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Consider the regression of a response Y on a vector of quantitative
predictors X and a categorical predictor W . In this article we describe a first
method for reducing the dimension of X without loss of information on the
conditional mean E(Y |X,W) and without requiring a prespecified parametric
model. The method, which allows for, but does not require, parametric
versions of the subpopulation mean functions E(Y |X,W = w), includes
a procedure for inference about the dimension of X after reduction. This
work integrates previous studies on dimension reduction for the conditional
mean E(Y |X) in the absence of categorical predictors and dimension
reduction for the full conditional distribution of Y |(X,W). The methodology
we describe may be particularly useful for constructing low-dimensional
summary plots to aid in model-building at the outset of an analysis. Our
proposals provide an often parsimonious alternative to the standard technique
of modeling with interaction terms to adapt a mean function for different
subpopulations determined by the levels of W . Examples illustrating this and
other aspects of the development are presented.

1. Introduction. A common paradigm for studying the regression of a
univariate response Y on a vector X ∈ R

p of quantitative continuous or many-
valued predictors hinges on describing the conditional distribution of Y |X with a
parsimonious parametric model. Depending on available data and study-specific
goals, modeling may be restricted to the conditional mean E(Y |X) and perhaps the
conditional variance Var(Y |X), leaving other aspects of Y |X unspecified or to be
filled in by plausible assumptions.

When a parametric model for Y |X is not available ex ante and the dimension
of X is too large for direct visualization of the data, the theory of sufficient
dimension reduction may provide an effective starting point for the regression. This
theory provides a framework for replacing X with a lower dimensional linearly
transformed version A′X without loss of information on targeted characteristics of
the conditional distribution of Y |X and without requiring a prespecified parametric
model. Model building can then be limited to the reduced predictors A′X expressed
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as linear combinations of the original ones. The drop in dimension is often
substantial in practice, even when starting with a high-dimensional X. Reduced
predictors with dimension at most three suffice in many applications, and allow a
fully informative and direct visualization of the original regression through a plot
of Y versus A′X.

Let W ∈ {1, . . . , c} denote a categorical predictor that partitions the population
into c subpopulations. The variable W could represent a qualitative predictor like
species, or a combination of qualitative predictors like species and location, or it
could be a categorical version of a continuous predictor. In this article we introduce
a dimension reduction method for X in the conditional mean E(Y |X,W). We
assume throughout that the data are i.i.d. observations on (X, Y,W), which has
a joint distribution. Developments and proofs can be modified straightforwardly
to accommodate the case where W is nonrandom and (X, Y )|W has a joint
distribution for each level of W . The methodology to be described applies without
modification when W is nonrandom.

1.1. Dimension reduction for Y |X. A dimension reduction subspace for Y |X
is any subspace S ⊆ R

p such that

Y |= X|PSX,(1)

where P· stands for a projection operator and |= indicates independence. The
statement is thus that Y is independent of X given PSX. Under mild conditions
the intersection of all dimension reduction subspaces also satisfies (1), and in
these cases it is called the central subspace (CS) of the regression and indicated
with SY |X. The CS, which represents the minimal subspace that preserves the
original information on Y |X, is the main object of interest for reducing the
dimension of X without loss of information on Y |X. It is unique when it exists
and thus constitutes a well defined object of inference.

A summary plot of Y versus PSY |XX is called the central view of the regression,
with the understanding that it may be directly visualizable only when dim(SY |X)

is small. In practice, we can display an estimated central view in terms of any
basis (s1, . . . , sd) for an estimate of SY |X by plotting Y versus s′

1X, . . . , s′
dX.

Uncorrelated views with the sample Var(s′
1X, . . . , s′

dX) = I often provide the best
visual resolution.

There are several methods for estimating SY |X or portions thereof under
restrictions on the marginal distribution of X, including ordinary least squares
[OLS; Li and Duan (1989)], sliced inverse regression [SIR; Li (1991)], sliced
average variance estimation [SAVE; Cook and Weisberg (1991)], principal
Hessian directions [PHD; Li (1992); see also Cook (1998b)] and parametric
inverse regression [PIR; Bura and Cook (2001)].

Recent advances have expanded the scope of sufficient dimension reduction in
two fundamental directions.
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1.2. Dimension reduction for E(Y |X). Cook and Li (2002) investigated
dimension reduction for E(Y |X). A dimension reduction subspace for the
conditional mean is any subspace S ⊆ R

p such that

Y |= E(Y |X)|PSX.(2)

When the intersection of all subspaces satisfying (2) does itself satisfy the
condition, it is called the central mean subspace (CMS) of the regression and
is indicated with SE(Y |X). It is straightforward to show that SE(Y |X) ⊆ SY |X with
equality in the case of location regressions where Y |= X|E(Y |X). Because of
this inclusion, any method of estimating directions within the CMS will estimate
directions within the CS. Conversely, Cook and Li proved that, among existing
methods to estimate directions within the CS, PHD and OLS always estimate
directions within SE(Y |X), while SIR and SAVE can estimate directions in SY |X
but not in SE(Y |X). After SE(Y |X) has been estimated, features of the mean function
can be studied in a summary plot of Y versus s′

1X, . . . , s′
dX, where {s1, . . . , sd} is

a basis for the estimate of SE(Y |X).

1.3. Partial dimension reduction for Y |(X,W). The discussion of dimension
reduction in Sections 1.1 and 1.2 was limited to regressions with quantitative
predictors X because it is in such settings that linear dimension reduction may
be particularly relevant. Straightforward application to regressions that include a
categorical predictor W may be inappropriate because then the relevance of linear
combinations involving W can be elusive.

Chiaromonte, Cook and Li (2002) investigated the reduction of X in regressions
that include a categorical predictor W ∈ {1, . . . , c}. A partial dimension reduction
subspace is any subspace S ⊆ R

p such that

Y |= X|(PSX,W).(3)

If the intersection of all such partial subspaces itself satisfies (3), it is called the
central partial subspace (CPS) for the regression of Y on (X,W) and is indicated

with S
(W)

Y |X. For partial dimension reduction, the summary view is a plot of Y

versus P
S

(W)

Y |X
X with points marked to indicate the W subpopulation.

Let (Xw,Yw) indicate a pair distributed like (X, Y )|(W = w) and let SYw|Xw

denote the central space for the regression of Yw on Xw . Also, let ⊕ indicate
the direct sum between two subspaces (V1 ⊕ V2 = {v1 + v2; v1 ∈ V1, v2 ∈ V2}).
Chiaromonte, Cook and Li (2002) proved that

S
(W)

Y |X =
c⊕

w=1

SYw|Xw.(4)

Although the spaces SYw|Xw , w = 1, . . . , c, can overlap in any fashion, the CPS
always coincides with their direct sum. This suggests that partial dimension
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reduction be performed by combining dimension reduction within subpopulations.
In particular, Chiaromonte, Cook and Li (2002) adapted SIR for estimation of
directions in S

(W)

Y |X.

1.4. Overview. In this article, we merge the two lines of inquiry described
in Sections 1.2 and 1.3, studying dimension reduction for conditional means
involving a categorical predictor. We formalize this notion in Section 2 and map its
connections to the ideas reviewed in Sections 1.1–1.3. We study the corresponding
estimation problem in Section 3. Section 4 contains the large sample results
that allow us to estimate the dimension of the relevant subspace under various
assumptions. Section 5 describes an implementation of the proposed methodology.
Section 6 introduces a more efficient estimator by pooling observations from
different categories, and Section 7 contains two applications that illustrate its
potential benefits. We give some final remarks in Section 8. Proofs for most
propositions are provided in a technical appendix. It is important to note that,
although our categorical variable W represents a single category throughout the
article, it covers the multiple category case because a multiple categorical predictor
can be represented by a single categorical predictor with multiple levels of classes.

