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FINANCIAL OPTIONS AND STATISTICAL
PREDICTION INTERVALS1

BY PER ASLAK MYKLAND

University of Chicago

The paper shows how to convert statistical prediction sets into worst
case hedging strategies for derivative securities. The prediction sets can,
in particular, be ones for volatilities and correlations of the underlying
securities, and for interest rates. This permits a transfer of statistical
conclusions into prices for options and similar financial instruments. A prime
feature of our results is that one can construct the trading strategy as if the
prediction set had a 100% probability. If, in fact, the set has probability 1−α,
the hedging strategy will work with at least the same probability. Different
types of prediction regions are considered. The starting value A0 for the
trading strategy corresponding to the 1 − α prediction region is a form of
long term value at risk. At the same time, A0 is coherent.

1. Introduction. The usual setting of options theory concerns a derivative
security whose final payoff η is a function of the values of underlying market
traded securities S

(1)
t , . . . , S

(p)
t . Most theory for setting the prices and trading

strategies associated with such a setup is based on knowing the probability
distribution P of the underlying securities. See, for example, Duffie (1996) and
Hull (1999) for comprehensive accounts. The main device is to create a portfolio in
S

(1)
t , . . . , S

(p)
t , with value Vt at time t , so that at maturity T , VT = η. For simplicity,

we here take T to be nonrandom. One is allowed to change the composition of the
portfolio at any time, but at times of such adjustment, the total portfolio value
must remain unchanged. This is what is called a self financing portfolio or trading
strategy.

The question of what happens when P is unknown, however, is not fully
resolved. The existing body of work would mostly appear to fall into two
categories: (i) “super-hedging” or “-replication” when P is part of a class, such as a
confidence set, of probability distributions, and (ii) reduction to a single probability
distribution.

The first of these approaches also involves creating a trading portfolio, but now
we require VT ≥ η a.s., for all probability distributions in the relevant class. In
other words, the institution that sold the option η is required to cover its liability
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always. The portfolio must also be self financing, but now we include in this
concept the possibility that funds may be removed from the portfolio over time
when new information shows that the payoff can still be covered. Funds cannot,
however, be added; that would negate the concept of super-replication as a way of
making sure that η can be paid.

There is a fine line between what is conventionally called “super-hedging,”
where one tries to minimize the value of V0, and what is usually referred to as
“robustness.” In the latter case, one does not try to optimize V0, but instead one
takes a reasonable strategy and sees when it will cover the final liability. Work in
the former direction includes Avellaneda, Levy and Paras (1995), Lyons (1995)
and Mykland (2000).

Papers focusing on the latter include Bergman, Grundy and Wiener (1996),
El Karoui, Jeanblanc-Picqué and Shreve (1998) and Hobson (1998).

The main way of reducing the problem to a known P would be by considering a
Bayesian posterior. To further pursue the problem in this direction, one can then go
to the “known P but unknown P ∗” literature, which is substantial. The symbol P ∗
denotes the so-called risk neutral or equivalent martingale measure, as opposed to
the actual probability distribution P . The measure P ∗, though not something one
can fully find by statistical methods, is crucial for valuing options. The concept
also comes up in this paper. For a further discussion of the distinction between
unknown P and unknown P ∗, see the introduction to Mykland (2000).

Studies that would appear to fall outside this categorization are Artzner,
Delbaen, Eber and Heath (1999) and Cvitanić and Karatzas (1999).

From a statistical point of view, therefore, there are, at least in some cases,
solutions to the question of how one would hedge with either confidence regions or
Bayesian posteriors. We shall argue, however, that it is more natural to hedge based
on prediction sets (either frequentist or Bayesian) rather than on the two other
statistical objects mentioned. A main reason for this is that prediction sets would
seem to afford greater transparency of trading, and this is discussed further in
Section 4.1. Prediction sets also permit a straightforward exit strategy, as discussed
in Section 6.

Another advantage of prediction sets, however, is that the main known results
under (i) are, in fact, for regions that are more naturally seen as prediction sets
rather than confidence sets. To illustrate this point, consider the main such set
encountered in Mykland (2000). This is of the form

�− ≤
∫ T

0
σ 2

t dt ≤ �+,(1.1)

where σt is the realized volatility of a single stock St . This is to say that the stock
price follows the diffusion

dSt = mtSt dt + σtSt dBt,(1.2)
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where m and σ are unknown random processes and B is a standard Brownian
motion. It is not all that natural, however, to assume that (1.1) holds with
probability 1, as would be the case if this were the definition of a confidence set.
It is more reasonable to think of (1.1) as a prediction region, say C, that has a
certain prediction probability 1 − α. The limits in (1.1) could then be estimated
from historical data or found with the help of calibration. In our setting, therefore,
the interval limits in (1.1) can be either nonrandom, or they can be estimated from
information available at time zero. The special issues that pertain to the latter case
are explored in the first part of Section 4.

