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BETA DISTRIBUTIONS1
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In this article, we consider the case when the number of observations n

is less than the dimension p of the random vectors which are assumed
to be independent and identically distributed as normal with nonsingular
covariance matrix. The central and noncentral distributions of the singular
Wishart matrix S = XX′, where X is the p × n matrix of observations are
derived with respect to Lebesgue measure. Properties of this distribution
are given. When the covariance matrix is singular, pseudo singular Wishart
distribution is also derived. The result is extended to any distribution of the
type f (XX′) for the central case. Singular multivariate beta distributions with
respect to Lebesgue measure are also given.

1. Introduction. Singular Wishart and multivariate beta distributions were
well defined by Mitra (1970), Khatri (1970) and Srivastava and Khatri (1979),
among others. However, no practical applications were foreseen. Recently, Uhlig
(1994) clearly demonstrated the need for such distributions in his Bayesian
analysis of some interesting problems.

In this article, we derive the probability density functions of singular Wishart
and multivariate beta distributions with respect to Lebesgue measure. To motivate
it, we consider the simplest case when we have only one observation vector x1 =
(x11, x21)

′ on the two-dimensional random vector x distributed as multivariate
normal with mean vector zero and 2 × 2 positive definite covariance matrix �,
written as x ∼ N2(0,�), � > 0. The distribution of S = x1x′

1 is called singular
Wishart distribution with 1 degree of freedom. The p.d.f. of x1 is given by

c
(
etr−1

2�−1x1x′
1
)
,

where

c = (2π)−1|�|−1/2

and (etrA) stands for the exponential of the trace of the matrix A. Let h′
1 =

(cosθ, sin θ) and h′
2 = (− sin θ, cos θ). Then h′

1h2 = 0 and H = (h1,h2) is an
orthogonal matrix. We also note that

(h′
2 dh1) = dθ.
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Consider the transformation

x1 = rh1, r > 0, 0 < θ < 2π.

The Jacobian of the transformation from (x11, x21) to (r, θ) is simply r . Hence, the
probability density (p.d.) of (r, θ) is

cr
(
etr −1

2r2�−1h1h′
1
)
dr dθ.

Letting r2 = l1 and noting that J (r → l1) = (2r)−1, the p.d. of (l1, θ) is

1
2c

(
etr−1

2 l1�
−1h1h′

1
)
dl1 dθ.(1.1)

Equivalently, we can also write it as the joint p.d. of (l1,h1) as

1
2c(l1)

−1(
etr−1

2 l1�
−1h1h′

1
)
(l1h′

2 dh1) dl1.(1.2)

Let

S = l1h1h′
1(1.3)

and

(dS) = l1(h′
2 dh1) dl1.

Then Uhlig (1994) writes the p.d.f. of S with respect to the volume (dS) as

1
2c(l1)

−1(
etr−1

2�−1S
)
.(1.4)

For practical applications, however, one needs to evaluate the volume (dS). It
is rather difficult to evaluate it without specifying the functionally independent
elements of S. This leads to the p.d.f. with respect to Lebesgue measure. For this,
we consider the transformation (1.3) in terms of functionally independent elements
as

S =
(

S11 S12
S12 S22

)

= l1

(
cosθ

sin θ

)
(cosθ, sin θ)

= l1

(
cos2 θ cos θ sin θ

sin θ cosθ sin2 θ

)
.

As we can see, there are only two independent elements in S. We can choose either
(S11, S12) or (S12, S22). Choosing S11 and S12 we find that

S11 = l1 cos2 θ,

S12 = l1 cos θ sin θ.
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The Jacobian of the transformation from (l1, θ) to (S11, S12) is (l1 cos2 θ)−1 =
S−1

11 . Hence, the joint p.d.f. of (S11, S12) with respect to Lebesgue measure is given
by

1
2cS−1

11

(
etr−1

2�−1S
)
,

where S22 = S2
12/S11.

From the above discussion, it is clear that for the general case, we need to con-
sider the singular value decomposition of X = (x1, . . . ,xn) :p × n, n < p, namely
X = H ′

1FL, H1 :n × p, H1H
′
1 = In, L :n × n, LL′ = In, F = diag(f1, . . . , fn),

f1 > · · · > fn > 0 and S = XX′ = H ′
1F

2H1 = H ′
1DH1. For these transforma-

tions, we need to obtain the Jacobian of the transformations. Similarly, we give
the p.d.f. of multivariate beta, considered earlier by Díaz-García and Gutiérrez-
Jáimez (1997). The p.d.f. of pseudo Wishart, considered earlier by Díaz-García,
Gutiérrez-Jáimez and Mardia (1997) is also given with respect to Lebesgue mea-
sure. The organization of the article is as follows.

In Section 2, we develop the needed Jacobians of the transformations and some
connected results, such as the distribution of a subset of a semiorthogonal matrix.
Section 3 gives the derivation of the central and noncentral singular Wishart
distributions along with properties of this distribution as well as marginal and
conditional distributions. The singular multivariate beta and F -distributions are
considered in Section 4. The case when the covariance matrix is also singular, the
pseudo singular Wishart case, is considered in Section 5.

2. Jacobians of transformations. In this section, we derive the relevant
Jacobians of the transformations needed to derive the results of this article. We
write Lp,n(q) for the linear space of all real p × n matrices of rank q . The set
of matrices H1 ∈ Lp,n(p) such that H1H

′
1 = Ip is a manifold, called the Stiefel

manifold and denoted by Hp,n; it will also be called semiorthogonal matrices. The
set of p × p orthogonal matrices H will be denoted by Hp; HH ′ = H ′H = Ip .
The set of p × p lower triangular matrices with positive diagonal elements will be
denoted by T +(p). The set of p × p symmetric positive semidefinite matrices
of rank q will be denoted by S+

p (q). The Jacobian of the transformation is
always from functionally independent variables to the same number of functionally
independent variables. For example, if Y ∈ Lp,n(n) and Y = BX, where B is a
p × p nonsingular matrix of constants, then this transformation is valid only if
X ∈ Lp,n(n) also. In this case, the Jacobian of the transformation, denoted by
J (Y → X), is well known to be |B|n+, where |B|+ denotes the positive value of
the determinant of the p × p nonsingular matrix B . However, if Y ∈ Lp,n(q),
then we need to define which of the q(p + n − q) functionally independent
elements of Y is transformed to the same number q(p + n − q) of functionally
independent elements of X. Thus, whenever it is feasible, a subscript I has been
added to the variables to indicate this fact in the derivation of the Jacobians of the
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transformations. Before we derive these results, we first give some known results
in the full rank case.