2. Partial dimension reduction for E(Y |X,W). In this section we begin
the development of new methods for reducing the dimension of X in the mean
function E(Y |X,W). A partial dimension reduction subspace for this mean is any
subspace S ⊆ R

p such that

Y |= E(Y |X,W)|(PSX,W).(5)

Accordingly, (PSX,W) contains all the information that the predictor (X,W)

has to furnish on the mean function E(Y |X,W). This conditional independence
statement can be reexpressed:

PROPOSITION 2.1. Condition (5) is equivalent to either of the following:

1. Cov(Y,E(Y |X,W)|PSX,W) = 0.
2. E(Y |X,W) = E(Y |PSX,W).

Proposition 2.1.1 allows us to understand a partial dimension reduction
subspace for the mean in terms of conditional subpopulation correlations between
Y and E(Y |X,W): The projection PSX is sufficient for the mean function if
and only if, within each subpopulation determined by W,Y and E(Y |X,W) are
uncorrelated given PSX. Proposition 2.1.2 confirms the intuition that E(Y |X,W)

depends on X only through PSX.
For convenience, we will often use the abbreviation

E
(
f (X, Y )|g(X),W = w

) ≡ E
(
f (Xw,Yw)|g(Xw)

)
,

where f and g are arbitrary functions. For example, E(Y |α′X,W = w) will often
be written as E(Yw|α′Xw).
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2.1. Central partial mean subspace. Assuming that the intersection of all
subspaces satisfying (5) does itself satisfy (5), we obtain a unique object of
inference. We call this intersection the central partial mean subspace (CPMS),
and indicate it with S

(W)

E(Y |X). A summary plot of Y versus P
S

(W)

E(Y |X)

X with points

marked to indicate the W subpopulations is called the central partial mean view.
Like the three types of central subspaces reviewed in Sections 1.1–1.3, some

constraints on the regression are required to insure that the CPMS exists. The
known constraints used to guarantee the existence of the central subspace also
guarantee the existence of S

(W)

E(Y |X). Since these conditions accommodate a very
broad range of practical applications, we will always assume the CPMS to exist.
For background on the existence issue for central subspaces, see Cook [(1996) and
(1998a), Chapter 6] and Chiaromonte and Cook (2002).

It is straightforward to prove that the CPMS is contained in the central partial
space:

S
(W)

E(Y |X) ⊆ S
(W)

Y |X.

Because of this inclusion, any method estimating directions within the CPMS will
also estimate directions within the CPS.

2.2. Location regressions. The CPMS is the same as the CPS S
(W)

E(Y |X) = S
(W)

Y |X
within the class of location regressions defined by the relation Y |= (X,W)|
E(Y |X,W). This class covers many models that are useful in practice. For instance,
the additive error models with ε |= (X,W), E(ε) = 0 and Var(ε) = 1 are all location
regressions,

Yw = µw + η′Xw + σε,(6)

= µw + η′
wXw + σwε,(7)

= gw(η′Xw) + σw(η′Xw)ε,(8)

= gw(η′
wXw) + σw(η′

wXw)ε,(9)

= gw(H′
wXw) + σε,(10)

for w = 1, . . . , c. Model (6) is the standard homoscedastic analysis of covariance
model with η ∈ R

p . The subpopulation mean functions are all linear in X
and can differ only in their intercepts. Model (7) stipulates a linear regression
in each subpopulation, but allows the coefficient vectors ηw ∈ R

p and the
standard deviations σw to differ. In model (8), as in model (6), the subpopulation
mean functions depend on X only through the single linear combination η′X.
Otherwise these mean functions can differ rather arbitrarily as represented by the
functions gw , which may be known or unknown. The variance function in (6) is
constant, but a subpopulation variance function in (8) can depend on the linear
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combination of X that drives the corresponding mean function. In both (6) and (8),
S

(W)

E(Y |X) = Span(η).
Models (7) and (9) are structurally equivalent in the dimension reduction

context since in both cases S
(W)

E(Y |X) = Span(η1, . . . ,ηc). Although standard linear
regression models are assumed to hold within subpopulations in (7), dimension
reduction across subpopulations is still a relevant issue. In this way the proposals
discussed herein provide an alternative to the standard technique of modeling with
interaction terms to adapt a mean function for different subpopulations.

In model (10), Hw represents a p × qw matrix, so the mean function for
subpopulation w depends on qw linear combinations of the predictors, and

S
(W)

E(Y |X) = Span(H1, . . . ,Hc). The CPMS is not restricted to describing additive
error regressions as illustrated in (6)–(10). In logistic regression, for example, we
might entertain a model of the form

logit(Xw) = gw(η′
wXw),(11)

which is also a location regression.
While location regressions are important to recognize when restricting attention

to the mean function E(Y |X,W), neither the definition of the CPMS nor methods
for estimating it are restricted to this class.

2.3. Characterizing S(W)
E(Y |X). The CPMS represents the minimal subspace

of R
p that preserves E(Y |X,W). Although W is not subject to reduction, the

subpopulation structure it induces affects location information, and thus shapes
the conditional independence relationship (5) through which the reduction of X
is performed. The CPMS S

(W)

E(Y |X) need not coincide with the marginal CMS
SE(Y |X) nor with the CMS within any subpopulation. However, these various
spaces are related in a fundamental way. Let SE(Yw|Xw) denote the CMS within
subpopulation w, w = 1, . . . , c. As discussed in Section 2.2 for the location
regression (9), SE(Yw |Xw) = Span(ηw) and S

(W)

E(Y |X) = Span(η1, . . . ,ηc). This
relationship, which is a CPMS equivalent of (4), holds universally:

PROPOSITION 2.2. S
(W)

E(Y |X) = ⊕c
w=1 SE(Yw|Xw).

The subpopulation central mean subspaces SE(Yw|Xw), w = 1, . . . , c, which can
in principle overlap in any fashion, always add up to the CPMS. Proposition 2.2
is important because it suggests a way to develop methodology to estimate the
CPMS. If we have a method to estimate the subpopulation CMS SE(Yw|Xw), then
these estimates can be combined following Proposition 2.2 to form an estimate of
the CPMS.

As pointed out by Cook and Li (2002), there are two established estimation
methods for targeting a cental mean subspace: OLS and PHD. In the next section
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we use OLS to estimate SE(Yw|Xw) and then following Proposition 2.2 we combine

these estimates into an estimate of S
(W)

E(Y |X). There are several reasons for choosing
OLS as a first method to estimate a CPMS. First, to work well, OLS requires fewer
restrictions on X than PHD. Second, PHD is not very effective at finding linear
trends and it tends to work best when applied to residuals [Cook (1998b)]. This
means that even if PHD were extended to estimating part of a CPMS, OLS may
still be needed to deal effectively with linear trends. In addition, OLS has certain
desirable model robustness properties, as described in the next section.

3. Using OLS. Let σw = Cov(Yw,Xw) ∈ R
p and let βw = �−1

w σw denote
the subpopulation OLS vectors, w = 1, . . . , c. We assume throughout the rest of
this article that each subpopulation mean function depends on at most a single
linear combination η′

wXw of the predictors,

SE(Yw |Xw) = Span(ηw), w = 1, . . . , c,(12)

where ηw ∈ R
p. Under this assumption, the conditional expectation E(Yw|Xw) re-

duces to E(Yw|η′
wXw), where η′

wXw is a scalar, and we will write E(Yw|η′
wXw = t)

as µw(t). For models (6) and (7), µw(t) = µw + t ; for models (8) and (9),
µw(t) = gw(t); and for model (11), µw(t) = (expit ◦ gw)(t), where expit stands
for the inverse of the logit function.

Letting B = (β1, . . . ,βc), we propose to use

Span(B̂) = Span(β̂1, . . . , β̂c)

to construct an estimate of S
(W)

E(Y |X), where β̂w is the usual sample OLS coefficient
vector for Xw . For this to be reasonable we should have

SE(Yw |Xw) = Span(βw), w = 1, . . . , c,(13)

since this guarantees that Span(B) = S
(W)

E(Y |X) by Proposition 2.2. The rest of this
section is devoted to investigating conditions under which (13) will hold.

We will establish relationship (13) under three sets of conditions. To varying
degrees, these conditions constrain either the form of the regression
function E(Yw|Xw) or the explanatory vector Xw . First, consider the simplest
case where model (7) gives a good description of the subpopulation regressions.
Then E(Yw|Xw) = µw + η′

wXw . We can assume without loss of generality that
E(Xw) = 0: in other words, η′

wE(Xw) is absorbed by µw . It follows that

βw = �−1
w E{(Yw − µw)Xw} = �−1

w E{XwE(Yw|Xw)} = �−1
w �wηw = ηw(14)

and hence (13) holds.
The second set of conditions substantially reduces the restriction on the shape

of the regression, but requires E(Xw|β ′
wXw) to be a linear function of β ′

wXw .
Consider, for each w = 1, . . . , c, subpopulation objective functions of the form

Lw(θ + h′Xw,Yw) = −Yw(θ + h′Xw) + φw(θ + h′Xw)
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for some convex functions φw, θ ∈ R
1 and h ∈ R

p . Let Rw(θ,h) = E{Lw(θ +
h′Xw,Yw)} and (

θ̄w, h̄w

) = arg min
θ,h

Rw(θ,h)

denote the subpopulation minimizers. As we will see, we often have enough prior
or data-analytic information on the subpopulations to conclude that, for some φw ,

SE(Yw|Xw) = Span
(
h̄w

)
, w = 1, . . . , c.(15)

Furthermore, as we will see in Proposition 3.3.2, if E(Xw|β ′
wXw) is a linear

function of β ′
wXw , then βw and ηw are parallel to each other regardless of the

form of φw . In this way we establish (13) through the conditions (15), as often
suggested by the regression model, and a weak form of linearity of Xw . For
instance, we might conclude that each subpopulation regression is described by
a logistic regression of the form (11), so (15) would hold with φw obtained from
the usual logistic objective function, which is necessarily convex. Then we need to
check only the linearity of E(Xw|β ′

wXw) in β ′
wXw to justify (13).