The same considerations apply to the classes of distributions discussed in
Avellaneda, Levy and Paras (1995) and Lyons (1995). The former is discussed
further in Section 3.1.

The main result in this paper is that one can, in fact, use regions like (1.1) as
prediction intervals. Specifically, we show in Section 2 that superhedging strategies
for 1 − α probability prediction regions can be found by first considering regions
that have probability 1. Hence the problem reduces to that considered in the papers
cited in Mykland (2000) in connection with (i).

Prior work directly applicable to the prediction set problem includes Föllmer
(1981) and Bick and Willinger (1994). The relation to the present work is discussed
in Section 3.2.

Section 3 considers two main resulting examples of prediction intervals and
also gives general criteria for what types of sets can be used. A modified version
of our general theorem is stated as a corollary to this discussion. Section 4.1
considers statistically based regions, and also the advantages of prediction sets
from a transparency point of view.

Our results permit the incorporation of many existing econometric methods into
hedging via prediction intervals. Some of the literature is cited in Section 4. Also,
an example of how this can be implemented is carried out in Section 4.2.

Section 5 discusses strategies for handling interest rate uncertainty. For one of
these approaches, Section 5.3 provides a moderately explicit answer for general
European options in the presence of an interest rate adjusted interval similar
to (1.1). Section 6 describes how the superhedging method can be used as an exit
strategy even if one does not wish to use it as a primary tool for hedging. Finally,
proofs are contained in Section 7.

Note that the procedure we give in this paper extends to the case where one also
hedges in market traded options, as, for example, in Mykland (2003).

2. Options hedging from prediction sets. We are concerned with continuous

processes S
(1)
t , . . . , S

(p)
t , which are the prices of traded securities paying no

dividends. rt is an adapted process representing the risk free interest rate, and
βt = exp{∫ t

0 ru du} is the value at time t of one unit of currency deposited in the
money market at time 0. In the account in Section 1, we just let βt be one of
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the S
(i)
t ’s, but here it is useful to keep it separate. Note that the investment in βt

can be negative; in practice this is achieved by using loans where the collateral is
so substantial and liquid that the loan can be considered risk free. [See “Repo rate”
on page 88 of Hull (1999).]

We assume in the following that little is known about the probability distribu-
tion P governing our system. We suppose that P is an element of a large class of
probability distributions Q, to be defined below. Our main information is that we
have a prediction set C which we assume will occur with high probability; C can,
for example, set limits on the cumulative volatility and interest rate. An example
would be (1.1); the following sections provide a more thorough treatment of how
to do this.

If one can attach a probability, say, 1−α, to the realization of C, then 1−α is the
prediction probability, and C is a 1−α prediction set. The probability can be based
on statistical methods, and be either frequentist or Bayesian. The proper definitions
are given in Section 4.1. Also, note that if we extend “Bayesian probability” to
cover general belief, our definition of a prediction set does not necessarily imply
an underlying statistical procedure.

The problem we are proposing to solve is as follows. We have to cover a
liability η at a nonrandom time T . Because of the size of the set Q, a full
super-replication (that works with probability 1 for all P ) would be prohibitively
expensive or undesirable for other reasons. Instead, we require that we can cover
the payoff η with at least (Bayesian or frequentist) probability 1 − α.

In analogy with superhedging, we do this by setting up a self-financing portfolio
in S

(1)
t , . . . , S

(p)
t and in βt . We denote by Vt the value of this portfolio. In order to

achieve the desired level of solvency, we require that VT ≥ η, Q-a.s. so long as C
occurs. By this statement, we mean VT ≥ η, on C, Q-a.s., for all Q ∈ Q. This will
be called a super-replication of η on C. The specific technical definition is like the
one for a full super-replication given on the top of page 670 in Mykland (2000),
except that solvency only needs to hold on C. Also, the set Q replaces the set P .

Since C has probability at least 1 − α, this solves the problem of guaranteeing
solvency with this same probability.

We want to go beyond this, however: we would like the cheapest such super-
replication.