LEMMA 2.1. Let X ∈ Lp,n(p) and X = T H1, where T ∈ T +(p) and H1 ∈
Hp,n. Then the Jacobian of the transformation is

J (X → T,H1) =
p∏

i=1

tn−i
ii gp,n(H1),

where H ′ = (H ′
1,H

′
2) :H ∈ Hn, gp,n(H1) = J (H(dH ′

1) → dH ′
1).

The proof can be obtained along the lines of Theorem 1.11.5 (page 31) and
Corollary 3.2.1 (page 75) in Srivastava and Khatri (1979), hereafter referred to as
S&K. Let

C(p,n) =
∫
H ′

1H1=Ip

gp,n(H1) dH1 = 2pπpn/2�p

(
n

2

)
,(2.1)

where

�p

(
n

2

)
= πp(p−1)/4

p∏
i=1

�

(
n − i + 1

2

)
.

LEMMA 2.2. Suppose we write the p × n semiorthogonal matrix H1 =
(H11,H12), where H11 is a p × r , r ≥ p, matrix containing all the restrictions
that arise out of the condition H1H

′
1 = Ip and all the elements of the p × (n − r)

matrix H12 are functionally independent random variables of H1. Then the p.d.f.
of H12 is given by

C(p, r)

C(p,n)
|Ip − H12H

′
12|(r−p−1)/2, H12H

′
12 < Ip.

This is Lemma 2 in Khatri (1970).

COROLLARY 2.1. Let L1 = (Ip − H12H
′
12)

−1/2H11. Then

J (H11,H12 → L1,H12) = |Ip − H12H
′
12|(r−p−1)/2 gp,r (L1)

gp,n(H1)
.

LEMMA 2.3. Let X be a p × n matrix of rank p ≤ n. Suppose that for any
n × n orthogonal matrix P , X and XP have the same distribution. Then for any
nonsingular factorization of XX′ = CC′, C :p × p, H = C−1X and XX′ are
independently distributed. The p.d.f. of H is given by

(C(p,n))−1gp,n(H).
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This result has been known for some time, but does appear in Khatri (1970).
When the p.d.f. of a p × n random matrix X is given by

[(2π)p|�|]−n/2|A|−p/2[
etr−1

2�−1(X − η)A−1(X − η)′
]
,

we write it as X ∼ Np,n(η,�,A); see S&K, pages 54 and 55.

REMARK 2.1. A consequence of Lemma 2.3 is that if X ∼ Np,n(0,�, In),
n ≥ p, the distribution of H1 = (XX′)−1/2X, where (XX′)1/2((XX′)1/2)′ = XX′,
is independent of � and for (XX′)1/2 we may use the triangular factorization
of XX′.

LEMMA 2.4. Let X ∈ Lp,n(n) and X = H ′
1FL, where H1 ∈ Hn,p , L ∈ Hn

and F = diag(f1, . . . , fn), f1 > · · · > fn > 0. Then, for n ≥ 2,

J (X → H1,F,L) = 2−n|F |p−n

[
n∏

i<j

(f 2
i − f 2

j )gn,n(L)

]
gn,p(H1).

The proof can be obtained from Theorem 1.15 of Olkin (1951).
We now generalize these results to the nonfull-rank case. That is, let X be a

p×n matrix of rank q ≤ min(p,n), X ∈ Lp,n(q). Then, without loss of generality,
we may assume that

X =
(

X11 X12

X21 X21X
−1
11 X12

)
=

(
Iq

X21X
−1
11

)(
X11 X12

)
,(2.2)

where X11 is a q × q nonsingular matrix; see S&K, page 11, Theorem 1.5.3. Since
(X11 X12) is a q × n matrix of rank q , we can write it as T1L1, where T1 ∈ T+(q)

and L1 ∈ Hq,n. Writing L1 = (L11 L12), where L11 is a q × q nonsingular matrix,
we find that X11 = T1L11. Hence,

X =
(

Iq

X21L
−1
11 T −1

1

)
T1L1 =

(
T1

X21L
−1
11

)
L1.

Making the transformation T2 = X21L
−1
11 , the Jacobian of the transformation from

X =
(

T1
T2

)
L1

is given by

J (X11,X12 → T1,L1)J (X21 → T2) =
q∏

i=1

tn−i
ii gq,n(L1)|L11|p−q

+ ,

where |A|+ denotes the positive value of the determinant of A. Thus, we have the
following theorem.
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THEOREM 2.1. Let X be a p × n matrix of rank q ≤ min(p,n). Then the
Jacobian of the transformation X′ = L′

1(T
′

1, T
′
2) ≡ L′

1T
′, where L1 = (L11,L12) ∈

Hq,n and T1 ∈ T+(q), is given by

|L11|p−q
+

q∏
i=1

tn−i
ii gq,n(L1).

COROLLARY 2.2. Let X ∈ Lp,n(q) and write X = H ′
1T , where H1 ∈ Hq,p,

T = (T1, T2), T1 ∈ T+(q) and T2 is a q × (n − q) matrix. Then

J (XI → H1, T ) = |H11|n−q
+

q∏
i=1

t
p−q+i−1
ii gq,p(H1),

where H1 = (H11,H12), H11 :q × q .

THEOREM 2.2. Let X ∈ Lp,n(q) and Y = AX, where A is a p × p non-
singular matrix. Then

J (YI → XI ) = |A|q |A11|n−q,

where A = (A11 A12
A21 A22

)
, A11 :q × q , and XI and YI denote the functionally

independent elements of X and Y , respectively.

PROOF. As in (2.2), we can write

X =
(

X11 X12
X21 X22

)
,

where X11 :q × q and X22 = X21X
−1
11 X12. Hence

Y =
(

Y11 Y12
Y21 Y22

)
= AX

=
(

A

(
X11
X21

)
A

(
X12
X22

))
.

Thus, the Jacobian of the transformation

J (Y ′
11, Y

′
21 → X′

11,X
′
21) = |A|q .