Condition (15) is satisfied for a wide range of regression problems. For example,
for generalized linear models with natural link functions, the log likelihood has
the form −L(θ + h′Xw,Yw) and so Rw(θ,h) is the expectation of the negative
log likelihood. It is well known that under regularity conditions the maximizer of
the expected log likelihood is the true parameter. Consequently h̄w = ηw and (15)
follows. In fact, (15) holds much more widely than the context of generalized
linear models. The next two propositions assert, roughly, that if µw is monotone,
then there is always a form of φw such that h̄w satisfies (15). For convenience, we
state these propositions only for increasing functions, but all the results hold for
decreasing functions, as discussed in the proofs.

PROPOSITION 3.1. Suppose (a) condition (12) holds, (b) µw(·) is nondecreas-
ing and (c) for any (θ,h) �= (0,ηw),

Pr
(∫ θ+h′Xw

η′
wXw

{µw(η′
wXw) − µw(s)}ds < 0

)
> 0.(16)

Then there is always a form of φw(·) such that the corresponding Rw(θ,h) has a
unique minimizer (θ̄w, h̄w), in which the vector h̄w spans the space SE(Yw |Xw).

Here, again, the probability of the form Pr(f (Xw,Yw) ∈ A) stands for the
conditional probability Pr(f (X,Y ) ∈ A|W = w). Notice that, because µw(·) is
nondecreasing, for any t and u the integral

∫ t
u(µw(u) − µw(s)) ds is always

nonpositive. In view of this, condition (16) is a mild addition to monotonicity.
The next proposition gives two sufficient conditions for (16).

PROPOSITION 3.2. Condition (16) in Proposition 3.1 is satisfied if either of
the following two conditions is satisfied:



1644 B. LI, R. D. COOK AND F. CHIAROMONTE

1. Xw is a continuous random vector with Var(Xw) being positive definite; µw(·)
is strictly increasing.

2. Xw is a continuous random vector with an open and convex support in R
p;

µw(·) is continuous and nondecreasing, and is strictly increasing in an open
subinterval of {η′

wx : x ∈ Xw}, where Xw is the sample space for Xw .

In passing from the first to the second set of conditions in this proposition, we
add restrictions on the predictor vector while relaxing the requirements on µw .

The third set of conditions that we use to insure (13) imposes no restrictions on
the shape of µw , but does impose a form of linearity on Xw . In particular, if we
know that E(X|η′

wXw) is linear in η′
wXw , then, as we will see in Proposition 3.3.3,

βw satisfies (13) regardless of the form of the mean function and regardless of
whether the regression is a location regression. However, because ηw is unknown,
in practice we may need to require that E(X|α′Xw) be linear in α′X for all α,
which is true when X has an elliptically contoured distribution.

The next proposition summarizes the three sets of sufficient conditions for (13).
We will assume that each Xw is a continuous random vector with Var(Xw) > 0.
We say that R(θ,h) has a unique minimizer in h if, whenever (θ̄ , h̄) and (θ̃ , h̃) are
minimizers of R(θ,h), we have h̄ = h̃.

PROPOSITION 3.3. Suppose that (12) holds and that σw = 0 if and only if
ηw = 0, w = 1, . . . , c. Then any one of the following three conditions implies
SE(Yw|Xw) = Span(βw):

1. µw(t) is a linear function of t .
2. Condition (15) holds for some φw , for which R(a,h) has a unique minimizer

in h, and E(Xw|β ′
wXw) is linear in β ′

wXw .
3. The conditional expectation E(Xw|η′

wXw) is linear in η′
wXw .

In this proposition, (12) is simply that all subpopulation mean functions depend
on at most one linear combination of the predictors. All of the location regressions
discussed in Section 2.2 are of this form except (10), which allows the mean
functions to depend on multiple linear combinations. Many other regressions are of
this form as well. Nevertheless, (12) represents a potential limitation of using OLS
which cannot, in general, describe regressions with multidirectional subpopulation
mean functions. It must be remarked, though, that by combining the spans of
subpopulation OLS vectors, we may very well recover the whole CPMS even
when Span(βw) is a proper subset of SE(Yw |Xw) for some w. Loosely speaking,
this is due to the fact that the “difference” SE(Yw|Xw) \ Span(βw) may be recovered
along OLS directions of other subpopulations; βw̃ , w̃ �= w.

The second assumption, σw = 0 if and only if ηw = 0, is intended to rule
out symmetric mean functions for which σw = 0 while ηw �= 0. For example,
this combination happens when Xw is a standard normal random vector and
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Y = X2
w1 + ε. Generally, the mean functions E(Yw|Xw) must have a linear trend

for OLS to be useful.
Proposition 3.3 provides a flexible spectrum of conditions for (13). Proposi-

tion 3.3.1 essentially assumes the conclusion. Nevertheless, the statement is useful
because it reminds us that the desired conclusion is trivially true if OLS recov-
ers SE(Yw|Xw) in the population. When (15) holds but µw(t) is not linear in t ,
such as would be the case if µw(t) were monotone, Proposition 3.3.2 says we
can still achieve the desired conclusion by adding the predictor condition that
E(Xw|β ′

wXw) is linear. Finally, when (15) does not hold, Proposition 3.3.3 says
we can still achieve the desired conclusion with the requirement that E(Xw|η′

wXw)

be linear.
The predictor linearity condition of Proposition 3.3.3 is similar to the linearity

condition of Proposition 3.3.2, but there is one very important difference. While
the latter can be checked easily in practice by plotting the individual predictors
against the OLS fitted values, the former cannot be checked directly prior to the
estimation of SE(Yw |Xw) itself. Also note that Propositions 3.1 and 3.2 make no
reference to the underlying probability or likelihood, except to the extent that the
conditional mean derived therefrom is monotone. Thus the context to which they
apply is much wider than generalized linear models.

The same linearity as that assumed in Proposition 3.3.3 was postulated in Li
and Duan (1989). The conclusion of Proposition 3.3.3, as applied to a single
category w, was proved in Li and Duan (1989) for the CS and was proved in Cook
and Li (2002) for the CMS. While the proof of Proposition 3.3.2 to some degree
echoes that of Theorem 2.1 of Li and Duan (1989) for a single category w, the two
results differ in both their assumptions and their conculsions: roughly speaking, the
former asserts that the minimizer in h of R(a,h) is parallel to βw if E(Xw|β ′

wXw)

is linear in β ′
wXw , whereas the latter asserts that the minimizer in h of R(a,h) is

parallel to ηw if E(Xw|ηwXw) is linear in η′
wXw . It is this distinction, combined

with Propositions 3.1 and 3.2, that offers the mentioned additional flexibility.
Under the conditions we have established in Proposition 3.3 that insure

SE(Yw|Xw) = Span(βw), w = 1, . . . , c, the sample estimator of βw within each
group is a consistent estimator of βw . However, such individual estimates do
not provide information about the interrelationship among them, that is, whether
some of them are essentially linearly dependent and whether there is a ranking
in significance among them. We now turn to inference for the dimension d of
Span(B) = S

(W)

E(Y |X) that yields such information. We provide methodology for
this by developing, in the next section, a means to test a null hypothesis of the
form rank(B) = m versus the alternative that rank(B) > m. An estimate of
d = rank(B) is constructed by performing a series of tests: beginning with m = 0,
test rank(B) = m versus rank(B) > m. If the hypothesis is rejected, increment m

by 1 and test again. If the hypothesis is not rejected, the value of m under the
current hypothesis is taken as the estimate of d .
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4. Large sample tests for rank(B). The rank d of B does not change if we
multiply its column vectors by nonzero scalars, or if we pre- or postmultiply B by
full rank matrices. However, transformations of this kind simplify the derivation of
our large sample test. In particular, we will transform B in such a way that, under
appropriate conditions, the relevant asymptotic distribution is chi-squared.

Let aw = {Pr(W = w)}1/2 > 0 and define the p × c matrix B∗ = (a1β1, . . . ,

acβc). Next, we define the average within subpopulation covariance matrix,

�· =
c∑

w=1

a2
w�w = E(�W),

and assume that it is positive definite. Last, we consider the subpopulation least
square residuals

ew = (
Yw − E(Yw)

) − β ′
w

(
Xw − E(Xw)

)
, w = 1, . . . , c,(17)

with their variances ωw = Var(ew) > 0 arranged in the c × c diagonal matrix
� = diag(ω1, . . . ,ωc). We can now replace the hypothesis rank(B) = m with the
equivalent

H0 : rank(�1/2· B∗ �−1/2) = m(18)

and construct sample estimates of the matrices involved in this null hypothesis.
For each w = 1, . . . , c, let {(Xiw, Yiw) : i = 1, . . . , nw} be independent observa-

tions of (X, Y ) from subpopulation w and let Ȳw and X̄w be the corresponding
sample averages. The quantities �w and σw will be estimated by

�̂w = 1

nw

nw∑
i=1

(Xiw − X̄w)(Xiw − X̄w)′

and

σ̂w = 1

nw

nw∑
i=1

(Xiw − X̄w)(Yiw − Ȳw).