DEFINITION. The conservative ask price (or offer price) at time 0 for a
payoff η to be made at a time T is

A0 = inf{V0 : (Vt) is a super-replication on C of the liability η}.(2.1)

Note that in the following, Vt denotes the portfolio value of any super-
replication, while At is the cheapest one (across Q ∈ Q), provided it exists. Both
are denominated in the same currency as S

(1)
t , . . . , S

(p)
t and βt , such as dollars or

yen.
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So what is A0? To proceed further, we need to set up the system, and to define Q:

ASSUMPTIONS A (System assumptions). Our probability space is the set
� = C[0, T ]p+1, and we let (βt , S

(1)
t , . . . , S

(p)
t ) be the coordinate process, B is

the Borel σ -field, and (Bt ) is the corresponding Borel filtration. We let Q∗ be the
set of all distributions P ∗ on B so that:

(i) (log βt) is absolutely continuous P ∗-a.s., with derivative rt bounded
(above and below) by a nonrandom constant, P ∗-a.s.;

(ii) the S
(i)∗
t = β−1

t S
(i)
t are martingales under P ∗;

(iii) [log S(i)∗, logS(i)∗]t is absolutely continuous P ∗-a.s. for all i, with
derivative bounded (above and below) by a nonrandom constant, P ∗-a.s. As usual,
“[,]” is the quadratic variation of the process [see pages 51 and 52 of Jacod and
Shiryaev (1987), and also the discussion after formula (3.4) at the end of (our)
Section 3.3];

(iv) β0 = 1 and S
(i)
0 = s

(i)
0 for all i.

We let (Ft ) be the smallest filtration containing (Bt+) and all sets in N , given by

N = {
F ⊆ � :∀P ∗ ∈ Q∗ ∃EεB :F ⊆ E and P ∗(E) = 0

}
,(2.2)

and we let the information at time t be given by Ft . Finally, we let Q be
all distributions on FT that are equivalent (mutually absolutely continuous) to
a distribution in Q∗. If we need to emphasize the dependence of Q on s0 =
(s

(1)
0 , . . . , s

(p)
0 ), we write Qs0 .

REMARK 2.1. An important fact is that Ft is analytic for all t , by Theo-
rem III.10 [page 42 in Dellacherie and Meyer (1978)]. Also, the filtration (Ft )

is right continuous by construction. F0 is a noninformative (trivial) σ -field. The
relationship of F0 to information from the past (before time zero) is established in
Section 4.1.

The reason for considering this set Q as our world of possible probability
distributions is the following. Stocks and other financial instruments are commonly
assumed to follow processes of the form (1.2) or a multidimensional equivalent.
The set Q now corresponds to all probability laws on this form, subject only to
certain integrability requirements [for details, see, e.g., the version of Girsanov’s
theorem given in Karatzas and Shreve (1991), Theorem 3.5.1]. Also, if these
requirements fail, the S(i)∗’s do not have an equivalent martingale measure,
and can therefore not normally model a traded security [see Delbaen and
Schachermayer (1995) for precise statements]. In other words, roughly speaking,
the set Q covers all distributions of traded securities that have a form (1.2).

A typical form of the prediction set C would be (1.1) and/or R− ≤ ∫ T
0 rt dt ≤

R+. If there are several securities S
(i)
t , one can also set up prediction sets for the

quadratic variations and covariations (volatilities and cross-volatilities, in other
words). It should be noted that one has to exercise some care in how to formally
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define the set C corresponding to (1.1). See the development in Sections 3.2
and 4.1.

The price A0 is now as follows. A subset of Q∗ is given by

P ∗ = {P ∗ ∈ Q∗ :P ∗(C) = 1}.(2.3)

The price is then, from Theorem 2.1 below,

A0 = sup{E∗(η∗) :P ∗εP ∗},(2.4)

where E∗ is the expectation with respect to P ∗, and

η∗ = exp
{
−

∫ T

0
ru du

}
η.(2.5)

The quantity A0 is therefore a form of “value at risk” [see Chapter 14 (pages 342–
365) of Hull (1999)] that is based on dynamic trading. At the same time, A0 is
coherent in the sense of Artzner, Delbaen, Eber and Heath (1999). The latter
is because P ∗ is convex. It should be emphasized that though (2.3) only involves
probabilities that give measure 1 to the set C, this is only a computational device.
The prediction set C can have any real prediction probability 1 − α, compare
statement (2.8). The point of Theorem 2.1 is to reduce the problem from 1 − α

to 1, and hence to the earlier work of Avellaneda, Levy and Paras (1995), Lyons
(1995) and Mykland (2000).

We assume the following structure for C.

DEFINITION. A set C in FT is Q∗-closed if, whenever P ∗
n is a sequence

in Q∗ for which P ∗
n converges weakly to P ∗ and so that P ∗

n (C) → 1, then
P ∗(C) = 1. Weak convergence is here relative to the usual supremum norm on
Cp+1 = Cp+1[0, T ], the coordinate space for (β., S

(1)· , . . . , S(p)· ).

