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A SCATTER MATRIX ESTIMATE BASED ON THE ZONOTOPE1

BY GLEB A. KOSHEVOY, JYRKI MÖTTÖNEN AND HANNU OJA

Russian Academy of Sciences, University of Oulu and University of Jyväskylä

We introduce a new scatter matrix functional which is a multivariate
affine equivariant extension of the mean deviation E(|x − Med(x)|). The
estimate is constructed using the data vectors (centered with the multivariate
Oja median) and their angular distances. The angular distance is based on
Randles interdirections. The new estimate is called the zonoid covariance
matrix (the ZCM), as it is the regular covariance matrix of the centers of the
facets of the zonotope based on the data set. There is a kind of symmetry
between the zonoid covariance matrix and the affine equivariant sign
covariance matrix; interchanging the roles of data vectors and hyperplanes
yields the sign covariance matrix as the zonoid covariance matrix. (It turns out
that the symmetry relies on the zonoid of the distribution and its projection
body which is also a zonoid.) The influence function and limiting distribution
of the new scatter estimate, the ZCM, are derived to consider the robustness
and efficiency properties of the estimate. Finite-sample efficiencies are
studied in a small simulation study. The influence function of the ZCM
is unbounded (linear in the radius of the contamination vector) but less
influential in the tails than that of the regular covariance matrix (quadratic
in the radius). The estimate is highly efficient in the multivariate normal
case and performs better than the regular covariance matrix for heavy-tailed
distributions.

1. Introduction. Throughout the paper we assume that X = {x1, . . . ,xn}
is a random sample from a symmetric k-variate distribution with cumulative
distribution function F having finite second moments. We wish to estimate the
unknown symmetry center µ and the unknown covariance matrix �. By symmetry
we mean that xi −µ and µ−xi have the same distribution. A location vector T (F )

is an affine equivariant functional, and for symmetric distributions its value is the
symmetry center. A k × k matrix valued functional C = C(F ) is a scatter matrix
if it is symmetric, positive definite and affine equivariant.

Consider a standardized k-variate random variable z with mean vector 0 and
covariance matrix Ik . Assume that the distribution of z with c.d.f. F0 is reflection
and permutation invariant, that is, Gz ∼ z, for all k × k reflection and permutation
matrices G. (A reflection matrix is a diagonal matrix with diagonal elements +1
or −1; a permutation matrix is obtained by permuting the rows or columns of
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the identity matrix.) Note that the permutation invariance property means that the
components of z are exchangeable. The margins of z are identically distributed,
symmetric around zero and uncorrelated. The standardized variable z generates
the corresponding location-scale model as a totality of distributions of

x = �1/2z + µ

for every positive definite k × k matrix � and k-vector µ. An elliptical model is an
important special case. Then if F is the c.d.f. of x, T (F ) = µ and C(F ) = κ2� for
all location vectors T and all scatter matrices C. As κ2 depends on the functional C

and the distribution F0, a correction factor κ−2 is needed for the Fisher consistency
of the estimate of � and for the comparisons between different scatter matrix
estimates at a specific model.

Visuri, Koivunen and Oja (2000), Ollila, Hettmansperger and Oja (2002),
Ollila, Oja and Croux (2002) and Visuri, Ollila, Koivunen, Möttönen and Oja
(2003) introduced and investigated scatter matrices based on the Oja sign and
rank vectors [Oja (1999)]. The affine equivariant sign vectors were built using
hyperplanes (going through the origin and k − 1 data points) and the normals to
these hyperplanes. The sign covariance matrix is then the regular covariance matrix
calculated from the multivariate signs of the centered observations. For the scatter
matrix estimate based on the sign covariance matrix and its statistical properties,
see Ollila, Oja and Croux (2002). In this paper we construct in a symmetric way,
interchanging the roles of observation vectors and normals, a new scatter matrix
estimate, which may be seen as the sign covariance matrix of the normals. The new
estimate appears to be a multivariate affine invariant matrix valued extension of the
mean deviation and it can be constructed using the data vectors (centered with the
multivariate Oja median) and their angular distances. The angular distance is based
on Randles’ (1989) interdirections.

Koshevoy and Mosler (1997a, b, 1998) and Mosler (2002) proposed the use
of zonoids and lift zonoids, k- and (k + 1)-variate convex sets Z(F ) and LZ(F ),
respectively, to describe and investigate the properties of a multivariate distribu-
tion F . The volume of the zonoid Z(F ) is a global measure of scatter (an extension
of the mean deviation) and, in the elliptic case, the shape of the zonoid is deter-
mined by the covariance structure of the distribution. The zonotope Z(X), also a
k-variate convex body based on data set X, is a natural estimate of zonoid Z(F ).
It turns out that our new scatter matrix estimate can be constructed using the cen-
ters of the facets of a data based zonotope. Therefore the new estimate is named
the zonoid covariance matrix. The relations between the new scatter matrix esti-
mate and the sign covariance matrix rely on the zonoid of the distribution and its
projection body (also a zonoid).

Our plan is as follows. In Section 2 we explain a kind of duality between
observations and hyperplanes going through the origin and k − 1 observations
and introduce our affine equivariant scatter matrices, the SCM and ZCM, based on
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Randles’ (1989) angular distances. Section 3 discusses the statistical properties
(influence function, limiting distribution, limiting efficiency and finite-sample
efficiency) of the new scatter matrix estimate, the ZCM. In Section 4 it is shown
that the new estimate may be constructed using the centers of the facets of
the zonotope based on the data set. Some tools to investigate k-variate convex
compacts as well as formal definitions of the concepts of the zonotope and zonoid
are given. We close the paper with some final comments in Section 5.