Now

A

(
X12
X22

)
=

(
Y12
Y22

)

gives A11X12 + A12X22 = Y12 and A21X12 + A22X22 = Y22. From the first
equation we get A21X12 = A21A

−1
11 Y12 − A21A

−1
11 A12X22. Substituting in the

second equation, we get (A22 −A21A
−1
11 A12)X22 = Y22 −A21A

−1
11 Y12. Thus, given

X22 and Y12, Y22 is fixed. Hence J (Y12 → X12) = |A11|n−q . Combining the two,
we get the result. �
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THEOREM 2.3. Let p ≥ q be integers and let S be a p × p matrix of
rank q with distinct positive eigenvalues in the space of S+

p (q) of p × p positive

semidefinite matrices. Then S can be written as S = H ′
1DH1, where H1 ∈ Hq,p

and D = diag(d1, . . . , dq), d1 > · · · > dq > 0. The Jacobian of the transformation
of functionally independent elements of S, denoted by SI , to H1 and D is given by

J (SI → H1,D) = 2−q |H11|(p−q+1)
+ |D|p−q

q∏
i<j

(di − dj )gq,p(H1),

where H1 = (H11,H12), H11 :q × q is a nonsingular matrix and SI denotes the
functionally independent elements of S.

PROOF. Consider the transformation

Sp×p = H ′
1p×q

Dq×qH1q×p,

where H1 :q × p, H1H
′
1 = Iq . Let

H ′ = (H ′
1,H

′
2) :p × p such that HH ′ = Ip.

Then

S = (
H ′

1 H ′
2
)(

D 0
0 0

)(
H1
H2

)
= H ′

(
D 0
0 0

)
H.

Taking differentials, we get

dS = (dH ′)
(

D 0
0 0

)
H + H ′

(
dD 0
0 0

)
H + H ′

(
D 0
0 0

)
(dH).

Hence,

H(dS)H ′ = H(dH)′
(

D 0
0 0

)
+

(
dD 0
0 0

)
+

(
D 0
0 0

)
(dH)H ′.

Since HH ′ = I , (dH)H ′ +H(dH)′ = 0. Thus R = H(dH)′ is a skew-symmetric
matrix. We write

R =
(

R11 R12
R21 R22

)
=

(
H1(dH1)

′ H1(dH2)
′

H2(dH1)
′ H2(dH2)

′
)

.

Let

W = H(dS)H ′ =
(

W11 W12
W21 W22

)
.

Then

W = R

(
D 0
0 0

)
+

(
dD 0
0 0

)
−

(
D 0
0 0

)
R

(2.3)

=
(

R11D − DR11 + dR −DR12
R21D 0

)
.
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There are only pq − q(q−1)
2 elements on the right-hand side of (2.3), whereas

dS has p(p+1)
2 elements, out of which only pq − q(q−1)

2 elements are functionally
independent. Thus we need to find the Jacobian of the transformation from
(S11, S12) to (H1,D). From above, we note that

W11 = R11D + dD − DR11,

W12 = −DR12,

W21 = R21D,

W22 = 0.

Hence,

J (SI → H1,D)

= J (S11, S12 → H1,D)

= J (dS11, dS12 → dH1, dD)
(2.4) = J (dS11, dS12 → W11,W12)J (W11 → R11, dD)

× J (W21 → R21)J (R11,R21, dD → dH1, dD)

= J1|D|p−q
q∏

i<j

(di − dj )J (H dH ′
1 → dH ′

1),

where J1 = J (dS11, dS12 → W11,W12). To find J1, let us define

H1
′
p×q =

(
H ′

11q×q

H ′
12(p−q)×q

)

and

H ′
2 =

(
H ′

21q×(p−q)

H ′
22(p−q)×(p−q)

)
.

Then

dS = H ′WH

= (H ′
1,H

′
2)

(
W11 W12
W ′

12 0

)(
H1
H2

)

= H ′
1W11H1 + H ′

2W
′
12H1 + H ′

1W12H2

≡ (1) + (2) + (2)′.

Expanding, we find that

(1) =
(

H ′
11W11H11 H ′

11W11H12

H ′
12W11H11 H ′

12W11H12

)
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and

(2) =
(

H ′
21W

′
12H11 H ′

21W
′
12H12

H ′
22W

′
12H11 H ′

22W
′
12H12

)
.

Hence,

dS11q×q = H ′
11W11H11 + H ′

21W
′
12H11 + H ′

11W12H21

and

dS12q×(p−q) = H ′
11W11H12 + H ′

21W
′
12H12 + H ′

11W12H22

= (dS11H
−1
11 − H ′

21W
′
12 − H ′

11W12H21H
−1
11 )H12

+ H ′
21W

′
12H12 + H ′

11W12H22

= dS11H
−1
11 H12 + H ′

11W12(H22 − H21H
−1
11 H12).

Hence, from Theorem 1.11.2, page 29, of S&K,

J (dS11, dS12 → W11,W12)

= J (dS11 → W11)J (dS12 → W12 | S11)

= |H11|q+1
+ |H11|p−q

+ |H22 − H21H
−1
11 H12|q+

= |H11|q+1
+ |H11|p−q

+ |H11|−q
+

= |H11|p−q+1
+ .

Thus, the Jacobian of the transformation S = H ′
1DH1 is given by

J (S → H1,D) = 2−q |H11|p−q+1
+ |D|p−q

q∏
i<j

(di − dj )gq,p(H1),

since the transformation is 1 to 2q . �

THEOREM 2.4. Let U,V ∈ S+
p (q) be related by U = �V �′ = �H ′

1DH1�
′,

where � ∈ Hp and H1 ∈ Hq,p. Then the Jacobian of the transformation from
UI → VI is given by

J (UI → VI ) = |L11|p+q−1
+ /|H11|p+q−1

+
where �′ = (�′

1,�
′
2), �′

1 :p × q , H1 = (H11,H12) and H11 :q × q is nonsingular.

PROOF. Let V = H ′
1DH1. Then

U = �V �′ = �H ′
1DH1�

′

≡ L′
1DL1,
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where L1 = H1�
′ = H1(�

′
1,�

′
2) ≡ (L11,L12). Thus, L11 = H1�

′
1 and

J (UI → VI ) = J (UI → L1,D)J (L1,D → H1,D)J (H1,D → VI ).