Obviously, C is Q∗-closed if it is closed in the supremum norm, but the opposite
need not be true. See Section 3.2.

The precise result is as follows. Note that −K is a credit constraint; see below
in this section.

THEOREM 2.1 (Prediction region theorem). Let Assumptions A hold. Let C

be a Q∗-closed set, C ∈ FT . Suppose that P ∗ is nonempty. Let

η = θ
(
β., S

(1)· , . . . , S(p)·
)
,(2.6)

where θ is continuous on � (with respect to the supremum norm) and bounded
below by −KβT , where K is a nonrandom constant (K ≥ 0). We suppose that

sup
P ∗∈P ∗

E∗|η∗| < ∞.(2.7)

Then there is a super-replication (At ) of η on C, valid for all Q ∈ Q, whose
starting value is A0 given by (2.4). Furthermore, At ≥ −Kβt for all t , Q-a.s.
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In particular,

Q(AT ≥ η) ≥ Q(C) for all Q ∈ Q,(2.8)

and this is, roughly, how a 1 − α prediction set can be converted into a trading
strategy that is valid with at least the same probability. This works both in the
frequentist and Bayesian cases, as described in Section 4.1. Note that both in
Theorem 2.1 and in (2.8), Q refers to all probabilities in Q, and not only the “risk
neutral” ones in Q∗.

The form of A0 and the super-replicating strategy is discussed below in
Section 3 for the case of the call option. More general formulae are given in
Avellaneda, Levy and Paras (1995), Lyons (1995), Mykland (2000, 2003) and
in Section 5.3.

The condition that θ be bounded below can be seen as a restriction on credit.
Since K is arbitrary, this is not severe. It does, however, preclude certain types
of trading that earn money with probability 1, using infinite credit. An example
of such trading would be a doubling strategy. See Duffie [(1996), Chaper 6.C,
pages 103–105] for a discussion. Credit constraints are frequently used in the
literature; see, for example, Kramkov (1996) and Karatzas and Shreve (1998). See
also Section 5 of Mykland (2000) for a way of weakening the credit restriction
while still avoiding arbitrage. Note that the credit limit is more naturally stated on
the discounted scale: η∗ ≥ −K , and A∗

t ≥ −K .
The finiteness of credit has another implication. The portfolio (At), because it

is bounded below, also solves another problem. Let IC and I
C̃

be the indicator
functions for C and its complement. A corollary to the statement in Theorem 2.1
is that (At) super-replicates the random variable η′ = ηIC − KβT I

C̃
. And here we

refer to the more classical definition: the super-replication is Q-a.s. on the entire
probability space. This is for free: A0 has not changed.

It follows that A0 can be expressed as supP ∗∈Q∗ E∗((η′)∗), in obvious notation.
This is because of Theorem 3.1 in Mykland (2000), the conditions being satisfied
in view of Proposition 3.2 in the same paper. In itself, this is a curiosity, since this
expression depends on K while A0 does not.

3. Prediction sets and options prices. To show how sets lead to starting
values A0, Section 3.1 considers payoffs of the call option type, or more generally,
ones that are convex functions of the final stock price. This sets the stage
for the inclusion of a data application in Section 4.2. Section 3.2 considers
theoretical requirements on prediction regions, leading to modifications that are
calculationally immaterial, but important as a matter of principle.

3.1. Two types of sets. We assume in the following that the interest rate r

is constant and known in advance. The main prediction sets considered in the
literature are pointwise bounds

σ−(St , t) ≤ σt ≤ σ+(St , t)(3.1)



1420 P. A. MYKLAND

[Avellaneda, Levy and Paras (1995) and Lyons (1995)], and the integral bounds
(1.1) advocated here and in Mykland (2000).

For the pointwise bounds, the simplest case is just to take the bounds to be
constants σ− and σ+, in which case the prices of European options become the
solutions of the Barenblatt equation [Barenblatt (1979)].

Pointwise bounds have also been considered by Bergman, Grundy and Wiener
(1996), El Karoui, Jeanblanc-Picqué and Shreve (1998) and Hobson (1998), but
these papers have concentrated more on robustness than on finding the lowest
price A0.

For the integral bounds of the form (1.1), calculation will normally involve
stopping time arguments; see Theorem 5.1.

