pairwise contrast cone. RecallB B
that H is the equiangular line.

LEMMA 4.3.

4.8 KKU [ H > KKŽ . B B

if and only if

4.9 kuX u G 19u 19uŽ . Ž . Ž .1 2 1 2

for all u , u g KK .1 2 B

Ž . Ž .w xPROOF. i Necessity. Let u s 1rk Ý u ,Ý u , . . . ,Ý u 9, i s 1, 2. Notei j i j j i j j i j
Ž . Ž .that if u g KK , then u y u g KK . This is true since B u y u s Bu G 0.i B i i B i i i

UŽ .Also u y u g KK [ H by hypothesis, and since u y u is orthogonal to Hi i B i i
U UŽ . Ž .it follows that u y u g KK . Hence u y u lies in both KK and KK , whichi i B i i B B

Ž .implies 4.9 .
Ž . Ž .ii Sufficiency. Assume 4.9 holds but u is such that u g KK , but u f1 1 B 1

U UKK [ H. Also, if u g KK , that implies u y u g KK but u y u f KK . ThisB 1 B 1 1 B 1 1 B
implies there exists a u g KK such that2 B

4.10 u y u 9u s u y u 9 u y u - 0.Ž . Ž . Ž . Ž .1 1 2 1 1 2 2

Ž . Ž . Ž .However, 4.10 contradicts 4.9 and so 4.8 is true. I

Ž . Ž .At this point we let e s 0, . . . , 1, 0, . . . , 0 9 be a k = 1 vector with all 0’si
except a 1 for the ith coordinate, i s 1, 2, . . . , k.
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Ž Ž . . Ž . ULEMMA 4.4. Let U ; MM 1, k, 1rk 1 . Let KK be as in 1.3 , where KK is aB B
Ž . w U xpairwise contrast cone and B has rank k y 1 . Then U is COA KK if andB

only if KKU [ H > KK .B B

w U xPROOF. Let h and h be functions which are COM KK . Since U is1 2 B
� 4uniformly distributed on e , . . . , e , we may write1 k

4.11 Eh U h U s hX h rk ,Ž . Ž . Ž .1 2 1 2

w Ž . Ž . Ž .xwhere h is the vector h e , h e , . . . , h e 9, i s 1, 2. Similarly,i i 1 i 2 i k

4.12 Eh U s h , i s 1, 2.Ž . Ž .i i

Now let b be any row of B with a 1 in the b th position and a y1 in the g th
Ž . Ž .position. Then b s e y e and b9h s h e y h e . Similarly, for b9h .b g 1 1 b 1 g 2

w U x Ž . Ž .Since h , i s 1, 2, are COM KK , we have h e G h e , i s 1, 2. Thusi B i b i g

b9h G 0, which means h g KK for i s 1, 2. Now invoke Lemma 4.3 andi i B
Ž . Ž .4.11 and 4.12 to conclude the proof. I

Now we can prove the following result.

Ž Ž . . UTHEOREM 1.2. Let U ; MM n, k, 1rk 1 . Let KK be as in Lemma 4.4. ThenB
w U x UU is COA KK if and only if KK [ H > KK .B B B

Ž . UPROOF. i Sufficiency. If KK [ H > KK , then Lemma 4.4 implies U ;B B
Ž Ž . . w U xMM 1, k, 1rk 1 is COA KK . Lemma 4.2 in turn implies that U ;B
Ž Ž . . w U xMM n, k, 1rk 1 is COA KK .B
Ž . Ž Ž . . w U x Uii Necessity. Suppose U ; MM n, k, 1rk 1 is COA KK but KK [ H r KK .B B B

Ž . Ž .Then by Lemma 4.3 there exist u , u g KK such that u y u 9 u y u - 0.1 2 B 1 1 2 2
X w U x Ž X X . Ž .ŽNote u U, i s 1, 2, is COM KK . However, cov u U, u U s 1rk u yi B 1 2 1

U. Ž . w xu 9 u y u - 0. This is a contradiction to the fact that U is COA KK . I1 2 2 B

5. Proofs of theorems concerned with SCO.

Ž .PROOF OF SUFFICIENCY OF THEOREM 1.3. Recall U ; MM n, k, p and KK* is a
w x Ž . w xpairwise contrast cone. Let p* G KK* p and let h u be a COM KK* function.

First, let p* differ from p in only two coordinates and, without loss of
Ž U U U . Ž .generality, we let p* s p , p , . . . , p 9, p s p , p , . . . , p 9 be such that1 2 k 1 2 k

pU G p , and pU F p , while pU s p , j s 3, . . . , k. In other words, we1 1 2 2 j j
Ž .assume, without loss of generality, that 1, y1, 0, . . . , 0 is a generator of KK*.

Consider

<5.1 E h U s E E h U U , . . . , U .Ž . Ž . Ž .� 4p* p* p* 3 k

Ž .Since U ; MM n, k, p , when n, U , . . . , U are fixed,3 k

k p1
<U n , U , . . . , U ; B n y U , .Ý1 3 k j kž /1 y pjs3 Ý jjs3
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Therefore, by the monotone likelihood ratio property of a binomial variable
k k U Ž .and the fact that 1 y Ý p s 1 y Ý p , we have that 5.1 is greaterjs3 j js3 j

than or equal to
<5.2 E E h U U , . . . , U .� 4Ž . Ž .� 4p* p 3 k

Ž .Now, however, the marginal distribution of U , . . . , U under p* is the same3 k
Ž .as under p. Hence 5.2 equals

5.3 E h U ,Ž . Ž .p

Ž . Ž . Ž .and we have 5.1 G 5.3 , which proves sufficiency when p* y p is a multi-
Ž . w x mple of 1, y1, 0, . . . , 0 9. When p* G KK* p and p* y p s Ý g b , g ) 0, mis1 i i i

an integer, where b are generators of KK*, we proceed step by step as beforei
Ž . Ž .and have a chain of inequalities like 5.1 G 5.3 to complete the proof. I

To prove necessity, we will use the following simple lemma, which is very
w xuseful in constructing COM KK* functions.