The subpopulation OLS vectors will be estimated by β̂w = �̂
−1
w σ̂w and the

subpopulation square-root probabilities will be estimated by âw = √
nw/n. We

also set B̂∗ = (â1β̂1, . . . , âcβ̂c) and

�̂· =
c∑

w=1

â2
w�̂w = 1

n

c∑
w=1

nw�̂w.

Last, we form the sample residuals

êiw = (Yiw − Ȳw) − β̂
′
w(Xiw − X̄w),

estimate the residual variances by

ω̂w = 1

nw

nw∑
i=1

ê2
iw
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and construct the matrix �̂ = diag(ω̂1, . . . , ω̂c). By straightforward application of
the weak law of large numbers we have that B̂∗, �̂· and �̂ converge in probability
to B∗, �· and �, respectively.

Our next objective is to construct a test statistic for (18) based on these sample
matrices and to derive its asymptotic distribution. Consider the singular value
decomposition

�1/2· B∗ �−1/2 = ( �̃ � )

(
D 0
0 0

)(
�̃

′

� ′

)
,(19)

where ( �̃ � ) is a p × p orthogonal matrix (left singular vectors), ( �̃ � ) is
a c × c orthogonal matrix (right singular vectors) and D is a d × d diagonal matrix
with nonzero diagonal elements (nonzero singular values). Correspondingly, � has
dimension p × (p − d) and � has dimension c × (c − d).

The rank of �1/2· B∗�−1/2 corresponds to the number of nonzero singular values
in (19). Thus, a natural test statistic for (18) is

T (m) =
p∑

j=m+1

λ̂j ,(20)

where λ̂m+1 ≥ · · · ≥ λ̂p are the smallest p − m eigenvalues of the matrix

n
(
�̂

1/2
· B̂∗�̂−1/2)(

�̂
1/2
· B̂∗�̂−1/2)′

or, equivalently, the squares of the p − m singular values of

√
n�̂

1/2
· B̂∗ �̂

−1/2

that are closest to 0.
To use T (m) in practice, we need its asymptotic distribution under the

hypothesis d = m. By Eaton and Tyler (1994), the joint asymptotic distribution
of these p − m singular values is the same as that of the singular values of the
matrix

U = √
n�′(�̂1/2

· B̂∗�̂−1/2 − �1/2· B∗�−1/2)�.

The next propositions concern the asymptotic distribution of U, or rather of
the random vector vec(U) obtained by stacking its columns, and the associated
asymptotic distribution of T (d). Let ψ ′

w be the row vectors of � , let Zw =
�

−1/2
w (Xw − E(Xw)), w = 1, . . . , c, be the standardized subpopulation predictors

and let ⊗ indicate the Kronecker product.

PROPOSITION 4.1. Assuming that all moments involved are finite, then the
random vector vec(U) has an asymptotic (p − d)(c− d)-dimensional multivariate
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normal distribution with mean 0 and covariance matrix


 =
c∑

w=1

(
ω−1/2

w ψw ⊗ �′�1/2· �−1/2
w

)
× E(e2

wZwZ′
w)

(
ω−1/2

w ψ ′
w ⊗ �−1/2

w �1/2· �
)
.

(21)

Thus

T (d)
L−→

(p−d)(c−d)∑
j=1

αjKj ,

where α1, . . . , α(p−d)(c−d) are the eigenvalues of (21) and K1, . . . ,K(p−d)(c−d)

are independent χ2
1 random variables.

There are two ways the results of this proposition might be used in practice. First,
under the hypothesis that d = m, obtain estimates α̂j of the eigenvalues αj from a
sample version 
̂ of 
 constructed by substituting moment estimates for unknown
parameters. Then refer T (m) to its estimated asymptotic distribution to obtain a
p-value.

Alternatively, instead of calculating percentage points for the distribution of
a combination of chi-squares, we can resort to an approach employed with
satisfactory results by Bentler and Xie (2000) in the context of PHD. In this
approach, estimates of the mean and variance of T (m) under the hypothesis d = m

are used to adjust T (m) to yield a statistic that has null distributions closer to a chi-
square. The adjusted statistic proposed by Satterthwaite (1941),

T̃ (m) = r

trace(
̂)
T (m),

where r is the closest integer to trace2(
̂)/ trace(
̂
2
), can be compared to the

percentage points of a χ2
r . In a simulation study, Fouladi (1997) found the adjusted

statistic to perform better than competitors.
We next consider situations in which the asymptotic distribution of T (d)

simplifies.

COROLLARY 4.1. Suppose that

Cov(e2
w,ZwZ′

w) = 0p×p, w = 1, . . . , c.(22)

Then 
 defined in (21) reduces to


 =
c∑

w=1

(ψwψ ′
w) ⊗ (

�′�1/2· �−1
w �1/2· �

)
.(23)

If, in addition,

�1 = · · · = �c,(24)
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then 
 in (23) further simplifies to I(p−d)(c−d), so that

T (d)
L−→ χ2

(p−d)(c−d).

The first part of the corollary follows because (22) implies

E(e2
wZwZ′

w) = E(e2
w)E(ZwZ′

w) = ωwI for w = 1, . . . , c.

Condition (22) holds whenever the subpopulation linear regression models from
which the ew’s are computed are “true” so that ew |= Xw . Moreover, as we will see
in the next proposition, it holds if Xw is normal and βw spans the space SYw|Xw .
Under the additional assumption of constant conditional covariance matrices (24),
we further simplify 
 to the identity in the second part of the corollary and thus
obtain a chi-square distribution for T (d). The common covariance condition (24)
should be reasonable in many regressions.

There is a close connection between condition (22) and PHD. Consider applying
PHD to the subpopulation regression of e2

w on Xw . In this application of PHD
we estimate the rank of the matrix �e2

wzz = E{(e2
w − E(e2

w))ZwZ′
w}. Because

�e2
wzz = 0 if and only if (22) holds, we can use PHD straightforwardly to test (22)

by testing rank(�e2
wzz) = 0 within each subpopulation. This type of application of

PHD was discussed by Cook [(1998b), Section 6.2].
The distinction between d = 0 and d > 0 may be important in diagnostic

investigations where Y is a residual. When d = 0, 
 reduces to a c × c matrix
of p × p blocks. The off diagonal blocks are all zero and the wth diagonal block
is �1/2· �−1

w �1/2· .
The next proposition gives sufficient conditions for (22).

PROPOSITION 4.2. Assume (12). Condition (22) holds if, for each subpopu-
lation w,

1. Yw |= Xw|β ′
wXw and

2. Xw is normally distributed for w = 1, . . . , c.

As is often the case in the theory of sufficient dimension reduction, this
proposition allows us to weaken requirements on the regression structure by
strengthening requirements on the predictors: If Xw is normal, instead of
justifying (22) assuming the model underlying the ew residual to be true, we can
justify it assuming the regression of Yw on Xw to be a location regression because
under (13) this is equivalent to condition 1. Passing from (21) to (22) is useful in
practice, because through the latter, the estimation of 
 involves only second-order
moments.
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5. Computational summary. We now summarize the computations involved
in estimating S

(W)

E(Y |X) using OLS and constructing the corresponding summary plot.

• Compute �̂·, B̂∗ and �̂ from the data, and calculate the spectral decomposition

n
(
�̂

1/2
· B̂∗�̂−1/2)(

�̂
1/2
· B̂∗ �̂

−1/2)′ = p∑
j=1

λ̂j γ̂ j γ̂
′
j(25)

with eigenvalues λ̂j in nonincreasing order.
• Form the statistics

T (m) =
p∑

j=m+1

λ̂j , m = 0, . . . , p − 1,

and test sequentially

H0 : rank
(
�1/2· B∗�−1/2) = m,

H1 : rank
(
�1/2· B∗�−1/2)

> m

employing an appropriate null distribution. Take d̂ to be the smallest m for
which the null hypothesis is not rejected.

• Letting sj = �̂
−1/2
· γ̂ j , construct a plot of Y versus the sufficient predictors s′

jX,

j = 1, . . . d̂ , with points marked to indicate the W subpopulation. This is the
estimated central partial mean view. The space Span(s1, . . . , s

d̂
) provides an

estimate of Span(B), since

Span
(
�1/2· B∗�−1/2) = �1/2· Span

(
a1ω

−1/2
1 β1, . . . , acω

−1/2
c βc

)
with awω

−1/2
w �= 0, w = 1, . . . , c.