To illustrate the implications of these prediction devices, consider first the price
of a European call option with expiration T . In this case, η = (ST − K)+. The
Black–Scholes (1973)–Merton (1973) price (where σ and r are fixed) at time zero
is given by B(S0, rT , σ 2T ), where

B(S,R,�) = S	(d1) − K exp(−R)	(d2),(3.2)

and where

d1 = (
log(S/K) + R + �/2

)
/
√

�(3.3)

and d2 = d1 − √
�. For more general convex options, the form of B is given

by (5.10). The starting values A0 and the hedge ratios (“deltas”) for the three
approaches considered, are given in Table 1. The delta at time t is, by definition,
the number of stocks one would hold at time t to implement the super-replication.
For (3.1), it is assumed that σ− and σ+ are constants.

To compare these three approaches, note that the function B(S,R,�) is
increasing in its last argument. As σ 2T ≤ �+ ≤ σ 2+T , it will therefore be the case
that the ordering in Table 1 places the lowest value of A0 at the top and the highest
at the bottom.

It is important to see Table 1 in context. The average based interval is clearly
better than the extremes based one in that it provides a lower starting value A0.
This may not, however, be the case for options that are not of European type.
For example, caplets [see Hull (1999), page 538] on volatility would appear to be
better handled through extremes based intervals, though we have not investigated
this issue. The problem is, perhaps, best understood in the interest rate context,
when comparing caplets with European options on swaps [“swaptions,” see Hull
(1999), page 543]. See Carr, Geman and Madan (2001) and Heath and Ku (2001)
for a discussion in terms of coherent measures of risk. To see the connection, note
that the average based procedure, with starting value A0 = B(S0, rT ,�+), delivers
an actual payoff AT = B(ST ,0,�+ − ∫ T

0 σ 2
u du). Hence AT not only dominates

the required payoff (ST − K)+ on the prediction set C, but the actual AT is a
combination of option on the security S and swaption on the volatility, in both
cases European.
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TABLE 1
Comparative prediction sets for convex European options: r constant∗

Device Prediction set A0 at time 0 Delta at time t

Black–Scholes σ constant B(S0, rT ,σ 2T ) ∂B
∂S (St , r(T − t), σ 2(T − t))

Average based �− ≤ ∫ T
0 σ 2

u du ≤ �+ B(S0, rT ,�+) ∂B
∂S (St , r(T − t),�+ − ∫ t

0 σ 2
u du)

Extremes based σ− ≤ σt ≤ σ+ B(S0, rT , (σ+)2T ) ∂B
∂S (St , r(T − t), σ 2+(T − t))

∗ The function B is defined in (3.2) and (3.3) for call options, and more generally in (5.10); A0 is the
conservative price (2.1). Delta is the hedge ratio (the number of stocks held at time t to superhedge
the option).

The results in the table for the extremes based procedure are from Avellaneda,
Levy and Paras (1995), and the ones for the average based procedure are from
Theorem 5.1, which gives the form of A0 for a more general European payoff η =
g(ST ). The delta for the latter case follows from (5.12) at the end of Section 5.3.

The hedge ratio (delta) at time t for the average based set (1.1) is not, strictly
speaking, observable, but only approximable to a high degree of accuracy. It is
natural to approximate the integral of σ 2

t by the observed quadratic variation
of logS.

Specifically, suppose at time t that one has recorded log Sti for 0 = t0 < · · · <

tk ≤ t . The observed quadratic variation is then

�̂t =
k∑

i=1

(
logSti − logSti−1

)2
.(3.4)

Note that this quantity converges in probability to [log S, log S]t ; compare
Theorem I.4.47 (page 52) of Jacod and Shiryaev (1987). The natural hedge ratio at
time t for the average based procedure would then be

∂B

∂S

(
St , r(T − t),�+ − �̂t

)
.(3.5)

If �t is the average distance t/k, standard stochastic process results yield that,
subject to regularity conditions, �̂t − ∫ t

0 σ 2
u du = Op(�t1/2); see, for example,

Jacod and Protter (1998), Zhang (2001) and Mykland and Zhang (2001b). This
would also be the order of the hedging error relative to using the delta given
in Table 1. How to adjust the prediction interval accordingly remains to be
investigated.

3.2. General form of the prediction set. A main example of this theory is
where one has prediction sets for the cumulative interest − logβT = ∫ T

0 ru du and
for the quadratic variations [log S(i)∗, logS(j)∗]T . For the cumulative interest, the
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application is straightforward. For example, {R− ≤ − logβT ≤ R+} is a well-
defined and closed set. For the quadratic (co-)variations, however, one runs into
the problem that these are only defined relative to the probability distribution
under which they live. In other words, if F is a region in C[0, T ]q , where
q = 1

2p(p − 1) + 1 and

CQ = {(
βt ,

[
logS(i)∗, logS(j)∗]

t , i ≤ j
)
0≤t≤T ∈ F

}
,(3.6)

then, as the notation suggests, CQ will depend on Q ∈ Q. This is not allowed by
Theorem 2.1. The trading strategy cannot be permitted to depend on an unknown
Q ∈ Q, and so neither can the set C. To resolve this problem, and to make the
theory more directly operational, the following Proposition 3.1 shows that CQ

has a modification that is independent of Q, and that satisfies the conditions of
Theorem 2.1.