From Theorem 2.3, J (UI → L1,D)J (H1,D → VI ) = (|L11|+/|H11|+)p−q+1 ×
(gq,p(L1))/(gq,p(H1)). It remains to show that J (L1,D → H1,D) = (gq,p(H1))/

(gq,p(L1)). With H ′ = (H ′
1,H

′
2), HH ′ = Ip and L′ = (L′

1,L
′
2), LL′ = Ip , we find

from Roy (1957) that

J (L1,D → H1,D)

=
(

J (L1,D → H1,D,no restrictions)

J (L1L
′
1 → H1H

′
1)

)(
J (H dH ′

1 → dH ′
1)

J (LdL′
1 → dL′

1)

)

= gq,p(H1)

gq,p(L1)
,

since J (L1 → H1 | no restriction) = |�+|q = 1 and J (L1L
′
1 → H1H

′
1) = 1. Thus,

J (UI → VI ) = |L11|p+q−1
+ /|H11|p+q−1

+ . �

This result can also be obtained from Theorem 2.5, which is presented next, but
the proof given here may be of independent interest.

THEOREM 2.5. Let U,V ∈ S+
p (q) be related by U = BV B ′, where B is a

p × p nonsingular matrix. Then the Jacobian of the transformation from UI to VI

is given by

J (UI → VI ) = |B|q |B1H
′
1|p−q+1

+
|H11|p−q+1

+
,

where B ′ = (B ′
1, B ′

2), B1 :q × p, V = H ′
1DH1, H1H

′
1 = Iq , H1 = (H11,H12) and

H11 :q × q .

PROOF. Let V = H ′
1DH1 and D = diag(d1, . . . , dq), d1 > · · · > dq > 0. Then

U = BV B ′ = BH ′
1DH1B

′.
Let

C = B−1.

Then

CUC′ = V = H ′
1DH1.

Taking differentials and proceeding as in Theorem 2.3 with H ′ = (H ′
1,H

′
2) and

HH ′ = Ip , we find that

HC(dU)C′H ′ = H(dH)′
(

D 0
0 0

)
+

(
dD 0
0 0

)
+

(
D 0
0 0

)
(dH)H ′.(2.5)
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Let

W = HC(dU)C′H ′ =
(

W11 W12
W ′

12 W22

)
.

Then W22 = 0 and we need only to find the Jacobian of the transformation
J (dU11, dU12 → dW11, dW12). From (2.4) in the proof of Theorem 2.3, it follows
from the relationship (2.5) that

J (W11,W12 → dH1, dD) = |D|p−q
q∏

i<j

(di − dj )J (H1dH ′
1 → dH ′

1).(2.6)

Let

G = (HC)−1 =
(

G11 G12
G21 G22

)
, G11 :q × q.

Then dU = GWG′ and hence following as in Theorem 2.3 [see the derivation
after (2.4)], we get

J (dU11, dU12 → W11,W12)

= |G11|p−q+1
+ |G|q+

= |B|q+|G11|p−q+1
+ .

Note that

G = C−1H ′ = BH ′ = (BH ′
1,BH ′

2)

=
(

B1H
′
1 B1H

′
2

B2H
′
1 B2H

′
2

)
, B1 :q × p.

Hence |G11|+ = |B1H
′
1|+. Now, from (2.6) and Theorem 2.3,

J (UI → VI ) = J (dUI → dVI )

= J (dUI → WI)J (WI → dH1, dD)J (dH1, dD → dVI )

= |B|q+|B1H
′
1|p−q+1

+
|H11|p−q+1

+
.

�

The next theorem combines the results of Lemma 2.4 and Theorem 2.3.

THEOREM 2.6. Let X ∈ Lp,n(n), X = H ′
1FL, H1 ∈ Hn,p , L ∈ Hn and

S = XX′ = H ′
1F

2H1 = H ′
1DH1. Then, if we write

n p − n

H1 = n
(
H11 H12

)
and S =

(
S11 S12
S′

12 S22

)
,
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S11 = H ′
11DH11, S12 = H ′

11DH12 and S22 = S′
12S

−1
11 S12, the Jacobian of the

transformation from XI to S11, S12 and L is given by

J (XI → S11, S12) = 2−n|S11|(n−p−1)/2gn,n(L).

PROOF. From the transformations

X = H ′
1FL, XX′ = H ′

1F
2H1 = H ′

1DH1 = S,

we get

J (XI → SI ,L)

= J (XI → H1,F,L)J (H1,F,L → H1,D,L)J (H1,D,L → SI ,L)

= 2−n|F |p−n
n∏

i<j

(f 2
i − f 2

j )gn,n(L)gn,p(H1)2
−n|F |−12n

×|H11|−(p−n+1)
+ |D|n−p(

gn,p(H1)
)−1

[ ∏
i<j

(f 2
i − f 2

j )

]−1

= 2−n|D|(n−p−1)/2|H11|n−p−1gn,n(L)

= 2−n|S11|(n−p−1)/2gn,n(L). �

3. Singular Wishart distributions. Let X = (x1, . . . , xn) be ∼ Np,n(0,

�, In). That is, the n columns of the p × n matrix X are i.i.d. Np(0,�). We
assume that � is p.d. and n < p. In this case, the p × p matrix S = XX′ is said
to have singular Wishart distribution. The p.d.f. of X with respect to Lebesgue
measure is given by

1

(2π)pn/2|�|n/2

(
etr−1

2
�−1XX′

)
.(3.1)

We first obtain the distribution by using the singular-value decomposition
method. Consider the transformation

X = H ′
1FL,

where H1 ∈ Hn,p , L ∈ Hp and F = diag(f1, . . . , fn), fi > 0. Then using the
Jacobian of the transformation given in Lemma 2.4, the joint p.d.f. of (H1,F,L)

with respect to Lebesgue measure is obtained from (3.1) as

2−n

(2π)pn/2|�|n/2

(
etr−1

2
�−1H ′

1F
2H1

)
|F |p−n

∏
(f 2

i − f 2
j )gn,n(L)gn,p(H1).