The results of Propositions 3.3, 4.1, 4.2 and Corollary 4.1 can be combined
in various ways to match the regression under study. For example, suppose we
conclude that for each subpopulation the regression of Yw on Xw is described by
the additive error model (7). The predictor X may contain functionally related
terms like quadratics and cross products. From Proposition 3.3.1, SE(Yw|Xw) =
Span(βw) and OLS can be used to estimate the central partial mean subspace. In
addition, under the subpopulation model, ew |= Xw and consequently (22) holds.
This means that the asymptotic distribution of T (d) is a linear combination of
chi-squares with coefficients given by the eigenvalues of the version of 
 in (23).
If the regression resulted from a designed experiment with treatments W randomly
assigned to experimental units characterized by X, then the common covariance
condition (24) holds and the reference distribution is the chi-squared stated in
Corollary 4.1.
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6. Pooled estimators for increased accuracy. The method developed in the
previous sections is based on separate linear regressions within each subpopula-
tion w. If we know that the dimension d of the CPMS is smaller than c and p,
however, we can achieve greater accuracy by pooling all observations for the lin-
ear regressions. In this section we introduce such a procedure.

If d < min(c,p), then, under any one of the sufficient conditions of Proposi-
tion 3.3, at most d among the vectors {βw} are linearly independent, because all of

them must belong to S(W)
E(Y |X). Hence, even though each βw is obtained by minimiz-

ing E(Yw − θw − h′
wXw)2 separately, the fact that d < min(c,p) forces linear de-

pendencies among these vectors. So there are a p ×d matrix H̄ and d-dimensional
vectors ρ̄1, . . . , ρ̄c such that βw = H̄ρ̄w for all w = 1, . . . , c. This implies that the
minimization of

E
[
(Y − θW − h′

W X)2/ωW

]
over {θw} and {hw} is equivalent to the minimization of

E
[
(Y − θW − ρ ′

W H′X)2/ωW

]
over all scalars {θw}, p × d matrices H and d × 1 vectors {ρw}, even though the
latter is carried out on a smaller parameter space. The next proposition summarizes
this fact.

PROPOSITION 6.1. Suppose (a) S(W)
E(Y |X) has dimension d < min(c,p) with

basis η = (η1, . . . ,ηd), (b) each SE(Yw|Xw) has dimension 1 and (c) for each w,

E(Xw|η′
wXw) is linear in η′

wXw . Then (H̄ρ̄1, . . . , H̄ρ̄c) spans the space S(W)
E(Y |X) as

long as all of these vectors are nonzero.

We now replace d with d̂ , the estimate of d from Section 5, to construct the
pooled estimator of the CPMS. Instead of doing an ordinary least squares fit
separately for each subpopulation, we minimize the joint objective function

c∑
w=1

ω̂−1
w

nw∑
i=1

(Yiw − θw − ρ′
wH′Xiw)2

over all {θw}, H and {ρw}. Letting {θ̂w}, Ĥ and {ρ̂w} be the minimizers, we use
β̂w = Ĥρ̂w to estimate βw . This minimization is not equivalent to the separate
OLS fits, because it pools all the data to estimate H and ρw , which has a smaller
dimension than (β1, . . . ,βc) if d̂ < min(c,p). If d̂ ≥ min(c,p), then this method
reduces to the separate OLS fits.

As an illustration we consider the estimation of a CPMS with dimension d = 1.
Location regressions (6)–(9) and (11) are all of this form when Span(η) and
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Span(η1, . . . ,ηc) each have dimension 1. In this case ρw is a scalar, say ρw , and
H is a vector, say h, and we are to minimize

c∑
w=1

ω̂−1
w

nw∑
i=1

(Yiw − θw − ρwh′Xiw)2.

By construction, the parameters h and {ρw} are not uniquely defined: We can
always multiply ρw by a constant C and divide h by C without changing ρwh. For
uniqueness we impose an arbitrary constraint. For example, we could let ρ1 = 1
and use Newton–Raphson on the remaining parameters or let ‖h‖ = 1 and use the
Lagrangian multiplier method for constrained minimization.

Further development of the pooled estimator regarding its efficiency and
computation is beyond the scope of this article and will be tackled in separate
research. We provide here a small simulation study to compare, under different
circumstances, the pooled estimator and the unpooled estimator discussed in the
previous sections.

For simplicity, we consider the case where p = c = 2 and d = 1. For a given
total sample size n, the sample sizes n1 for the first category are generated from a
binomial (n,0.5) and n2 is then taken to be n−n1. Once n1 and n2 are chosen, we
generate the errors εiw , for i = 1, . . . , nw and w = 1,2 from N(0,1), and generate
Xiw from the two bivariate normal distributions

N

((
0
0

)
,

(
1 0
0 1

))
and N

((
0
0

)
,

(
1 α

α 1

))
.

The responses Yiw are generated from the nonlinear model

Yiw = exp
(
(X1i + X2i)/2

) + εiw.

Thus the CPMS has dimension 1 and is spanned by the vector (1,1)′.
For the comparison we need a measure of error for the estimation of a linear

subspace, rather than a specific vector. Evidently any such measure should be
length-invariant; that is, it should be affected by the direction but not the length
of the estimator. One reasonable choice is as follows. Let β̃ = (β̃(1), β̃(2))

′ be the
unpooled estimator and let β̂ = (β̂(1), β̂(2))

′ be the pooled estimator (here we have
used parentheses in the subscript so as not to be confused with the bare index w

that denotes category). We define

MSE1 = E
[(

1/
√

2 − β̃(1)/‖β̃‖)2 + (
1/

√
2 − β̃(2)/‖β̃‖)2]

,

MSE2 = E
[(

1/
√

2 − β̂(1)/‖β̂‖)2 + (
1/

√
2 − β̂(2)/‖β̂‖)2]

.

Note that every vector involved is first rescaled to have length 1.
We will make the comparison for varied total sample sizes n and varied

correlation α, for we expect the comparison to be affected by the sample size and
the difference among the covariance matrices �w . Table 1 summarizes the result.
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TABLE 1
Comparison of the unpooled and pooled estimators

n = 35 n = 40 n = 45

α MSE1 MSE2 MSE1 MSE2 MSE1 MSE2

0.0 0.0806 0.1016 0.0612 0.0595 0.0449 0.0460
0.1 0.0789 0.0875 0.0626 0.0743 0.0495 0.0459
0.2 0.0757 0.0793 0.0604 0.0593 0.0533 0.0565
0.3 0.0765 0.0821 0.0748 0.0764 0.0552 0.0538
0.4 0.0869 0.0948 0.0777 0.0742 0.0563 0.0495
0.5 0.0917 0.1025 0.0814 0.0776 0.0712 0.0678

n = 70 n = 80 n = 90

α MSE1 MSE2 MSE1 MSE2 MSE1 MSE2

0.0 0.0270 0.0259 0.0236 0.0223 0.0191 0.0184
0.1 0.0282 0.0278 0.0238 0.0231 0.0220 0.0217
0.2 0.0286 0.0276 0.0245 0.0238 0.0219 0.0212
0.3 0.0326 0.0301 0.0302 0.0291 0.0238 0.0222
0.4 0.0370 0.0333 0.0298 0.0272 0.0248 0.0226
0.5 0.0402 0.0344 0.0331 0.0295 0.0278 0.0243

A clear pattern emerges from the table: For small sample sizes (n = 35, with
each category having about 17 observations), the unpooled estimator works better;
for median sample sizes (n = 40,45), the two estimators are about the same (with
the unpooled estimator working slightly better) when �1 and �2 are close, but
the pooled estimator works better when �1 and �2 are different; for larger sample
sizes (n = 70,80,90), the pooled estimator works better and the contrast increases
as the difference between �1 and �2 increases.

7. Applications.

7.1. Waste tax. A large urban county in Minnesota needed to add a business
tax to support its new waste processing facility. In an effort to be fair and to reduce
the potential for lawsuits, the county wanted to tax businesses according to the
amount of waste they produce. Businesses do not necessarily keep accurate records
on their waste production and, even if they did, the county could not legally compel
them to disclose it. The county decided to study the feasibility of using information
in the public tax records to predict yearly waste production (Wst) in tons per year.
A random sample of 150 businesses was selected from the county records and
each was asked to cooperate with county workers to determine their yearly waste
production. Three businesses refused, leaving a sample size of 147. The available
quantitative predictors from the county’s tax records were land value, improved
value, structure size in square feet, and number of full time equivalent employees.
In addition, information in the public record was used to classify businesses into
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FIG. 1. Four plots to illustrate selected characteristics of the waste data.

one of five types (W ): manufacturing, warehouse or storage, office building, retail
and restaurant or entertainment.