PROPOSITION 3.1. Let F be a set in C[0, T ]q , where q = 1
2p(p − 1) + 1.

Let F be closed with respect to the supremum norm on C[0, T ]q . Let CQ be given
by (3.6). Then there is a Q∗-closed set C in FT so that, for all Q ∈ Q,

Q(C�CQ) = 0,(3.7)

where � refers to the symmetric difference between sets.

Only the existence of C matters, not its precise form. The reason for this is
that relation (3.7) implies that CP ∗ and CQ can replace C in (2.3) and (2.8),
respectively. For the two prediction sets on which our discussion is centered, (1.1)
uses

F = {
(xt )0≤t≤T ∈ C[0, T ], nondecreasing:x0 = 0 and �− ≤ xT ≤ �+}

,

whereas (3.1) relies on

F = {
(xt )0≤t≤T ∈ C[0, T ], nondecreasing:

x0 = 0 and ∀ s, t ∈ [0, T ], s ≤ t :σ 2−(t − s) ≤ xt − xs ≤ σ 2+(t − s)
}
.

One can go all the way and jettison the set C altogether. Combining
Theorem 2.1 and Proposition 3.1 immediately yields such a result:

THEOREM 3.1 (Prediction region theorem, without prediction region). Let
Assumptions A hold. Let F be a set in C[0, T ]q , where q = 1

2p(p−1)+1. Suppose
that F is closed with respect to the supremum norm on C[0, T ]q . Let CQ be given
by (3.6), for every Q ∈ Q. Replace C by CP ∗ in (2.3), and suppose that P ∗ is
nonempty. Impose the same conditions on θ(·) and η = θ(β., S

(1)· , . . . , S(p)· ) as in
Theorem 2.1. Then there exists a self financing portfolio (At), valid for all Q ∈ Q,
whose starting value is A0 given by (2.4), and which satisfies (2.8). Furthermore,
At ≥ −Kβt for all t , Q-a.s.
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It is somewhat unsatisfying that there is no prediction region anymore, but, of
course, C is still there, underlying Theorem 3.2. The latter result, however, is easier
to refer to in practice.

It should be emphasized that it is possible to extend the original space to include
a volatility coordinate. Hence, if prediction sets are given on forms like (3.1)
or (1.1), one can take the set to be given independently of probability. In fact,
this is how Proposition 3.1 is proved.

In the case of European options, this may provide a “probability free” derivation
of Theorem 2.1. Under the assumption that the volatility is defined independently
of probability distribution, Föllmer (1981) and Bick and Willinger (1994) provide
a nonprobabilistic derivation of Itô’s formula, and this can be used to show
Theorem 2.1 in the European case. Note, however, that this nonprobabilistic
approach would have a harder time with exotic options, since there is (at this
time) no corresponding martingale representation theorem, either for the known
probability case [as in Jacod (1979)] or in the unknown probability case [as
in Kramkov (1996) and Mykland (2000)]. Also, the probability free approach
exhibits a dependence on subsequences [see the discussion starting in the last
paragraph on page 350 of Bick and Willinger (1994)].

4. Prediction regions from historical data. Until now, we have discused
prediction sets without considering two issues. One is how to actually obtain such
a prediction set. As a proof of principle we shall, in Section 4.2, discuss a fairly
simple example of how to do this. First, however, is another problem. We have
behaved as if the prediction sets or prediction limits were nonrandom, fixed and
not based on data. This, of course, would not be the case with statistically obtained
sets. Section 4.1 faces up to this issue.

4.1. A decoupled procedure. A main application of Theorem 2.1 is for
statistical prediction sets. Consider the situation where one has a method giving
rise to a prediction set Ĉ. For example, if C(�−,�+) is the set from (1.1), then,
a prediction set might look like Ĉ = C(�̂−, �̂+), where �̂− and �̂+ are quantities
that are determined (and observable) at time 0.

At this point, one runs into a certain number of difficulties. First of all, C,
as given by (1.1) or (3.1), is not quite well defined, but this is solved through
Proposition 3.1 and Theorem 3.2. In addition, there is a question of whether the
prediction set(s), A0 and the process (At ), are measurable when also functions of
data that are available at time 0. We return to this issue at the end of this section.