2. Location and scatter estimates.

2.1. Hyperplanes and interdirections. Let Y = {y1, . . . ,yn} be a k-variate data
set and consider hyperplanes going through the origin and k − 1 observation
points. To shorten the notation, write I = (i1, . . . , ik−1) with 1 ≤ i1 < · · · <

ik−1 ≤ n for an ordered set of indices. The new index I then refers to a k − 1
subset of observations with indices listed in I , or to hyperplane

H(I) = {
y ∈ R

k : det
(
yi1 · · · yik−1y

) = 0
}
.

Also, define vector e(I ) implicitly by

det
(
yi1 · · · yik−1y

) = eT (I )y;
that is, e(I ) is the vector of cofactors corresponding to the last column of the
matrix (yi1 · · ·yik−1y). Note that the vector e(I ) is orthogonal to hyperplane H(I)

and its length is the volume of a (k−1)-variate parallelotope determined by vectors
(segments) with indices in I . (For the definition of the parallelotope, see Section 4.)
The e(I ) are henceforth called normals.

The normals e(I ) are affine equivariant in the sense that if the e∗(I ) are
constructed from the data set

A · Y = {Ay1, . . . ,Ayn}
with a full rank k×k matrix A, then e∗(I )=A∗e(I ) with A∗= abs(det(A))(A−1)T.
See Ollila, Oja and Croux (2002). The normals e(I ) are random vectors which also
carry information about the covariance structure:

LEMMA 1. If Y is a random sample from a distribution F with zero mean
vector and covariance matrix �, then the normals e(I ) are random vectors with

EF(e(I )) = 0 and EF

(
e(I )eT (I )

) = (k − 1)!det(�)�−1.

An affine invariant measure of angular closeness between vectors yi and yj may
be constructed using hyperplanes H(I) or normals e(I ) as follows.

DEFINITION 1. The measure of angular closeness of observation vectors
yi and yj , denoted by δij , is given by

δij = aveI

{
sign

(
eT (I )yi

)
sign

(
eT (I )yj

)}
.
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The definition is natural as sign(eT (I )yi ) tells whether yi is “above” or “below”
hyperplane H(I). Then sign(eT (I )yi)sign(eT (I )yj ) is +1 when yi and yj are on
the same side of the hyperplane H(I) and −1 otherwise. The value of δij is thus
between −1 and +1. The closer the vectors yi and yj are, the smaller the number of
separating hyperplanes H(I) and the larger is δij . Note that (1−δij )/2 is the well-
known measure of angular distance between yi and yj , the observed proportion of
interdirections (hyperplanes separating yi and yj ). This concept of interdirection
was first introduced by Randles (1989) and has been used to construct multivariate
sign and rank and signed-rank tests. See Randles (1989), Peters and Randles (1990)
and Hallin and Paindaveine (2002), for example.

Hyperplanes H(I) going through the origin are uniquely defined by the
directions of normals e(I ). How should we then measure the angular closeness of
normals e(I ) and e(J )? This can be done by exchanging the roles of observations
and hyperplanes: Now let the e(I ) be vectors in R

k and let the yi define
the hyperplanes {y ∈ R

k : yT
i y = 0} going through the origin. Then an affine

equivariant angular closeness of vectors e(I ) and e(J ) is defined in a symmetric
way as follows.

DEFINITION 2. The measure of angular closeness of normals e(I ) and e(J ),
denoted by �(I,J ), is given by

�(I,J ) = avei

{
sign

(
eT (I )yi

)
sign

(
eT (J )yi

)}
.

Finally note that, as e(I ) and −e(I ) yield the same hyperplane, the resulting
measure of closeness of hyperplanes H(I) and H(J ) is defined as abs(�(I, J )).

Recall that if Y = {y1, . . . ,yn} is a random sample from a distribution with
symmetry center zero and covariance matrix �, then

avei

{
yiyT

i

}
and aveI

{
e(I )eT (I )

}
estimate � and (k − 1)!det(�)�−1, respectively. This suggests that also

avei,j

{
δij yiyT

j

}
and aveI,J

{
�(I,J )e(I )eT (J )

}
may be used to construct reasonable, affine equivariant estimates of the covariance
matrix and of its inverse, respectively. In fact, the latter is the affine equivariant
sign covariance matrix introduced by Visuri, Koivunen and Oja (2000) as is seen
in Lemma 2 of the next section.

2.2. Estimates based on signs. The multivariate Oja (1983) median is defined
as follows. Let X = {x1, . . . ,xn} be a random sample from a k-variate symmetric
distribution. To estimate the unknown symmetry center, shift the observations by
a candidate µ. Write

Y = {y1, . . . ,yn} = {x1 − µ, . . . ,xn − µ}
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for this data set of residuals. The affine equivariant Oja median, say µ̂, then
minimizes the objective function

D(µ) = avei,I

{
abs

(
eT (I )yi

)} = avei

{
ST

i yi

}
,

where

Si = aveI

{
sign

(
eT (I )yi

)
e(I )

}
, i = 1, . . . , n,

are affine equivariant multivariate sign vectors. At µ = µ̂, the signs Si are
centered, that is,

∑
Si = 0. See Oja (1999) and references therein.

Next construct the affine equivariant sign covariance matrix based on the
centered signs S1, . . . ,Sn [Visuri, Koivunen and Oja (2000) and Ollila, Oja and
Croux (2002)].

DEFINITION 3. The sign covariance matrix (SCM) is

SCM = SCM(X) = avei

{
SiST

i

}
.