The marginal distribution of each of the four quantitative predictors is highly
skewed to the right as illustrated by the plot of size versus land value in Figure 1(a).
This indicates that nearly any type of regression analysis would benefit from
predictor transformations. We used the likelihood methods implemented in Arc
[Cook and Weisberg (1999)] to investigate simultaneous power transformations
of the four quantitative predictors so that the conditional distribution of the
transformed predictors Xw is approximately normal with common covariance
matrix, w = 1, . . . ,5, leading to the log transformation for each of the quantitative
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predictors. The result is illustrated by the plot of the logarithms of size and land
value in Figure 1(b). This procedure is often effective for insuring that covariances
�w are constant and that the subpopulation linearity conditions of Proposition 3.3
are met to an adequate approximation.

Figure 1(c) shows a plot of Wst versus the logarithm of size. A transformation
of Wst is clearly indicated. Studying the individual regressions of Wstw on Xw we
concluded that model (7) would likely hold in terms of the transformed response
Y = log Wst, as illustrated in Figure 1(d).

Assuming that model (7) is accurate, then condition (22) holds and, by
Proposition 3.3.1, SE(Yw|Xw) = Span(βw). In this setting the distribution of Xw

is used only to determine the reference distribution for the test statistic T (m) as
stated in Corollary 4.1. Because the predictor transformations were selected in
part to yield constant covariance matrices �w , we next applied the dimension
reduction method of Section 4 using the chi-square reference distribution. The
resulting p-values were 0, 0.45, 0.83 and 0.86 for the hypotheses d = 0,1,2 and 3.
Consequently, we inferred that dim(S

(W)

E(Y |X)) = 1, which is the same as the result

obtained by using the adjusted statistic T̃ .
The central partial mean view shown in Figure 2 is a plot of the sufficient

predictor s′
1X (Section 5) with points marked according to business type. The

FIG. 2. Summary plot of the response versus the sufficient predictor s′1X. Business types are
indicated with different plotting symbols. The lines correspond to the linear OLS fits by group.
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FIG. 3. Scatter plot of Figure 2 with four business types plotted separately.

subpopulation OLS fits are shown as well. Without interactive features, the plot
may be difficult to interpret, so we present in Figure 3 separate plots for four
business types. The plots in Figures 2 and 3 together with the inference that
dim(S

(W)

E(Y |X)) = 1 suggests that a model of the form

Yw = µw + αwη′X + σε(26)

with ‖η‖ = 1 may yield predictions that are near the best possible with the
available data. This possibility is supported by various standard diagnostics applied
to the fitted version of (26) obtained by using OLS. The correlation between the
fitted values from (26) and the sufficient predictor s′

1X is 0.996, which indicates
that the two analyses are finding the same structure in the data. The summary
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plots based on the fitted values are visually indistinguishable from those in Figures
2 and 3.

There are other ways the results of this article could be used to study the waste
data. Suppose that, after transforming to Y and X, we assume dim(S

(W)

E(Y |X)) = 1
without applying the dimension reduction method of Section 4 and without
assuming model (26). In this case, Proposition 6.1 is applicable, assuming the
predictor linearity condition which seems likely in view of our transformations
to multivariate normality. Using the OLS objective function leads back to the
summary plots of Figures 2 and 3, again suggesting (26) as a first nonlinear model
subject to the usual diagnostic procedures.

Transforming Wst at the outset is clearly sensible. Nevertheless, for illustration,
consider the regression of Wst on (X,W). Because model (7) is no longer
appropriate as indicated by Figure 1(c), the distribution of Xw now takes on
added importance. Assuming that Xw is normally distributed or approximately
so, Propositions 3.3 and 4.2 are applicable and we can still use the methods of
Section 4. The resulting p-values were 0, 0.29, 0.93 and 0.99 for the hypotheses

d = 0,1,2 and 3, so we inferred that dim(S
(W)

E(Wst |X)) = 1. The correlation between
the sufficient predictors s′

1X from the analyses based on Y and Wst was 0.95. The
agreement between these two analyses seems remarkable in view of the extreme
skew illustrated in Figure 1(c). The central partial mean view from the analysis
based on Wst (not shown) again suggests that the response should be transformed,
leading us back to the analysis based on Y .

7.2. Diabetes. We next consider a data set on 724 female Pima Indian
patients, who had complete records from the National Institute of Diabetes and
Digestive and Kidney Disease. Smith, Everhart, Dickson, Knowler and Johannes
(1988) used this data set to forecast the onset of diabetes mellitus. Cook and
Lee (1999) used it to illustrate dimension reduction in regressions with a binary
response.

The binary response variable Y equals 1 if a patient tested positive for diabetes
and 0 otherwise. The quantitative predictors we considered in X are diastolic
blood pressure, logarithms of the body mass index and the diabetes pedigree
function, inverse of patient’s age, and cube root of plasma glucose concentration.
As a categorical predictor W we considered the number of times the patient was
pregnant in c = 5 classes: 0, 1 or 2, 3 or 4, 5 or 6, and more than 6. For later
reference, we labeled the final class the 7+ class. The class counts for W are
99, 227, 137, 101 and 160. As in the waste regression, the power transformations
used to form X were chosen so that Xw is approximately multivariate normal with
common covariance matrix for w = 1, . . . ,5.

As in the previous illustration, we assume dim(SE(Yw|Xw)) ≤ 1, w = 1, . . . ,5,
which is supported by our analyses of individual subpopulation regressions. The
required linearity condition on the predictors should hold to an adequate approxi-
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FIG. 4. Plots of the first and second sufficient predictors s′2X versus s′1X from diabetes regression:
(a) the first four W classes; (b) class 7+. Lines correspond to Fisher’s linear discriminant function in
(s′1X, s′2X) for the data in the respective plots, ◦ denotes negative diabetes test and • denotes positive
diabetes test.
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mation in view of prior normalizing transformations. Similarly, Proposition 3.3.3
implies that Span(βw) = SE(Yw|Xw) so we can again apply the dimension reduc-
tion method of Section 4. Because the response is binary, condition (22), which
gives one way to simplify the asymptotic distribution of T (d), does not follow
directly from the model. Nevertheless, Proposition 4.2 should be appropriate and,
assuming constant covariance matrices �w , we may use the chi-square reference
distribution.

Application of the dimension reduction method in Section 4 to the regression
of Y on (X,W) gave the p-values 0, 0.003 and 0.774 for dimension hypotheses
d = 0,1 and 2. We therefore inferred that dim(S

(W)

E(Y |X)) = 2, and constructed the
sufficient predictors s′

1X and s′
2X. As a first visualization of the results, we used

Arc [Cook and Weisberg (1999)] to construct a three-dimensional plot (not shown)
of Y versus s′

1X and s′
2X. We then superimposed surfaces formed by the fitted

probabilities from logistic regressions of Y on (s′
1X, s′

2X) within each of the five
classes. A striking feature of the plot was that the fitted probability surface for the
7+ class was very different from the surfaces for the other four classes, which
seemed relatively similar.

Because the 7+ class seemed very different from the others, we removed it
and recomputed the tests for dimension with the remaining four classes, obtaining
p-values of 0 and 0.846 for the hypotheses d = 0 and d = 1. Thus we inferred

that, without the 7+ class, dim(S
(W)

E(Y |X)) = 1. The sample correlation between

the s′
1X predictors with and without the 7+ class was 0.99, indicating that the

first estimated direction remains the same with and without 7+.
As a visual check on these inferences, we computed Fisher’s linear discriminant

function based on (s′
1X, s′

2X), separately for each of the five classes. In the first
four classes, s′

2X did not add significant information beyond that from s′
1X.

However, in class 7+ both predictors were needed for discrimination. Shown in
Figure 4 are plots of s′

2X versus s′
1X for the combined data from the first four

classes and for class 7+. The lines superimposed to the two plots are Fisher’s
linear discriminant for the combined data from the first four classes and for
class 7+. The slope of the line in Figure 4(a) is about 46.8, while that of the
line in Figure 4(b) is about 1.2. These results support the inference that s′

1X is
sufficient for the first four classes, while a different linear combination is needed
for class 7+.

There are several ways to continue such an analysis, depending on the
application context. For instance, we could perform a separate analysis for
class 7+. If one overall model is desired, then it most likely should incorporate
interactions between the quantitative predictors and an indicator for class 7+.
However the analysis is continued, the finding that for the first four classes

dim(S
(W)

E(Y |X)) = 1, while class 7+ behaves differently and induces a second
relevant direction, will likely play a fundamental role.
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8. Discussion. In this article, we developed methodology for dimension
reduction in regressions with categorical predictors, when the objective is
to preserve information on the conditional mean. The methodology can be
understood and employed on at least three different levels.