From an applied perspective, however, there is a considerably more crucial
matter that comes up. It is the question of connecting the model for statistical
inference with the model for trading.

What we advocate is the following two stage procedure: (1) find a prediction
set C by statistical or other methods, and then (2) trade conservatively using
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the portfolio that has value At . When statistics is used, there are two probability
models involved, one for each stage.

We have so far been explicit about the model for stage (2). This is the
nonparametric family Q. For the purpose of inference—stage (1)—the statistician
may, however, wish to use a different family of probabilities. It could also be
nonparametric, or it could be any number of parametric models. The choice might
depend on the amount and quality of data, and on other information available.

Suppose that one considers an overall family � of probability distributions P . If
one collects data on the time interval [T−,0], and sets the prediction interval based
on these data, then P ∈ � could be probabilities on C[T−, T ]p+1. More generally,
we suppose that the P ’s are distributions on S×C[0, T ]p+1, where S is a complete
and separable metric space. This permits more general information to go into the
setting of the prediction interval. We let G0 be the Borel σ -field on S. As a matter
of notation, we assume that S0 = (S

(1)
0 , . . . , S

(p)
0 ) is G0-measurable. Also, we let

Pω be the regular conditional probability on C[0, T ]p+1 given G0. [Pω is well
defined; see, e.g., page 265 in Ash (1972).] A meaningful passage from inference
to trading then requires the following.

NESTING CONDITION. For all P ∈ � and for all ω ∈ S, Pω ∈ QS0 .

In other words, we do not allow the statistical model � to contradict the trading
model Q.

The inferential procedure might then consist of a mapping from the data to a
random closed set F̂ . The prediction set is formed using (3.6), yielding

ĈQ = {(− logβt,
[
log S(i)∗, logS(j)∗]

t , i ≤ j
)
0≤t≤T ∈ F̂

}
,

for each Q ∈ QS0 . Then proceed via Proposition 3.1 and Theorem 2.1, or use
Theorem 3.2 for a shortcut. In either case, obtain a conservative ask price and a
trading strategy. Call these Â0 and Ât . For the moment, suspend disbelief about
measurability.

To return to the definition of prediction set, it is now advantageous to think of
this set as being F̂ . This is because there are more than one CQ and because C is
only defined up to measure zero.

DEFINITION. Specifically, F̂ is a 1 − α prediction set, provided

P
({(− logβt ,

[
logS(i)∗, logS(j)∗]

t , i ≤ j
)
0≤t≤T ∈ F̂

}∣∣H) ≥ 1 − α.(4.1)

Here, either (i), in the frequentist setting, (4.1) must hold for all P ∈ �. H is
a sub-σ -field of G0, and in the purely unconditional case, it is trivial. By (2.8),
P (ÂT ≥ η|H) ≥ 1−α, again for all P ∈ �. Or (ii), P (·|H) is a Bayesian posterior
given the data at time 0. In this case, H = G0, and P (·|H) is a mixture of Pω’s with
respect to the posterior distribution π̂ at time 0. Since QS0 is convex, the mixture
would again be in QS0 , subject to some regularity. Again, (2.8) would yield that
P (ÂT ≥ η|H) ≥ 1 − α, a.s.
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In this discussion, we do not confront the questions that are raised by setting
prediction sets by asymptotic methods. Such approximation is almost inevitable in
the frequentist setting. For important contributions to the construction of prediction
sets, see Barndorff-Nielsen and Cox (1996) and Smith (1999), and the references
therein.

It may seem odd to argue for an approach that uses different models for
inference and trading, even if the first is nested in the other. To see it in context,
call this the decoupled prediction approach. Now consider two alternative devices.
One is a consistent prediction approach: use the prediction region obtained above,
but also insist for purposes of trading that P ∈ �. Another alternative would be
to find a confidence or credible set �̂ ⊆ �, and then do a super-replication that is
valid for all P ∈ �̂. The starting values for these schemes are considered below.

Table 2 suggests the operation of the three schemes.
The advantages of the decoupled prediction set approach are the following.

First, transparency. It is easy to monitor, en route, how good the set is. For example,
in the case of (1.1), one can at any time t see how far the realized

∫ t
0 σ 2

u du [or,
rather, (3.4)] is from the prediction limits �− and �+. This makes it easy for
both traders and regulators to anticipate any disasters, and, if possible, to take
appropriate action (such as liquidating the book).

Second, the transparency of the procedure makes this approach ideal as an
exit strategy when other schemes have gone wrong. This is further discussed in
Section 6.