The SCM is affine equivariant in the sense that if SCM∗ is calculated from the
data set A · X + b = {Ax1 + b, . . . ,Axn + b}, then

SCM∗ = det(A2)(A−1)T SCM(A−1).

Using normals and angular distances between normals, one immediately gets the
following lemma.

LEMMA 2. The sign covariance matrix satisfies

SCM = aveI,J

{
�(I,J )e(I )eT (J )

}
.

The inverse of the SCM may be used to estimate the regular covariance and
correlation matrix. For the influence function, limiting distribution, efficiency and
applications of the SCM see Ollila, Hettmansperger and Oja (2002), Ollila, Oja
and Hettmansperger (2002) and Ollila, Oja and Croux (2002). In the next section
we exchange the roles of observations and normals.

2.3. Estimates based on signs of normals. Again let X = {x1, . . . ,xn} be a
random sample from a k-variate distribution F symmetric around µ. To estimate
the unknown symmetry center, again shift the observations by a candidate µ and
consider the shifted data set Y = {x1 − µ, . . . ,xn − µ}. Exchanging the roles
of vectors and normals, the objective function of the Oja median may now be
symmetrically written as

D(µ) = avei,I

{
abs

(
eT (I )yi

)} = aveI

{
hT (I )e(I )

}
,

where

h(I ) = avei

{
sign

(
eT (I )yi

)
yi

}
, i = 1, . . . , n,
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FIG. 1. The original bivariate data vectors yi , their signs Si , normals to hyperplanes e(I ) and
signs of normals h(I ) in the bivariate case. One of the observations (normals) is denoted by a star
to illustrate the transformations.

are signs of normals. Note that the signs are now based on the hyperplanes with
normals yi . See Figure 1 for an illustration of the yi , Si , e(I ) and h(I ) for a small
bivariate data set.

We next consider the scatter matrix estimate, which is now calculated from the
signs of normals, the h(I ). The data are again centered using the Oja median,
which is a natural location estimate here also. See Section 4. We call it the zonoid
covariance matrix (ZCM) as the h(I ) yield all the centers of the facets of the
zonotope based on Y . This will be explained in detail in Section 4.

DEFINITION 4. The zonoid covariance matrix (ZCM) based on data set X is

ZCM = ZCM(X) = aveI

{
h(I )hT (I )

}
.

It is easy to see that ZCM(X) is a scatter matrix; that is, it is affine equivariant
(in the usual sense),

ZCM(A · X + b) = A ZCM(X) AT .

The zonoid covariance matrix can be also defined in terms of the original
observation vectors and their interdirections as follows.
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LEMMA 3. The zonoid covariance matrix is

ZCM(X) = avei,j

{
δij yiyT

j

}
.

Due to the centering of the data, the ZCM is invariant in shifts of the
observations. Therefore, in the following derivations it is not a restriction to
assume that X is a random sample from a distribution symmetric around the
origin. We next show that, as the sign covariance matrix [see Ollila, Oja and
Croux (2002)], the scatter matrix ZCM(X) also is asymptotically equivalent to a
U -statistic. The general theory for the U -statistics can then be used to prove the
limiting multinormality of the scatter matrix estimate (see the Appendix for the
proof).

LEMMA 4. Assume that X = {x1, . . . ,xn} is a random sample from a
distribution symmetric around zero. For any K = {i1, . . . , ik+1} ⊂ {1, . . . , n} with
|K| = k + 1, write

g(K) = g(i1, . . . , ik+1)

= 1

k(k + 1)

∑
I∪{i}∪{j }=K

{
sign

(
eT (I )xi

)
sign

(
eT (I )xj

)
xixT

j

}
.

Consider the U -statistic with symmetric kernel g,

Un =
(

n

k + 1

)−1 ∑
K

g(K).

Then under general assumptions (see the Appendix)
√

n
(
Un − ZCM(X)

) P→ 0.

The population zonoid covariance matrix of F symmetric around the origin is
naturally defined as the expectation of the kernel of the U -statistic, that is,

ZCM(F ) = EF

{
sign

(
eT (I )xi

)
sign

(
eT (I )xj

)
xixT

j

}
with distinct I , {i} and {j} (and a random sample X). Naturally ZCM(F ) also is
affine equivariant.

Consider next F0 spherical around the origin and let x1, . . . ,xn be a random
sample from F0. Write ri = ‖xi‖ and ui = ‖xi‖−1xi , i = 1, . . . , n. Then ri and
ui are independent, and the ui as well as the u(I ) = ‖e(I )‖−1e(I ) are uniformly
distributed on the unit sphere. As

EF0

[
sign

(
eT (I )xi

)
xi | e(I )

] = EF0[|xi1|] · u(I ),

EF0[|xi1|] = EF0[ri] · EF0[|ui1|] = EF0[ri]
E[χk]
E[χ1]



1446 G. A. KOSHEVOY, J. MÖTTÖNEN AND H. OJA

and EF0[u(I )uT (I )] = [1/k]Ik , it follows that

ZCM(F0) = c2
kE

2
F0

(ri)

k
Ik

with

ck = �(k/2)

�((k + 1)/2)
√

π
.

Note that the diagonal elements are proportional to the squared marginal mean
deviations; therefore the zonoid covariance matrix can be thought of as a
multivariate affine equivariant matrix valued extension of the mean deviation. Note
that the regular covariance matrix is

�(F0) = EF0(r
2
i )

k
Ik.

A correction factor EF0(r
2
i )/(c2

kE
2
F0

(ri)) is then needed for ZCM(F0) to guarantee
the Fisher consistency to �(F0).