First, it can be employed as an alternative or supplement to linear modeling
with indicator variables. In the waste data application in Section 7.1, the standard
approach leads to a linear regression mean function with 21 terms, including 16
interactions. With our approach, we investigated the applicability of model (7)
one category at a time, and then applied dimension reduction. Inferring the
dimension of the CPMS to be one leads to summary plots analogous to those
in Figures 2 and 3. These can in turn be taken as a starting point for parametric
modeling of the mean function across categories. By reducing the burden of
rationalizing and selecting among a very large number of terms, this alternative
route may greatly facilitate understanding for students in a typical regression
service course.

When the dimension of the CPMS is inferred to be larger than one, as in
the diabetes data application of Section 7.1, an interesting question concerns
individual category contributions to the CPMS (e.g., the second relevant direction

required by class 7+). A c × c scatter plot matrix of {β̂ ′
wXi}, i = 1, . . . , n, with

points marked by category, is an effective graphical tool for investigating these
contributions. If two β̂w’s are nearly parallel, as would be expected when the
two categories furnish the same direction to the CPMS, then the points in the
corresponding frame of the scatter plot matrix will be highly correlated. Note that
the large sample results developed in Section 4 can be straightforwardly adapted
for inference on the dimension of the space spanned by a subset of the βw’s. Thus,
we are in a position to assess individual contributions and compare dimensions
spanned with and without given categories.

Second, our methodology can be used in the context of generalized linear
models, and thus might be appropriate also in regression courses for statistics
majors. For instance, if it is found that a logistic model logit(Xw) = µw + η′

wXw

is appropriate within categories, we can still use OLS and B̂ to reduce the
dimension provided that E(Xw|β ′

wXw) is linear or approximately linear for each w

(Proposition 3.3.2). In this setting, it may be possible to improve efficiency by
replacing B̂ with the corresponding matrix of coefficient estimates η̂w from intra-
category logistic fits, but in view of the exploratory role of the methodology, OLS
will usually suffice.

Third, our methodology can be employed with no reference to models within
categories. In fact, OLS and B̂ can again be used for dimension reduction, provided
that E(Xw|η′

wXw) is linear or approximately linear for each w (Proposition 3.3.3).
This type of usage was discussed in both the applications in Section 7.

At all three levels, the approach described in this article can be quite useful in
dealing with regression data that involve several quantitative variables and, along
with them, categorical ones.
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Our methods for the central partial mean subspace rely on the nontrivial as-
sumption that each intracategory CMS has at most dimension one—condition (12).
Methodology exists for multidimensional central mean subspaces when no cat-
egorical predictors are involved [Cook and Li (2002)], as well as for multi-
dimensional central partial subspaces which encompass categorical predictors but
do not restrict attention to the mean [Chiaromonte, Cook and Li (2002)]. We are
currently investigating methods for central partial mean subspaces that do not re-
quire (12). It must be noted, though, that in comparison to the SIR-based methods
in Chiaromonte, Cook and Li (2002), the approach presented here has the advan-
tage of relying less heavily on the assumption of common covariance across cate-
gories. In fact, while condition (24) simplifies the asymptotic distribution of T (d),
our large sample results allow us to perform dimensional inference through linear
combinations of chi-squares or adjusted statistics also when (24) does not hold.

APPENDIX

PROOF OF PROPOSITION 2.1. That (5) implies Proposition 2.1.1 is immedi-
ate. That Proposition 2.1.2 implies (5) is also immediate because, if 2.1.2 is true,
then E(Y |X,W) is constant given (PSX,W) and is therefore independent of Y

given (PSX,W). Now let us prove that Proposition 2.1.1 implies Proposition 2.1.2.
By Proposition 2.1.1,

E[YE(Y |X,W)|PSX,W ] = E(Y |PSX,W)E[E(Y |X,W)|PSX,W ].
The left-hand side of this equation is

E[YE(Y |X,W)|PSX,W ] = E[E2(Y |X,W)|PSX,W ]
and the right-hand side is

E2[E(Y |X,W)|PSX,W ].
Consequently, Var[E(Y |X,W)|PSX,W ] = 0, which means that E(Y |X,W) is a
constant given (PSX,W). �

PROOF OF PROPOSITION 2.2. For convenience, let

S(W)
E(Y |X) = S1 and

c⊕
w=1

SE(Yw|Xw) = S2.

Note that for any subspace S of R
p, the following two conditional independences

are equivalent:

Y |= E(Y |X,W)|(PSX,W),(27)

Y |= E(Y |X,W = w)|(PSX,W = w) for w = 1, . . . , c.(28)
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By the definition of CPMS, (27) will be satisfied if S is taken to be S1. Therefore,
for each w = 1, . . . , c,

Y |= E(Y |X)|(PS1X,W = w).

However, since SE(Yw|Xw) is the CMS for each subpopulation w, the above
conditional independence implies that S1 contains SE(Yw |Xw) for all w = 1, . . . , c

and consequently also contains their direct sum S2.
On the other hand, because S2 contains each SE(Yw|Xw) and because the latter

is the CMS for the subpopulation w, the conditional independence (28) will be
satisfied if S is taken to be S2. However, that means the space S2 is a partial
dimension reduction for conditional mean, which must therefore contain the
CPMS S1. �

PROOF OF PROPOSITION 3.1. Since we will always work within a sub-
population w, for convenience we omit the subscript w. Thus all expectations
of the form E{f (X, Y )} stand for the conditional expectation E{f (Xw,Yw)}, and
X, Y , η and µ(·) stand for Xw , Yw , ηw and µw(·). We assume that µ(·) is a
nondecreasing function, which does not lose generality because otherwise we can
redefine X to be the negative of the original X.

Now consider the objective function

R(θ,h) = −E
[∫ θ+h′X

η′X
{Y − µ(s)}ds

]
,(29)

where, again, the subscript w on R is omitted. The proof is done in two steps. First,
we show that R(θ,h) is a form of EL(θ + h′X, Y ) as defined in Section 3. Second,
we show that (0,η) is the unique minimizer of R(θ,h).

Let c be a fixed constant that is independent of θ and h, and rewrite the integral
on the right-hand side of (29) as

Y (θ + h′X) − Y (η′X) −
∫ c

η′X
µ(s) ds −

∫ θ+h′X

c
µ(s) ds.

Hence, if we denote E[Y (η′X)+ ∫ c
η′X µ(s) ds] by c1, then the risk function R(θ,h)

becomes

E
[
−Y (θ + h′X) + c1 +

∫ θ+h′X

c
µ(s) ds

]
.

Because µ(·) is nondecreasing, the function
∫ t
c µ(s) ds, and hence c1 + ∫ t

c µ(s) ds,
is convex. Now write the latter function as φ(t) to complete the first step.

Next, by taking iterative expectations, we can write the expectation on the right-
hand side of (29) as

E
[∫ θ+h′X

η′X
{E(Y |X) − µ(s)}ds

]
= E

[∫ θ+h′X

η′X
{µ(η′X) − µ(s)}ds

]
.(30)
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If (θ,h) = (0,η), then this expectation is 0. By assumption (16), this expectation
is smaller than 0 whenever (θ,h) �= (0,η). Hence R(θ,h) has the unique
minimizer (0,η). �

PROOF OF PROPOSITION 3.2. (i) Consider, for any t and u, the integral

I (t, u) =
∫ t

u
{µ(u) − µ(s)}ds.

It is easy to see that whenever t �= u, I (u, t) < 0. This is because if u < t , then
µ(u) − µ(s) < 0 for all s between u and t , and if u > t , then µ(u) − µ(s) > 0 for
all s between t and u. In this notation the integral inside the probability in (16) can
be written as I (η′X, a + h′X). So (16) will hold if

Pr(θ + h′X �= η′X) > 0.(31)

If h = η, then a �= 0 and so a + h′x �= η′x holds for all x. If h �= η, then, because
Var(X) is positive definite, we always have

Var(θ + h′X − η′X) > 0.

Hence the difference θ +h′X−η′X cannot be a degenerate random variable, which
implies (31).

(ii) Since the support X of X is an open set in R
p , its intersection with any

(p − 1)-dimensional hyperplane has probability zero. Hence, whenever (θ,h) �=
(0,η),

Pr
(
θ + h′X �= η′X

) = 1.

In view of this, we can assume without loss of generality that θ + h′x �= η′x for
all x in X. Furthermore, because X is convex, the set {η′x : x ∈ X} is an interval,
say I , and, for any (nonempty) subinterval I1 of I , the subset of X of the form
{x :η′x ∈ I1} has positive probability.

Now let J be an open subinterval of I on which µw(·) is strictly increasing. Let
A be the set {x :η′x ∈ J }. Then Pr(A) > 0. Because µw is continuous and strictly
increasing in J , for any x in A, the integral∫ θ+h′x

η′x
{µ(η′x) − µ(s)}ds < 0.