Integrating out L over the space LL′ = In, we get from (2.1) the joint p.d.f. of
F and H1 with respect to Lebesgue measure as

2−nC(n,n)

(2π)pn/2|�|n/2

(
etr−1

2
�−1H ′

1F
2H1

)
|F |p−n

∏
i<j

(f 2
i − f 2

j )gn,p(H1).
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Making the transformation f 2
i = di , the joint p.d.f. of H1 and D = diag(d1, . . . , dn)

with respect to Lebesgue measure is

2−nC(n,n)

2n(2π)pn/2|�|n/2

(
etr−1

2
�−1H ′

1DH1

)
|D|(p−n−1)/2

∏
i<j

(di − dj )gn,p(H1).

Now consider the transformation

S = H ′
1DH1,

where S is a p ×p symmetric matrix. Writing H1 = (H11,H12), where H11 :n×n

and

n p − n

S = n

p − n

(
S11 S12
S′

12 S22

)
=

(
H ′

11DH11 H ′
11DH12

H ′
12DH11 H ′

12DH12

)
,

gives S11 = H ′
11DH11, S12 = H ′

11DH12 and S22 = H ′
12DH12.

If we choose H11 such that it is nonsingular and we can do so, we find that

S22 = H ′
12DH12 = H ′

12DH11(H
′
11DH11)

−1H ′
11DH12 = S′

12S
−1
11 S12.

Hence, S22 is functionally dependent on S12 and S11 and it is not a new
transformation. Thus, we need the Jacobian of the transformation from (S11, S12)

to (H1,D) which is given in Theorem 2.3. Thus, the joint p.d.f. of S11 and S12
with respect to Lebesgue measure is

πn(n−p)/22−pn/2

�n(
n
2 )|�|n/2 |S11|(n−p−1)/2

(
etr−1

2
�−1S

)
.(3.2)

Among the many methods available in the literature (see S&K, page 73) for
deriving the nonsingular Wishart distribution, the triangular factorization method
appears to be the most popular. Thus, it would be appropriate to have a similar
derivation in the singular case as well, which we do next.

Consider the transformation

Xp×n =
(

T1
T2

)
L1,(3.3)

where T1 is an n × n lower triangular matrix and T2 is a (p − n)× n matrix. Since
q = n, L1 ∈ Hn and |L1|+ = 1, the joint p.d.f. of T = (T ′

1, T
′
2)

′ and L1, using
Theorem 2.1, is given by

(2π)−pn/2|�|−n/2(etr−1
2�−1T T ′)( n∏

i=1

tn−i
ii

)
gn,n(L1).(3.4)

Note that

T T ′ =
(

T1T
′

1 T1T
′

2
T2T

′
1 T2T

′
2

)
.(3.5)
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Making the transformation

T1T
′

1 = S11 and T1T
′

2 = S12,(3.6)

we find that the Jacobian of these transformations is given by

J (T1 → S11)J (T2 → S12) =
(

2−n
n∏

i=1

t−n+i−1
ii

)
|T1|−(p−n).

Hence, the joint p.d.f. of S11 and S12 is given by

2−nC(n,n)(2π)−pn/2|�|−n/2|S11|(n−p−1)/2(etr−1
2�−1S

)
,(3.7)

where S22 = S′
12S

−1
11 S12. This may be called singular Wishart distribution. As

usual, we denote it by S ∼ Wp(�,n), n < p. Thus, we get the following theorem.

THEOREM 3.1. Let X ∼ Np,n(0,�, In), n < p. Then the p.d.f. of the
functionally independent elements of the matrix S = XX′ is given by (3.7). This
is the joint p.d.f. of S11 and S12 and is the same as that obtained earlier by the
singular-value decomposition method.

The above result can easily be generalized to any p ×n matrix X of rank n with
p.d.f. given by f (XX′). Thus, we get the following corollary.

COROLLARY 3.1. Let X be a p × n matrix of rank n with p.d.f. given by
f (XX′). Let X = T L1, as in (3.3) and S = XX′ = T T ′, where the upper left
n × n submatrix of S is denoted by S11 = T1T

′
1. Then the p.d.f.’s of T and S are,

respectively, given by

2nπn2/2

�n(
n
2 )

n∏
i=1

tn−i
ii f (T T ′)(3.8)

and

πn2/2

�n(
n
2 )

|S11|(n−p−1)/2f (S).(3.9)

COROLLARY 3.2. Let X be a p × n matrix of rank n with p.d.f. given by
f (XX′). Let X = H ′

1FL, H1 ∈ Hn,p , L ∈ Hp and S = XX′ = H ′
1F

2H1 =
H ′

1DH1, where we write S = (S11 S12
S′

12 S22

)
, S22 = S′

12S
−1
11 S12. Then the joint p.d.f. of

S11 and S12 is given by (3.9).

COROLLARY 3.3. Let S ∼ Wp(�,n), n ≤ p, and U = BSB ′, where B is a
p ×p nonsingular matrix. Then U ∼ Wp(B�B ′, n), n < p. That is, the p.d.f. of U

is given by

c|B�B ′|−n/2|U11|(n−p−1)/2(etr−1
2 (B�B ′)−1U

)
,
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where

c = πn(n−p)/22−pn/2

�n(
n
2 )

,

U =
(

U11 U12
U ′

12 U22

)
,

U11 is an n × n nonsingular matrix and U22 = U ′
12U

−1
11 U12.

PROOF. Write B ′ = (B ′
1,B

′
2), B1 :n × p, S = H ′

1DH1, H1H
′
1 = In and H1 =

(H11,H12), where H11 :n × n and is nonsingular. Then

U11 = B1SB ′
1 = B1H

′
1DH1B

′
1

and, from Theorem 2.5,

J (SI → UI ) = |H11|p−n+1|B|−n|B1H
′
1|−(p−n+1).(3.10)

Also

S11 = H ′
11DH11 :n × n.

Since, the p.d.f. of S is given by

c|S11|(n−p−1)/2|�|−n/2(etr−1
2�−1S

)
= c|H ′

11DH11|(n−p−1)/2|�|−n/2(etr−1
2 (B�B ′)−1BSB ′),

the p.d.f. of U is given by

c|B1H
′
1DH1B

′
1|(n−p−1)/2|B�B ′|−n/2(

etr−1
2 (B�B ′)−1U

)
.