3. Statistical properties of the zonoid covariance matrix in the elliptic case.

3.1. Influence functions and efficiency in the elliptic case. The influence
function (IF) of a functional T at F measures the effect of an infinitesimal
contamination located at a single point z. We thus consider the contaminated
distribution

Fε = (1 − ε)F + ε�z,

where �z is the cumulative distribution function of a distribution with probability
mass 1 at z. The influence function is defined as

IF(z, T ,F ) = lim
ε↓0

T (Fε) − T (F )

ε
= ∂

∂ε
T (Fε)

∣∣∣∣
ε=0

.

The IF is a tool to describe robustness properties of an estimator, but it can
also be used to compute asymptotic variance [cf. Hampel, Ronchetti, Rousseeuw
and Stahel (1986) for more information on influence functions]. The influence
function, limiting distribution and limiting efficiency of the Oja median have been
investigated in several papers; we refer to Arcones, Chen and Giné (1994), Oja
(1999) and Ollila, Hettmansperger and Oja (2002) and references therein.

Consider now the influence functions of the zonoid covariance matrix ZCM(F )

for spherical and elliptical distributions F . In the spherical case, we have the
following result. See the Appendix for the proof.



SCATTER MATRIX ESTIMATE BASED ON ZONOTOPE 1447

THEOREM 1. For spherical F0,

IF(z; ZCM,F0) = c2
k

[
2EF0(r)r − E2

F0
(r)

]
uuT − c2

kE
2
F0

(r)

k
Ik,

where r = ‖z‖ and u = ‖z‖−1z.

The influence function in general elliptic cases then easily follows by the affine
equivariance property. Ollila, Oja and Croux (2002) derived the influence function
of the scatter matrix estimate based on the SCM. If the correction factors are used,
the same influence functions are obtained in these two cases and the scatter matrix
estimates are asymptotically equivalent.

As ZCM(X) is asymptotically equivalent to a U -statistic, the limiting multinor-
mality follows. (The assumption on finite second moments is needed here.) The
limiting variances and covariances of the elements of the ZCM can be derived us-
ing the influence function presentation above. In the following, the mean of a ran-
dom k × k matrix D is a k × k matrix E(D) with elements (E(D))ij = E(Dij ),
i, j = 1, . . . , k, and the covariance matrix of D is structured as a k2 × k2 matrix
Cov(D) = E(D ⊗ DT ) − E(D) ⊗ (E(D))T . Cov(D) then consists of k2 k × k

blocks with Cov(Di1j1,Di2j2) for the element (j2, i2) of the block (i1, j1).

THEOREM 2. Let X = {x1, . . . ,xn} be a random sample from a distribution F0

spherically symmetric around 0. The limiting distribution of
√

n(ZCM(X) −
ZCM(F0)) is multivariate normal with zero mean matrix and covariance matrix

c4
kE

2
F0

(r)
[
4EF0(r

2) − 3E2
F0

(r)
]
EF0

[
uuT ⊗ uuT

] − c4
kE

4
F0

(r)

k2
Ik2,

where r = ‖z‖ and u = ‖z‖−1z with z ∼ F0.

Again, see the Appendix for the proof.
In the spherical case, two quantities τ 2

1 and τ 2
2 , namely the limiting variances

of the on-diagonal and off-diagonal elements of the scatter matrix, fully charac-
terize the limiting distribution and therefore also the limiting efficiency proper-
ties of the scatter matrix. See Croux and Haesbroeck (2000). If the correction
factors are used, the ZCM and the scatter matrix estimate based on the SCM are
asymptotically equivalent with the same quantities τ 2

1 and τ 2
2 and the same limiting

efficiencies. In the bivariate case, the estimates coincide. In the multinormal case,
the asymptotic relative efficiencies (w.r.t. the regular sample covariance matrix

estimate) of the on-diagonal elements (ratios of τ 2
1 ) are

0.935,0.960,0.981 and 0.994 for dimensions k = 2,3,5 and 10,
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and the same figures for off-diagonal elements (ratios of τ 2
2 ) are

0.956,0.973,0.987 and 0.996 for dimensions k = 2,3,5 and 10.

The efficiencies go to 1 as the dimension k → ∞. For heavy-tailed distributions,
the ZCM and the scatter matrix based on the SCM perform better than the regular
covariance matrix. See Ollila, Oja and Croux (2002) for the efficiencies in the
multivariate t distribution case.

In the general elliptic case, the limiting distribution of a scatter matrix is
determined by the covariance matrix (of the background distribution) � and
scalars τ 2

1 and τ 2
2 , the limiting variances of the on-diagonal and off-diagonal

elements in the corresponding spherical case. In most applications such as
principal component analysis, canonical correlation analysis and multivariate
regression analysis, the asymptotic relative efficiencies of the estimates based on
different scatter matrices are simply ratios of τ 2

1 or ratios of τ 2
2 and independent

of �. In principal component analysis, for example, the limiting variance–
covariance matrices of eigenvectors and standardized eigenvalues are proportional
to τ 2

2 . This is used in the next section, where we consider the finite-sample
efficiencies and compare them to the asymptotic relative efficiencies.

3.2. Finite-sample efficiencies. Ollila, Oja and Croux (2002) derived the
asymptotic relative efficiencies of the sign covariance matrix in the multivariate
t distribution case. Since the zonoid covariance matrix ZCM and sign covariance
matrix SCM (with correction factors) have the same asymptotic efficiencies, we
can now concentrate on the small sample properties of ZCM.