This is because θ + h′x �= η′x and there is at least one point t between these two
numbers such that µ(η′x) − µ(s) �= 0. Hence

Pr
(∫ θ+h′x

η′x
{µ(η′x) − µ(s)}ds < 0

)
≥ Pr(A) > 0. �

PROOF OF PROPOSITION 3.3. The first part follows from display (14). The
third part is a consequence of Cook and Li (2002) as applied to individual
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subpopulations. We prove the second part. We omit the subscript w in exactly the
same way as we did in the proof of Proposition 3.1. First, assume that E(X) = 0.
Let β be the population regression coefficient �−1E(XY ) and let P = P(η,�) be
the projection onto Span(β) with respect to the inner product induced by �, that
is, P = ββ ′�/(β ′�β). It is easy to check that R(θ,h) can be rewritten in the form

R(θ,h) = −θE(Y ) − h′�β + Eφ(θ + h′X).(32)

Because β = Pβ, the second term above equals

−h′�Pβ = −h′�P�−1E(XY ) = −(Ph)′E(XY ),

where for the second equality we have used the identity �P�−1 = P′. So the first
two terms on the right-hand side of (32) can be written as

−E
{
Y

(
θ + (Ph)′X

)}
.

By Jensen’s inequality the last term on the right-hand side of (32) is no smaller
than Eφ(θ + h′E(X|β ′X)), in which E(X|β ′X) equals P′X because the former is
linear in β ′X [see Cook (1998a), page 57]. Hence

Eφ
(
θ + h′E(X|β ′X)

) ≥ Eφ
(
θ + (Ph)′X

)
.

It follows that R(θ,h) ≥ R(θ,Ph) for any (θ,h), which, because R(θ,h) has a
unique minimizer in h, implies that the minimizer is of the form Ph. This gives the
desired result because Ph is parallel to β. For the case where E(X) �= 0, we note
that

R(θ,h) = EL(θ + h′X, Y ) = EL
(
θ + h′E(X) + h′(X − E(X)

)
, Y

)
.

Thus if we let θ∗ = θ + h′E(X) and X∗ = X − E(X), then the same argument for
the E(X) = 0 case can be applied to complete the proof. �

For subsequent use in the proof of the large sample results of Section 4, note
that the singular value decomposition in (19) implies �′�1/2· B∗�−1/2 = 0 and
�1/2· B∗�−1/2� = 0 or, equivalently,

�′�1/2· B∗ = 0 and B∗�−1/2� = 0.(33)

Also, note that under (24) we have �w = �· for all w = 1, . . . , c and �̂· is
consistent for �·.

PROOF OF PROPOSITION 4.1. The matrix U can be expanded as

U = √
n�′(�̂1/2

· − �1/2·
)
B∗�−1/2� + √

n�′�1/2· (B̂∗ − B∗)�−1/2�

+ √
n�′�1/2· B∗(

�̂
−1/2 − �−1/2)� + Op(n−1/2).
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By (33), the first and the last terms are 0, so that U can be approximated by

U = √
n�′�1/2· (B̂∗ − B∗)�−1/2 � + Op(n−1/2).

Recall that B̂∗ − B∗ is a matrix with columns âwβ̂w − awβw , w = 1, . . . , c. Since
�′�1/2· B∗ = 0, the coefficient aw in awβw can be replaced by an arbitrary number,
and in particular by âw . This gives

√
n�′�1/2· (B̂∗ − B∗)�−1/2�

= �′�1/2·
(√

n1(β̂1 − β1), . . . ,
√

nc(β̂c − βc)
)
�−1/2�.

Let us expand
√

nw(β̂w − βw). It is easy to see that

�̂
−1
w σ̂w − �−1

w σw = (
�̂

−1
w − �−1

w

)
σw + �−1

w (σ̂w − σw) + Op(n−1).(34)

We first expand the difference �̂
−1
w − �−1

w , and for this we need an expansion
of �̂w − �w . Note that

√
nw(�̂w − �w)

= n−1/2
w

nw∑
i=1

[(Xiw − X̄w)(Xiw − X̄w)′ − �w] + Op(n−1/2)

= n−1/2
w

nw∑
i=1

[(
Xiw − E(Xw)

)(
Xiw − E(Xw)

)′ − �w

] + Op(n−1/2)

= n−1/2
w �1/2

w

nw∑
i=1

(ZiwZ′
iw − I)�1/2

w + Op(n−1/2)

≡ 
n,w + Op(n−1/2),

where E(Xw) denotes E(X|W = w) and Ziw = �−1/2(Xiw − E(Xw)) denotes a
standardized predictor observation from subsample w. Express the unknown ex-

pansion of �̂
−1
w as �−1

w + n
−1/2
w Dn,w + Op(n−1) for some random matrix Dn,w =

Op(1). We let Dn,w be such that �̂
−1
w �w = I + Op(n−1). By simple algebra, this

equation is equivalent to

Dn,w = −�−1
w 
n,w�−1

w = −n−1/2
w �−1/2

w

nw∑
i=1

(ZiwZ′
iw − I)�−1/2

w .

In other words,

�̂
−1
w − �−1

w = −n−1
w �−1/2

w

nw∑
i=1

(ZiwZ′
iw − I)�−1/2

w + Op(n−1).(35)
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Next, we expand σ̂w − σw . We have
√

nw(σ̂w − σw)

= n−1/2
w

nw∑
i=1

[(Xiw − X̄w)(Yiw − Ȳw) − σw]

= n−1/2
w

nw∑
i=1

[(
Xiw − E(Xw)

)(
Yiw − E(Yw)

) − σw

] + Op(n−1/2)

= n−1/2
w �1/2

w

nw∑
i=1

[
Ziw

(
Yiw − E(Yw)

) − �−1/2
w σw

] + Op(n−1/2),

(36)

where E(Yw) denotes the conditional expectation E(Y |W = w). Now substitute
(35) and (36) into (34) to obtain
√

nw(β̂w − βw)

= n−1/2
w �−1/2

w

nw∑
i=1

(−ZiwZ′
iw�−1/2

w σw + Ziw

(
Yiw − E(Yw)

)) + Op(n−1/2)

= n−1/2
w �−1/2

w

nw∑
i=1

Ziweiw + Op(n−1/2),

where eiw = (Yiw − E(Yw)) − σ ′
w�

−1/2
w Ziw . Note that, by the definitions of

σw and Ziw , the quantity eiw is in fact the residual for the linear regression of Yiw

on Xiw within the subpopulation w, as we defined in (17). It follows that

U =
c∑

w=1

�′�1/2· �−1/2
w

(
n−1/2

w

nw∑
i=1

Ziweiw

)
ω−1/2

w ψ ′
w.(37)

Taking the vec of U, we thus have

vec(U) =
c∑

w=1

(
ω−1/2

w ψw ⊗ �′�1/2· �−1/2
w

)(
n−1/2

w

nw∑
i=1

Ziweiw

)
.

An application of the central limit theorem proves the desired result. �

PROOF OF PROPOSITION 4.2. Let Pw = �
1/2
w βw(β ′

w�wβw)−1β ′
w�

1/2
w be

the projection matrix onto the space spanned by �
1/2
w βw and let Qw = I − Pw .

By (33), the columns of �′�1/2· are orthogonal to the vectors β1, . . . ,βc . Hence

�′�1/2· �
−1/2
w Pw = 0 or, equivalently, �′�1/2· �

−1/2
w Qw = �′�1/2· �

−1/2
w . So we

can insert a Qw in front of the Ziw in (37) without changing the quantity, that is,

U =
c∑

w=1

�′�1/2· �−1/2
w

(
n−1/2

w

nw∑
i=1

QwZiweiw

)
ω−1/2

w ψ ′
w.
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It follows that vec(U) has an asymptotic normal distribution with mean 0 and
covariance matrix

c∑
w=1

(
ω−1/2

w ψw ⊗ �′�1/2· �−1/2
w

)
× E(e2

wQwZwZ′
wQw)

(
ω−1/2

e ψ ′
w ⊗ �−1/2

w �1/2· �
)
.

(38)

Now, sinceSYw|Xw = Span(βw) by assumption, we have E(e2
w|Zw) = E(e2

w|PwZw).
Therefore, the expectation in the middle of (38) becomes

E(e2
wQwZwZ′

wQw) = E
(
E(e2

w|PwZw)QwZwZ′
wQw

)
= E

(
e2
wE(QwZwZ′

wQw|PwZw)
)

(39)

= ωwQw = ωw ⊗ Qw,

where the third equality follows from the normality assumption on Xw and
thus Zw , and the orthogonality between Pw and Qw . As a consequence, the matrix
in (38) reduces to

c∑
w=1

(
ω−1/2

w ψw ⊗ �′�1/2· �−1/2
w

)
(ωw ⊗ Qw)

(
ω−1/2

w ψ ′
w ⊗ �−1/2

w �1/2· �
)

=
c∑

w=1

(
ψwψ ′

w

) ⊗ (
�′ �1/2· �−1

w �1/2· �
)

as desired. �
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