In the next corollary we give the marginal distribution of S11 and the conditional
distribution of S12 given S11; the proof can be obtained along the lines of S&K,
page 79. �

COROLLARY 3.4. Let S ∼ Wp(�,n), n < p and � > 0, where

n p − n

S = n

p − n

(
S11 S12
S′

12 S22

)
, � =

(
�11 �12
�′

12 �22

)
,

|S11| �= 0 and S22 = S′
12S

−1
11 S12. Then:

(i) S11 ∼ Wn(�11, n).
(ii) The conditional distribution of S′

12 given S11 is Np−n,n(βS11,�2.1, S11),
where

�2.1 = �22 − �′
12�

−1
11 �12, β = �′

12�
−1
11 .
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By using the results of Lemma 2.4, the p.d.f. of the nonzero eigenvalues of S

in the case of � = I can easily be obtained. Alternatively, we can use the fact
that the nonzero eigenvalues of XX′ are the same as those of X′X, which is
nonsingular. Using either of the two methods, the p.d.f. of the nonzero eigenvalues
d1 > · · · > dn of S when � = I is given by

πn2/2

2pn/2�n(
n
2 )�n(

p
2 )

(
n∏

i=1

d
(p−n−1)/2
i e−di/2

)
n∏

i<j

(di − dj ).(3.11)

Next, we consider the noncentral case; that is, let X ∼ Np,n(µ,�, In), where
n < p. Then the p.d.f. of X is given by

(
(2π)np/2|�|n/2)−1 etr−1

2�−1(X − µ)(X − µ)′

≡ k
(
etr−1

2�−1XX′)(etr�−1Xµ′),

where k = ((2π)np/2|�|n/2)−1(etr −1
2�), � = �−1µµ′. Make the transformation

X = T L, where T = (T1
′, T2

′)′ :p × n with T1 ∈ T+(n) and L ∈ Hn. Then the
joint p.d.f. of T and L is given by

k

n∏
i=1

tn−i
ii gn,p(L)

(
etr−1

2�−1T T ′)(etr�−1T Lµ′).

Integrating out L, we get the p.d.f. of T as

kC(n,n)

n∏
i=1

tn−i
ii

(
etr−1

2�−1T T ′)
0F1

(1
2n, 1

4��−1T T ′),
from James (1964). Hence, the p.d.f. of S = XX′ = T T ′ is given by the following
theorem.

THEOREM 3.2. Let X ∼ Np,n(µ,�, In), n < p. Then the p.d.f. of S = XX′ is
given by

πn(n−p)/22−pn/2

�n(
n
2 )|�|n/2 |S11|(n−p−1)/2

(
etr−1

2
�−1S

)
0
F1

(
1

2
n,

1

4
��−1S

)
.

We write it as S ∼ Wp(�,n,�). Following the steps of Corollary 3.3, we obtain
the following corollary.

COROLLARY 3.5. Let S ∼ Wp(�,n,�), n < p. Then for a p×p nonsingular
matrix B,U = BSB ′ ∼ Wp(B�B ′, n,�1), �1 = (B�B ′)−1Bµµ′B ′.
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4. Singular multivariate beta distribution. We use the following definition
of a multivariate beta distribution as given by Khatri (1970) and Mitra (1970).

DEFINITION 4.1. Let X ∼ Np,n1(0,�, In1) be independently distributed
of Y ∼ Np,n2(0,�, In2) with (n1 + n2) ≥ p. Let Z = (XX′ + YY ′)−1/2X,
where (XX′ + YY ′)−1/2 is any nonsingular factorization of (XX′ + YY ′);
(XX′ + YY ′)1/2(XX′ + YY ′)1/2′ = XX′ + YY ′. Then U = ZZ′ is said to have
a multivariate beta distribution, denoted by Bp(n1/2, n2/2) with n1 + n2 ≥ p; if
n1 < p, it is called a singular multivariate beta distribution.

An alternative definition in terms of Wishart distribution can also be given,
namely

U = (V + W)−1/2V (V + W)−1/2′
,

where V and W are independently distributed as Wp(�,n1) and Wp(�,n2),
respectively, with n1 + n2 ≥ p; see Khatri (1970) or S&K, pages 93 and 96.
However, we use the definition in terms of the normal random matrices. Recall
that from Remark 2.1 in connection with Lemma 2.3, we may use the triangular
factorization of XX′ + YY ′ or V + W without any loss of generality and we do so
in the following development.

It may be pointed out that Uhlig’s (1994) Theorem 1 is Khatri’s (1970)
Theorem 2.

THEOREM 4.1. Let X ∼ Np,m(0,�, Im) and Y ∼ Np,n(0,�, In) be inde-
pendently distributed with � > 0, m ≥ p and n < p. Let XX′ + YY ′ = T T ′,
where T is a lower triangular matrix with positive diagonal elements tii > 0,
i = 1, . . . , p. Then the distribution of U = T −1YY ′T ′−1 is given by

πn(n−p)/2
[
�p

(
m + n

2

)/
�p

(
m

2

)
�n

(
n

2

)]
(4.1) × |U11|(n−p−1)/2|I − U |(m−p−1)/2,

where U = (U11 U12
U11 U12

)
, U11 :n × n. We denote the p.d.f. given in (4.1) as MβI(p,

n,m), m ≥ p, n < p, and call it, as in S&K, singular multivariate beta Type I
distribution.

PROOF. From Lemma 2.3 and Remark 2.1, we may assume without loss of
generality that � = I . The joint p.d.f. of X and Y in this case is given by

(2π)−pN/2(etr−1
2 (XX′ + YY ′)

)
, N = m + n.

Let

(X,Y ) = T H1, H1 ∈ Hp,N, T ∈ T +(p).
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Using the Jacobian of the transformation from (X,Y ) to (T ,H1) from Lemma 2.1,
we get the joint p.d.f. of T and H1 as

(2π)−pN/2gp,N (H1)

p∏
i=1

tN−i
ii

(
etr−1

2T T ′).
Integrating out T , we get the p.d.f. of H1 as

(C(p,N))−1gp,N(H1).

Noting that

H1 = T −1(X,Y ) = (H11,H12),

where H11 :p × m and H12 :p × n, m ≥ p, we find that

H12 = T −1Y

and

H12H
′
12 = T −1YY ′T −1′ = U.