The finite-sample efficiencies of the zonoid covariance matrix are estimated as
follows. We generated m = 10,000 samples of sizes n = 20,50,100,300 from
k-variate elliptical t distributions with ν = 5,6,8,15,∞ degrees of freedom
and covariance matrix � = diag(1, . . . , k). The choice ν = ∞ then refers to the
k-variate normal distribution. Next the eigenvector and standardized eigenvalue
estimates were constructed using both the zonoid covariance matrix and the
regular sample covariance matrix. (The standardized eigenvalues are the regular
eigenvalues divided by their geometrical means.) No correction factors are needed
in these estimation problems and, as stated before, the asymptotic relative
efficiencies are obtained as ratios of τ 2

2 .
We consider the finite-sample efficiencies of the first eigenvector and first

standardized eigenvalue estimates. The estimated mean squared error (MSE) of
the first eigenvector estimate is given by

MSE(v̂1) = 1

m

m∑
j=1

(
arccos

{∣∣vT
1 v̂(j )

1

∣∣})2
,

where m is the number of simulated samples, v̂(j )
1 is the estimate for the first

eigenvector computed from the j th sample and v1 = (0, . . . ,0,1)T is the true
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first eigenvector of �. The estimated MSE for the logarithm of the first
standardized eigenvalue is

MSE
(
log λ̂∗

1
) = 1

m

m∑
j=1

(
log(λ̂∗

1)
(j) − log λ∗

1
)2

,

where (λ̂∗
1)

(j) is the estimate for the first standardized eigenvalue from the j th
sample and λ∗

1 = k/(k!1/k) is the true first standardized eigenvalue of �. The
estimated relative efficiencies are then the ratios of the estimated mean squared
errors for the competing two estimates. The estimated efficiencies are as shown in
Tables 1 and 2. The case {k = 4, n = 300} was left out because of extremely long
simulation times.

As n → ∞, the ratios of the MSE converge in both considered cases to the
ratios of τ 2

2 , that is, to the limiting efficiencies of the off-diagonal elements in
the spherical case. [See Croux, Ollila and Oja (2002) for this.] The efficiencies
are very high in the multivariate normal case. For heavy-tailed distributions, the
ZCM outperforms the regular covariance matrix. Note, however, that for small
sample sizes, the finite-sample efficiencies tend to be much lower than the limiting
efficiencies; the regular sample covariance matrix is much better than what one can
expect from the asymptotic figures. The efficiencies of the estimates based on the
ZCM and SCM are naturally identical in the bivariate case and also quite similar
in all other considered cases.

TABLE 1
Simulated finite-sample efficiencies of the eigenvector estimates of the ZCM

relative to eigenvector estimates based on the sample covariance matrix.
Samples were generated from a k-variate t distribution with ν degrees

of freedom and � = diag(1, . . . , k)

Degrees of freedom (ν)

k n 5 6 8 15 ∞
2 20 1.068 1.062 1.021 0.991 0.952

50 1.289 1.216 1.141 1.014 0.942
100 1.502 1.341 1.170 1.024 0.956
300 1.679 1.428 1.174 1.025 0.947
∞ 2.000 1.447 1.184 1.031 0.956

3 20 1.034 1.024 1.022 1.001 0.995
50 1.118 1.124 1.064 1.020 0.976

100 1.280 1.221 1.140 1.040 0.976
300 1.708 1.428 1.210 1.042 0.971
∞ 1.960 1.429 1.179 1.038 0.973

4 20 1.024 1.021 1.008 1.004 0.985
50 1.098 1.079 1.052 1.016 0.987

100 1.193 1.170 1.106 1.021 0.987
∞ 1.929 1.413 1.173 1.040 0.982
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TABLE 2
Simulated finite-sample efficiencies of the standardized eigenvalue estimates

of the ZCM relative to standardized eigenvalue estimates based on the
sample covariance matrix. Samples were generated from a k-variate

t distribution with ν degrees of freedom and � = diag(1, . . . , k)

Degrees of freedom (ν)

k n 5 6 8 15 ∞
2 20 1.157 1.110 1.051 0.992 0.947

50 1.259 1.187 1.084 1.003 0.955
100 1.373 1.242 1.119 1.025 0.953
300 1.540 1.323 1.162 1.031 0.953
∞ 2.000 1.447 1.184 1.031 0.956

3 20 1.192 1.142 1.072 1.010 0.960
50 1.398 1.255 1.121 1.025 0.974

100 1.483 1.303 1.133 1.021 0.970
300 1.584 1.343 1.168 1.033 0.975
∞ 1.960 1.429 1.179 1.038 0.973

4 20 1.174 1.120 1.061 1.009 0.965
50 1.431 1.273 1.146 1.027 0.969

100 1.633 1.370 1.174 1.041 0.979
∞ 1.929 1.413 1.173 1.040 0.982

4. Zonotopes, zonoids and scatter matrices.

4.1. Data based zonotope Z(Y ) and its volume. In this section we discuss the
concepts of the zonoid and zonotope and show how the ZCM and SCM are related
to these. Some new notation and definitions are needed first. For k-variate sets
K,K1,K2 ⊂ R

k , write

c · K = {ck : k ∈ K} and K1 + K2 = {k1 + k2 : k1 ∈ K1,k2 ∈ K2}.
The set K1 + K2 is called the Minkowski sum of sets K1 and K2.

Let Y = {y1, . . . ,yn} be a random sample from a k-variate distribution with
c.d.f. F symmetric around the origin. In the following constructions we use data
based line segments

[−yi ,yi] = {αyi − (1 − α)yi :α ∈ [0,1]} ⊂ R
k.