ˆLEMMA 5.1. Let V be any set and let V s V q KK*. Then

ˆ1, if u g V ,5.4 H u sŽ . Ž . ½ 0, otherwise
w xis COM KK* .

Ž .PROOF OF NECESSITY OF THEOREM 1.3. Assume 1.5 holds and suppose KK*
Ž .is not a pairwise contrast cone. Our plan is to exhibit a function H u which

w x Ž . w x Ž .is COM KK* such that E H U is not COM KK* , that is, a function H u forp
Ž .which 1.5 does not hold. This will provide the contradiction to establish

necessity.
Recall e is the vector whose ith component is 1 and whose other compo-i

nents are 0. Let d s e y e so that any pairwise contrast vector is some d .i j i j i j
Since we assumed KK* is not a pairwise contrast cone, let w be a generator of

Ž .KK*, where w / d for any i, j . Since w is a generator and KK* is convex, byi j
the supporting hyperplane theorem, there exists r such that rX w s 0 and0 0
rX u G 0 for all u g KK*. Let S* be the cone generated by all d such that0 i j
rX d ) 0 or d g KK*. We claim w f S*. Since if w g S*, then w s0 i j i j
Ý l d , l G 0. However, 0 s rX w s Ý l rX d , which impliesd g S* i j i j i j 0 d g S* i j 0 i ji j i j

w s Ý l d , contradicting the fact that w is a generator of KK*.d g KK * i j i ji j

Since w f S*, it follows that there exists r such that r9w s 0, r 9d ) 0 fori j
all d g S*. Then there exists a generator of S, the dual of S*, say s, suchi j
that w9s - 0. If not, w9s G 0 for all generators of S, which would imply that
w g S*.

Ž .By the upper sets algorithm of Berk and Marcus 1996 , it follows that
Ž . Ž .s is of the form 1, 1, . . . , 1, 0, . . . , 0 9 y mrk 1, where there are m 1’s in

Ž .1, 1, . . . , 1, 0, . . . , 0 9.
Now d g S* if and only if r9d ) 0 if and only if r ) r . This implies thati j i j i j

Ž .r , . . . , r must all be less than or equal to the min r , . . . , r . To see this,mq 1 k 1 m
suppose, for example, that r ) r . Then d g S* and by the uppermq 1 m mq1, m
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sets algorithm s G s , which contradicts the form of s. Hence we maymq 1 m
take, without loss of generality, r G r G ??? G r G r G ??? G r .1 2 m mq1 k

Ž .We are finally ready to construct H u . Let

5.5 V s y: y s n y 1 e q e , j s 1, . . . , m ,Ž . Ž .� 41 j

ˆ Ž . Ž .and let V s V q KK*. Then Lemma 5.1 implies H u , defined in 5.4 is COM
w xKK* .

ˆŽ . Ž .Before computing E H U , we show that e q n y 1 e f V for q ) m.p q 1
ˆŽ . Ž .Suppose e q n y 1 e g V. Then there exists y g V such that n y 1 e qq 1 1

Ž . ŽŽ . .e y y g KK*. This occurs if and only if n y 1 e q e y n y 1 e q e gq 1 q 1 i
KK* for some i s 1, 2, . . . , m. However, this would imply d g KK* which inqi
turn would imply r ) r , which is a contradiction.q 1

Ž .Recall U ; MM n, k, p so

W p s E H U s pn q npny1 p q ??? qpŽ . Ž . Ž .p 1 1 2 m

k
g Žu.iq R u p ,Ž .Ý Ł i

is1ˆugVyV

5.6Ž .

Ž . Ž . k Ž .where R u is a positive function of u, g u F n y 2 and Ý g u G 2. It1 is2 i
Ž .follows from Lemma 3.1 of Cohen, Sackrowitz and Samuel-Cahn 1995a that

Ž . w x Ž .W p is COM KK* if and only if b9 =W p G 0 for all b g KK* and all p, where
Ž .=W p is the gradient of W. Now choose b s w, the generator of KK* that is

not a d . We computei j

w9 =W pŽ .
¡ ny1 ny2 ¦np q n n y 1 p p q ??? qp q P pŽ . Ž . Ž .1 1 2 m 1

ny1np q P pŽ .1 2
. .. .. .
ny1s w9 np q P pŽ .1 m

P pŽ .mq 1
...¢ §P pŽ .k

5.7Ž .

PU pŽ .1

P pŽ .2ny1s np w9s q w9 ,.1 ..� 0
P pŽ .k

U Ž . Ž . ny2 Ž . Ž . Ž .where P p s n n y 1 p p q ??? qp q P p and P p , j s1 1 2 m 1 j
Ž Ž2.. Ž2. Ž .1, 2, . . . , k, are functions of p s p , p 9, p s p , . . . , p 9 such that1 2 k

Ž . Ž2. Ž .P p ª 0 as p ª 0. However, since w9s - 0, it follows that 5.7 is negativej
Ž . w xfor some p, which implies that W p is not COM KK* . I
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PROOF OF THEOREM 1.4. The proof of this theorem uses the ideas of the
sufficiency proof of Theorem 1.3 and uses the steps in the proof of Theorem

Ž .J.2 of Chapter 3 of Marshall and Olkin 1979 . We omit the details.
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