From Lemma 2.2 with r → m and n → N the p.d.f. of H12 is given by

C(p,m)

C(p,N)
|Ip − H12H

′
12|(m−p−1)/2, H12H

′
12 < Ip.(4.2)

Using the singular-value decomposition of H12, H12 = M ′
1FL, M1 :n × p,

M1M
′
1 = In and L :n × n, LL′ = In and then U = H12H

′
12 = M ′

1DM1, we find
from Theorem 2.6 that the p.d.f. of U is as given in the theorem after integrating
out L.

Alternatively and more easily, we obtain the p.d.f. of U from Corollary 3.1.
Note, as before, that

U = H12H
′
12

= M ′
1DM1

=
(

M ′
11

M ′
12

)
D(M11, M12)

=
(

M ′
11DM11 M ′

11DM12

M ′
12DM11 M ′

12DM12

)

=
(

U11 U12
U ′

12 U22

)
,

where M1 = (M11,M12), M11 :n × n. Since

U22 = U ′
12U

−1
11 U12 = M ′

12DM11(M
′
11DM11)

−1M ′
11DM12 = M ′

12DM12,

it follows that the p.d.f. given in the theorem is, in fact, the joint p.d.f. of U11
and U12. �
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COROLLARY 4.1. Let U ∼ MβI(p,n,m), the p.d.f. of which is given by (4.1).
For any p × p orthogonal matrix �, let V = �U�′. Then V ∼ MβI(p,n,m).

PROOF. Let V = �U�′. Then from Theorem 2.4, the Jacobian of the
transformation from UI to VI is given by

J (UI → VI ) = |H11|p−n+1
+ /|H1�

′
1|p−n+1

+ ,

where

U = H ′
1DH1, H ′

1H1 = In,

H1 = (H11,H12), H11 :n × n, |H11| �= 0,

�′ = (�′
1,�

′
2), �′

1 :p × n.

Hence,

U11 = H ′
11DH11,

V11 = �1H
′
1DH1�

′
1.

Thus, the p.d.f. of V is given by

c1|H11|p−n+1|H1�
′
1|−(p−n+1)|H ′

11DH11|(n−p−1)/2|I − V |(m−p−1)/2

= c1|�1H
′
1DH1�

′
1|(n−p−1)/2|I − V |(m−p−1)/2

= c1|V11|(n−p−1/2|I − V |(m−p−1)/2,

where

c1 = πn(n−p)/2
[
�p

(
m + n

2

)/
�p

(
m

2

)
�n

(
n

2

)]
. �

COROLLARY 4.2. Let U ∼ MβI(p,n,m), where

n p − n

U = n

p − n

(
U11 U12
U ′

12 U22

)
,

|U11| �= 0, U22 = U ′
12U

−1
11 U12 and where the p.d.f. of U is given by (4.1). Then the

p.d.f. of U11 is given by

c2|U11|1/2|I − U11|(m−n−1)/2, c2 = �n

(
m + n

2

)/
�n

(
n

2

)
�n

(
m

2

)
.

PROOF. We first note that

|I − U | = |I − U11|
∣∣I − U22 − U ′

12(I − U11)
−1U12

∣∣
= |I − U11|

∣∣I − U ′
12[U−1

11 + (I − U11)
−1]U12

∣∣
= |I − U11|

∣∣I − U ′
12U

−1/2
11 (I − U11)

−1U
−1/2
11 U12

∣∣.
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Let

W = (I − U11)
−1/2U

−1/2
11 U12.

Then

J (U12 → W) = |U11|(p−n)/2|I − U11|(p−n)/2.

Hence, from (4.1) the joint p.d.f. of U11 and W is given by

Const · |U11|−1/2|I − U11|(m−n−1)/2|I − WW ′|(m−p−1)/2.

Integrating out W , we get the p.d.f. of U11 as given in the corollary. �

The joint p.d.f. of the nonzero eigenvalues di of H12H
′
12 can be obtained

from Lemma 2.4 or directly from (4.2) by using Lemma 3.2.3 (page 76) and
Theorem 1.11.5 (page 31) of S&K, and the fact that

|Ip + AB| = |Iq + BA|
for A :p × q and B :q × p. The p.d.f. of di is given by

�p(m+n
2 )πn2/2

�p(m
2 )�n(

n
2 )�n(

p
2 )

(
n∏

i=1

d
(p−n−1)/2
i (1 − di)

(m−p−1)/2

) ∏
i<j

(di − dj ).(4.3)

The above p.d.f. differs from the one given by Díaz-García and Gutiérrez-
Jáimez (1997); they used �p(n

2 ) in place of �n(
p
2 ) in the denominator.

THEOREM 4.2. Let X ∼ Np,m(0, I, I ) and Y ∼ Np,n(0, I, I ) be indepen-

dently distributed with m ≥ p and n ≤ p. Let XX′ = W 1/2W 1/2′
, where W 1/2

is any nonsingular factorization of XX′. Define

G = W−1/2′
(YY ′)W−1/2.

Then the p.d.f. of G is given by

πn(n−p)/2�p(m+n
2 )

�p(m
2 )�n(

n
2 )

|G11|(n−p−1)/2|I + G|−(m+n)/2,(4.4)

where G = (G11 G12
G′

12 G22

)
. We denote the p.d.f. given in (4.4) as MβII(p,n,m), m ≥ p,

n < p, and, as in S&K, call it singular multivariate beta Type II distribution.

PROOF. Let W = XX′. Then the joint p.d.f. of W and Y is given by

(2π)−pn/2C1(p,m)|W |(m−p−1)/2(
etr−1

2 (W + YY ′)
)
,

where

C1(p,m) =
(

2pm/2�p

(
m

2

))−1

.
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Making the transformation

Z = (W−1/2)′Y
and integrating out W , we find that the p.d.f. of Z is given by

(2π)−pn/2 C1(p,m)

C1(p,m + n)
|I + ZZ′|−(m+n)/2.

Hence from Theorem 2.6, the p.d.f. of G is given as in the theorem after integrating
out L1. �

COROLLARY 4.3. Let G ∼ MβII(p,n,m), the p.d.f. of which is given in (4.4).
Then for any p × p orthogonal matrix �, the p.d.f. of P = �G�′ is again
MβII(p,n,m).