By definition, zonotopes are finite Minkowski sums of line segments. If the number
of segments is r ≤ k, an r-variate parallelotope is obtained. Then k data based
segments yield parallelotopes[−yi1,yi1

] + · · · + [−yik ,yik

]
and

Z(Y ) = 1

n

n∑
i=1

{[−yi ,yi]}
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is the zonotope based on the complete data set. (A multiplicative factor 1/n is used
to make it converge to a limit as sample size n → ∞.)

Note that Z(Y ) is symmetrically located around the origin. This construction is
natural as we assume that the observations come from a symmetrical distribution.
It is affine equivariant in the sense that if

A · Y = {Ay1, . . . ,Ayn}
with a positive definite k × k matrix A is a transformed data set, then the zonotope
of the transformed data is

Z(A · Y ) = A · Z(Y ).

The affine equivariance property then means that zonotope Z(Y ) carries infor-
mation on the shape and geometry of the multivariate data cloud Y . See Figures
2 and 3 for illustrations of Z(Y ) in the two-variate and three-variate cases.

The volume of the k-variate parallelotope is

vol
([−yi1,yi1

] + · · · + [−yik ,yik

]) = 2kabs
(
det

(
yi1 . . .yik

))
and the volume of zonotope Z(Y ) is given by

vol(Z(Y )) = vol

(
1

n

n∑
i=1

[−yi ,yi]
)

= 2k

nk

∑{
abs

(
det

(
yi1 . . .yik

))}
,

where the last sum is over all k-tuples 1 ≤ i1 < · · · < ik ≤ n. Note that vol(Z(Y ))

is a scalar valued multivariate extension of the mean deviation. Recall that if
Y = {x1 − µ, . . . ,xn − µ}, the Oja median µ̂ = µ̂(X) is the choice to minimize
vol(Z(Y )) and therefore a natural location estimate here.

(a) (b)

FIG. 2. A small two-variate data set Y = {y1,y2,y3} and the zonotope Z(Y ) with centers of facets
±h(1),±h(2),±h(3). The set of normals E = {e(1), e(2), e(3)} and the zonotope Z(E) with centers
of facets ±S1,±S2,±S3.
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(a) (b)

FIG. 3. A small three-variate data set Y (a) and the related zonotope Z(Y ) (b).

4.2. Support function and facets of zonotope Z(Y ). Next note that any closed
convex set K ⊂ R

k is uniquely defined by its support function

p → ψ(K,p) = sup
{
pT y : y ∈ K

}
, p ∈ R

k,

or by the restriction of the support function to the sphere. As

ψ([−y,y],p) = sign
(
pT y

)
pT y,

the support function of Z(Y ) is given by

ψ
(
Z(Y ),p

) = 1

n

n∑
i=1

{
sign

(
pT yi

)
pT yi

}
.

If p is a unit vector, that is, pT p = 1, then ψ(Z(Y ),p) = avei |pT yi | is the marginal
mean deviation in the direction given by p. The sets{

y ∈ R
k : pT y = ψ(K,p)

}
, p ∈ R

k

are called the faces of K . Moreover, the (k − 1)-dimensional faces are called the
facets of K .

Using these concepts, it is easy to see (step by step) that the following hold:

1. The support function of Z(Y ) = avei{[−yi ,yi]} at e(I ) equals

ψ
(
Z(Y ), e(I )

) = hT (I )e(I ).

2. Z(Y ) has 2
( n
k−1

)
facets; the facets are translates of (k−1)-variate parallelotopes

1

n

{[−yi1,yi1

] + · · · + [−yik−1,yik−1

]}
.

The h(I ) and −h(I ) are the centers of these facets.
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3. The zonoid covariance matrix ZCM is the covariance matrix calculated from
the centers of facets of the zonoid Z(Y ).

Symmetrically consider also the zonotope

Z(E) = aveI {[−e(I ), e(I )]}.
Then similarly the following hold:

1. The support function of Z(E) at yi equals

ψ
(
Z(E),yi

) = ST
i yi .

2. The zonotope Z(E) has a huge number of facets. The Si and −Si are the centers
of some of the facets of Z(E).

3. The sign covariance matrix SCM is the covariance matrix calculated from
selected centers of facets of the zonoid Z(E).

The symmetry of the data vectors, their signs, normals and the signs of normals is
also seen in that vol(Z(Y )) is proportional to

avei,I

{
sign

(
eT (I )yi

)
eT (I )yi

} = aveI

{
hT (I )e(I )

} = avei

{
ST

i yi

}
.

See Figure 2 for an illustration of this symmetry.

4.3. Zonoid of the distribution F , Z(F ). Expected value of the random
convex set K ∈ R

k , denoted by E(K), may be defined through support functions;
the support function of set E(K) is

ψ
(
E(K),p

) = E
(
ψ(K,p)

)
, p ∈ R

k.

The theoretical counterpart of the zonotope is then the associated zonoid of F ,
denoted by Z(F ), which is

Z(F ) = EF {[−y,y]},
where the c.d.f. of y is F . We emphasize that our definition of the zonoid (of the
reflected distribution around the origin) is natural for symmetrical distributions; for
an alternative definition and uses of the zonoid, see Mosler (2002) and references
therein.

Zonoid Z(F ) is symmetrically located around 0. The multivariate (scalar
valued) mean deviation,

vol(Z(F )) = 2kEF

{
abs

(
det(y1, . . . ,yk)

)}
,

is the expected volume of the random parallelotope. See Koshevoy and Mosler
(1998) and Mosler (2002).

Let the distribution F0 of z be spherically symmetric around the origin with
covariance matrix Ik ; thus the radius r = ‖z‖ and direction vector u = ‖z‖−1z are
independent and u is uniformly distributed on the periphery of a unit sphere. The
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FIG. 4. A zonoid Z(F ) for an elliptic distribution in the three-variate case.

zonoid Z(F0) is then a sphere with radius ckEF0(r), which is also the marginal
mean deviation. The zonoid covariance matrix ZCM(F0) = [c2

kE
2
F0

(r)/k]Ik is the
covariance matrix of ckEF0(r)u which is uniformly distributed on the boundary of
the zonoid Z(F0). See Section 2.3.

Consider next elliptic y = �1/2z with c.d.f. F . By the affine equivariance
property, Z(F ) = �1/2 · Z(F0) and therefore

Z(F ) = {
y ∈ R

k : yT �−1y ≤ c2
kE

2
F0

(r)
}

is an ellipsoid with shape determined by �. See Figure 4 for an illustration
of a zonoid Z(F ) for an elliptic distribution in the three-variate case. Again,
ZCM(F ) is the regular covariance matrix of random variable �1/2ckEF0(r)u with
a distribution concentrated on the boundary of Z(F ).

Finally, consider the zonoid EF {[−e(I ), e(I )]} which appears to be the
projection body of Z(F ). For the definition of the projection body and for its
properties, see, for example, Gardner [(1995), Chapter 4]. The projection body
of the ellipsoid Z(F ) is the ellipsoid{

y ∈ R
k : yT �y ≤ {det(�)}2c2

F0

}
,

where now

cF0 = �k(k/2)Ek−1
F0

(r)√
π�k−1((k + 1)/2)

.

Compare Ollila, Oja and Croux (2002). In the elliptic case, the shape of the
projection body is thus given by �−1. The sign covariance matrix, SCM(F ), is the
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regular covariance matrix of random variable det(�)�−1/2cF0u with a distribution
concentrated on the boundary of the projection body of Z(F ).

We finally mention (the proof will be left to a forthcoming paper) that,
under general assumptions, the following hold: (a) the zonoid covariance matrix
ZCM(F ) is the regular covariance matrix of a distribution concentrated on
the boundary of the zonoid Z(F ); (b) the sign covariance matrix SCM(F ) is the
regular covariance matrix of a distribution concentrated on the boundary of
the zonoid which is the projection body of Z(F ).

5. Final comments. In this paper, we introduced a new, highly efficient
(under normality) and fairly robust scatter matrix estimate ZCM based on the
observed zonotope. The estimate is an affine equivariant multivariate extension
of the mean deviation and a natural competitor of the regular covariance matrix.
The estimate is closely related to the affine equivariant sign covariance matrix and
can be constructed using the data vectors and their angular distances. For high
dimensions and large sample sizes, the computation of the ZCM is heavy; the
computational load is about the same as in the affine equivariant sign covariance
matrix case.

In the location-scale model, a correction factor is needed to compare different
scatter matrix estimates. The functional

V (F ) =
[

k

Tr(C(F ))

]
C(F )

with standardized eigenvalues, Tr(V ) = k, is the shape matrix related to the
scatter matrix C(F ). In the location-scale model, the shape matrices are directly
comparable without any modifications. Note that in several applications, such
as principal component analysis (PCA), canonical correlation analysis (CCA)
or multivariate multiple regression, the test and estimation procedures may be
based on the shape matrix only. See Ollila, Oja and Croux (2002) and Ollila,
Hettmansperger and Oja (2002) for applications.

As found in Section 4, the scatter matrix estimate may thus be constructed using
the zonotope based on the centered data set Y = {y1, . . . ,yn}. The lift zonotope
based on k-variate uncentered data set X is the (k + 1)-variate convex body

LZ(X) = 1

n

∑
i

{[
0, (1,xT

i )T
]}

.

If X is a random sample from F , the corresponding population lift zonoid is

LZ(F ) = EF

{[
0, (1,xT

i )T
]}

.

Unlike the zonoid, the lift zonoid fully characterizes the distribution F . In our
forthcoming paper, the scatter matrix estimate based on the lift zonotope is
constructed; this approach is again symmetrically related to the approach based on
affine equivariant multivariate ranks. See Oja (1999) and Visuri, Ollila, Koivunen,
Möttönen and Oja (2003).
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6. Proofs of the results.

6.1. Auxiliary notation and results. For observations centered with µ, write

det
(
xi1 − µ, . . . ,xik−1 − µ,x − µ

) = (
e(I ) + G(I)µ

)T
(x − µ),

where

(G(I))ij = [
det

(−1j xi2 · · · xik−1 1i

) + det
(
xi1 −1j · · ·xik−1 1i

) + · · ·
+ det

(
xi1 xi2 · · · −1j 1i

)]
and 1j is a k-vector with the j th element 1 and the other elements 0. Then write
accordingly

G(I) = G1(I ) + · · · + Gk−1(I ),

where Gj(I) does not depend on xij .
Next consider fixed k-vector e and fixed k × k matrix G. Then

E
{
sign

(
(e + Gµ)T (x − µ)

)
(x − µ)

}
= ∇eE

{
abs

(
eT x − eT µ + µT GT x − µT GT µ

)}
and, applying ∇µ to both sides, at µ = 0, one obtains

∇µE
{
sign

(
(e + Gµ)T (x − µ)

)
(x − µ)

}
= ∇eE

{
sign

(
eT x

)(−e + GT x
)}

= GT D(e),

where D(e) is even in e.
Now we are ready to prove the following lemma.