COROLLARY 4.4. Let G ∼ MβII(p,n,m), where

n p − n

G = n

p − n

(
G11 G12
G′

12 G22

)
,

|G11| �= 0, G22 = G′
12G

−1
11 G12 and its p.d.f. is given by (4.4). Then the p.d.f. of

G11 is given by

�n(
m+n

2 )

�n(
m
2 )�n(

n
2 )

|G11|−1/2|I + G11|−(m+n)/2.

THEOREM 4.3. Let X ∼ Np,m(0, I, I ) and Y ∼ Np,n(0, I, I ) be inde-
pendently distributed. Let d1 > · · · > dn > 0 be the nonzero eigenvalues of
(XX′)−1YY ′ for m ≥ p, n < p. Then the joint p.d.f. of d1, . . . , dn is given by

πn2/2�p(n+m
2 )

�p(m
2 )�n(

n
2 )�n(

p
2 )

n∏
i=1

d
(p−n−1)/2
i (1 + di)

−(n+m)/2
n∏

i<j

(di − dj ).

5. Pseudo Wishart distribution. In this section we consider the case when
ρ(�) = r < p, where ρ(�) denotes the rank of �. Let X ∼ Np,n(0,�, In), where
ρ(�) = r < p, but r > n. Then from Khatri (1968) or S&K, page 43, the p.d.f.
of X is given by

(2π)−rn/2
r∏

i=1

λ
−n/2
i

(
etr−1

2�−XX′),
with respect to Lebesgue measure on the hyperplane 
2X = 0 (with probability
one), where 
2 is defined below, and where �− is a generalized inverse of �,
��−� = � and λi ’s are the nonzero eigenvalues of �. Consider an orthogonal
matrix 
′ = (
′

1,

′
2), where 
′

1 is a p × r matrix such that 
1

′
1 = Ir and

� = 
′
(

Dλ 0
0 0

)

 = 
′

1Dλ
1, Dλ = diag(λ1, . . . , λr).
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Then, it follows that


�−
′ = 
(
′
1Dλ
1)

−
′ =
(

D−1
λ 0
0 0

)
.

Hence, the p.d.f. of 
X = Y is given by(
(2π)−rn/2

r∏
i=1

λ
−n/2
i

)
etr−1

2D−1
λ Y1Y

′
1,

where Y ′ = (Y ′
1, Y ′

2), Y1 ∼ Nr,n(0,Dλ, In) and Y2 = 0 with probability 1. Hence,
from Theorem 3.1, the p.d.f. of V = Y1Y

′
1 is given by

πn(n−r)/22−rn/2

�n(
n
2 )

∏r
i=1 λ

n/2
i

|V11|(n−r−1)/2
(

etr−1

2
D−1

λ V

)
,

where

V =
(

V11 V12
V ′

12 V22

)
, V11 :n × n

and V22 = V ′
12V

−1
11 V12. Alternatively, we can write Y1 = M ′

1FL, Y1Y
′
1 = V =

M ′
1DM1 where L ∈ Hp , F 2 = D, M1 :n × r and M1M

′
1 = In. Hence, V11 =

M ′
11DM11 with M1 = (M11,M12), M11 × n × n. Use of Theorem 2.6 gives the

result.
To write the p.d.f. in terms of S = XX′, we can use either Corollary 3.1 or 3.2.

To use Corollary 3.2, we write X = H ′
1FL, H1 ∈ Hp,n, L ∈ Hn and F =

diag(f1, . . . , fn), fi > 0, S = XX′ = H ′
1F

2H1 = H ′
1DH1, giving S11 = H ′

11DH11
and H1 = (H11,H12). Hence, we get the following theorem.

THEOREM 5.1. Let X ∼ Np,n(0,�, In), ρ(�) = r > n. Then the p.d.f. of
S = XX′ is given by

πn(n−r)/22−rn/2

�n(
n
2 )

∏r
i=1 λ

n/2
i

|S11|(n−r−1)/2
(

etr−1

2
�−S

)
.

The distribution of S = XX′ is called a pseudo Wishart distribution as defined
by S&K, page 72.

We now obtain results analogous to the one given in (3.8), when X ∼
Np,n(0,�, In), ρ(�) = r ≤ p and ρ(X) = q = min(r, n). We can write

X =
(

T1
T2

)
L1

≡ T L1,
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where T1 :q ×q is a triangular matrix with positive diagonal elements tii , T2 : (p −
q) × q matrix and L1 ∈ Hq,n. Hence, the p.d.f. of T and L1 is given by[

(2π)−rn/2
r∏

i=1

λ
−n/2
i

]( q∏
i=1

tn−i
ii

)
gq,n(L1)|L11|p−q

+
(
etr−1

2�−T T ′),
where the q × n matrix L1 = (L11,L12), L11 :q × q and L12 :q × (n − q).
Integrating out L1, the p.d.f. of T is given by

C(q,n)

[
(2π)−rn/2

r∏
i=1

λ
−n/2
i

]
K

( q∏
i=1

tn−i
ii

)(
etr−1

2�−T T ′),
where, from Lemma 2.2 and Corollary 2.1 with p → q and r → q ,

K = [C(q,n)]−1
∫
L1∈Hq,n

|L11L
′
11|(p−q)/2gq,n(L1) dL1

= C(q, q)

C(q,n)

∫
L12L

′
12<Iq

|Iq − L12L
′
12|(p−q−1)/2 dL12

= C(q, q)

C(q,n)

C(q,n + α)

C(q, q + α)
, α = p − q.

Hence, we get the following theorem.

THEOREM 5.2. Let X ∼ Np,n(0,�, In), ρ(�) = r ≤ p and ρ(X) = q =
min(r, n). Consider the transformation X′ = L′

1T
′ = L′

1(T
′

1, T
′
2), where L1 ∈ Hq,n

and T1 is a q × q lower triangular matrix with positive diagonal elements tii and
T2 is a (p − q) × q matrix. Then the p.d.f. of T is given by

C(q, q)C(q,n + α)

C(q, q + α)

[
(2π)−rn/2

r∏
i=1

λ
−n/2
i

][ q∏
i=1

tn−i
ii

][
etr

(
−1

2
�−T T ′

)]
,

α = (p − q).
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Ser. A 30 267–280.

KHATRI, C. G. (1970). A note on Mitra’s paper “A density free approach to the matrix variate beta
distribution.” Sankhyā Ser. A 32 311–317.
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