LEMMA 5. Assume that X = {x1, . . . ,xn} is a random sample from a
distribution symmetric around the origin. Let I = (i1, . . . , ik−1) and i /∈ I . At
µ = 0,

∇µE
{
sign

((
e(I ) + G(I)µ

)T
(xi − µ)

)
(xi − µ)hl(I )

} = 0, l = 1, . . . , k.

PROOF. The proof follows from

E
{
GT (I)D(e(I ))hl(I )

} =
k−1∑
j=1

E
{
GT

j (I )Dj (e(I ))hl(I )
} = 0

as Gj(I) does not depend on xij , Dj(e(I )) is even in xij and h(I) is odd in xij .
�
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PROOF OF LEMMA 1. Suppose first that EF(yi ) = 0 and CovF (yi ) = Ik .
Then, for example,

e1(I ) = ∑{±yi1j2 · · · · · yik−1jk

}
,

where the sum goes over all (k − 1)! permutations (j2, . . . , jk) of (2, . . . , k).
As yi1, . . . ,yik−1 are independent, it follows that EF(e1(I )) = 0, EF(e2

1(I )) =
(k − 1)! and EF (e1(I )e2(I )) = 0. Thus EF (e(I )) = 0 and CovF (e(I )) =
(k − 1)!Ik . The result then follows from the affine equivariance. �

PROOF OF LEMMA 4. We write ZCM(X,µ) for the zonoid covariance matrix
based on the data set centered by µ. If the centering is by the Oja median, the
regular zonoid covariance matrix is obtained. We assume here that the Oja median
is

√
n-consistent with µ. [This is true under general assumptions; see Arcones,

Chen and Giné (1994).] As mentioned in the Introduction, we also assume the
second moments are finite. The proof has two parts. First we show that ZCM(X,0)

and Un are asymptotically equivalent, that is,
√

n(ZCM(X,0) − Un) →P 0.
Second, one has to show that

√
n(ZCM(X,0)−ZCM(X, µ̂)) →P 0, which means

that the estimate can be replaced by the true value in asymptotical considerations.
The first part follows easily from

aveI

{
h(I )hT (I )

} = 1( n
k−1

)
n2

∑
I

∑
i

∑
j

{
sign

(
eT (I )xi

)
sign

(
eT (I )xj

)
xixT

j

}

=
( n
k+1

)
( n
k−1

)
n2

Un +
(n−1
k−1

)
( n
k−1

)
n2

∑
i

xixT
i

= Un + oP

(
1

n

)
.

For fixed µ, the statistic ZCM(X,0) − ZCM(X,µ) is similarly asymptotically
equivalent to a U -statistic. Its expected value and variances and covariances are
continuous in µ and the variances are O(1/n) uniformly in a neighborhood of the
origin. This implies that the variance of

√
n(ZCM(X,0) − ZCM(X, µ̂)) goes to

zero with n. Lemma 5 and the
√

n-consistency of µ̂ together imply that also
√

nE
[
ZCM(X,0) − ZCM(X, µ̂)

] → 0

and the result follows. �

PROOF OF THEOREM 1. The functional ZCM(F ) is the expectation of the
kernel g(xi1, . . . ,xik+1) of U -statistic Un given in Lemma 4. The influence function
of the U -statistic at contaminated value z is then

(k + 1)
[
E

(
g
(
xi1, . . . ,xik+1

)∣∣xi1 = z
) − E

(
g
(
xi1, . . . ,xik+1

))]
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and therefore the conditional expectations E(g(xi1, . . . ,xik )|xij ) are needed. For
observation xi , write ri = ‖xi‖ and ui = ‖xi‖−1xi , i = 1, . . . , n. For normal
I = (i1, . . . , ik−1), write u(I ) = ‖e(I )‖−1e(I ).

For conditional expectations we first need

EF

{
sign

(
eT (I )xi

)
sign

(
eT (I )xj

)
xixT

j

∣∣xi1, . . . ,xik−1

} = c2
kE

2(r)u(I )uT (I ),

which gives

EF

{
sign

(
eT (I )xi

)
sign

(
eT (I )xj

)
xixT

j

∣∣xi1

} = c2
kE

2(r)

k − 1

(
Ik − ui1uT

i1

)
.

Next note that

EF

{
sign

(
eT (I )xi

)
sign

(
eT (I )xj

)
xixT

j

∣∣xi,xi1, . . . ,xik−1

}
= ckE(r)sign

(
eT (I )xi

)
xiuT (I )

and consequently

EF

{
sign

(
eT (I )xi

)
sign

(
eT (I )xj

)
xixT

j

∣∣xi

} = c2
kE(r)riuiuT

i .

The influence function of the functional ZCM(F ) for z = ru is then

c2
k

[
(k − 1)

E2(r)

k − 1

(
Ik − uuT ) + 2rE(r)uuT

]
− (k + 1)

c2
kE

2(r)

k
Ik

and the result follows. �

PROOF OF THEOREM 2. The assumptions are as in the proof of Lemma 4.
All the (nonconstant) linear combinations of the elements of matrix ZCM(X) are
asymptotically equivalent to scalar valued U -statistics with kernels gl(xi, . . . ,

xk+1) such that Var(gl(xi , . . . ,xk+1)|x1) are bounded and positive. All linear
combinations are then asymptotically normal, which implies that

√
n(ZCM(X) −

ZCM(F0)) also is asymptotically multinormal. The limiting variances are then
easily derived using the influence function. �
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