Third, and perhaps most importantly, the decoupling of the inferential and
trading models respects how these two activities are normally carried out. The
statistician’s mandate is, usually, to find a model �, and to estimate parameters,
on the basis of whether these reasonably fit the data. This is different from
finding a probability distribution that works well for trading. For example, consider
modeling interest rates with an Ornstein–Uhlenbeck process. In many cases, this
will give a perfectly valid fit to the data. For trading purposes, however, this model
has severe drawbacks, as outlined in Section 4.2.

With the decoupling of the two stages, therefore, the statistical process
can concentrate on good inference, without worrying about the consequences
of the model on trading. For inference, one can use existing literature, on
ARCH/GARCH or a variety of SDE type models. References include Aït-Sahalia
(1996, 2002), Aït-Sahalia and Mykland (2003), Andersen (2000), Andersen,
Bollerslev, Diebold and Labys (2001), Barndorff-Nielsen and Shephard (2001),
Bibby and Sørensen (1995, 1996a, b), Bollerslev, Chou and Kroner (1992),
Dacunha-Castelle and Florens-Zmirou (1986), Danielsson (1994), Florens-Zmirou
(1993), Genon-Catalot and Jacod (1994), Genon-Catalot, Jeantheau and Laredo
(1999, 2000), Hansen and Scheinkman (1995), Hansen, Scheinkman and Touzi
(1998), Jacod (2000), Jacod and Protter (1998), Jacquier, Polson and Rossi (1994),
Kessler and Sørensen (1999), Küchler and Sørensen (1997), Lo (1987) and Zhang
(2001). This is, of course, only a small sample of the literature available. The
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TABLE 2
Three approaches for going from data to hedging strategies∗

Product of Hedging is valid
Approach statistical analysis and solvent for

Confidence or credible sets set �̂ of probabilities probabilities in �̂

Consistent prediction set method set C of possible outcomes probabilities in �,
outcomes in C

Decoupled prediction set method set C of possible outcomes probabilities in Q,
outcomes in C

∗ The symbol � denotes the parameter space used in the statistical analysis, which can be
parametric or nonparametric; Q is the set of distributions defined in Assumptions A; C is
a prediction set and �̂ is a confidence or credible set.

forthcoming handbook edited by Aït-Sahalia and Hansen (2002) may provide a
useful reference.

To sum up, the decoupled prediction set approach is, in several ways, robust.
But is it efficient? The other two approaches, by using the model � for both

stages, would seem to give rise to lower starting values A0, just by being consistent
and by using a smaller family � for trading. We have not investigated this
question in any depth, but tentative evidence suggests that the consistent prediction
approach will yield a cheaper A0, while the confidence or credible approach is less
predictable in this respect. Consider the following.

Using Kramkov (1996) and Mykland (2000), one can obtain the starting value
for a true super-replication over a confidence/credible set �̂ for conditional
probabilities Pω. Assume the nesting condition. Let �̂∗ be the convex hull of
distributions Q∗ ∈ Q∗ for which Q∗ is mutually absolutely continuous with a
Pω ∈ �̂. The starting value for the super-replication would then normally have
the form

A0 = sup
{
E∗(η∗) :P ∗ ∈ �̂∗}

.

Whether this A0 is cheaper than the one from (2.4) may, therefore, vary according
to � and to the data. This is because �̂∗, and P ∗ = P ∗

S0
from (2.3), are not nested

one in the other, either way.
For the consistent prediction approach, we have not investigated how one can

obtain a result like Theorem 2.1 for subsets of Q, so we do not have an explicit
expression for A0. However, the infimum in (2.1) is with respect to a smaller class
of probabilities, and hence a larger class of super-replications on C. The resulting
price, therefore, can be expected to be smaller than the conservative ask price
from (2.4). As outlined above, however, this approach is not as robust as the one
we have been advocating.

To round off this discussion, we return to the question of measurability. There
are (at least) four functions of the data where measurability is in question: (i) the
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prediction set F̂ , (ii) the prediction probabilities (4.1), (iii) the starting value Â0,
and (iv) the process (Ât )0≤t≤T .

We here only consider (ii) and (iii). The first question is heavily dependent on �

and S. In fact, we shall take the measurability of F̂ for granted. We omit discussing
question (iv) to not be overly tedious about measurability in this paper.

Let F be the collection of closed subsets F of C[0, T ]q . We can now consider
the following two maps:

F × S → R : (F,ω)

→ Pω

({(− logβt,
[
logS(i)∗, logS(j)∗]

t , i ≤ j
)
0≤t≤T ∈ F

})(4.2)

and

F × R
p+1 → R : (F, x) → A0 = AF

0 (x).(4.3)

To set a σ -field on F, make the detour via convergence; Fn → F if lim supFn =
lim infFn = F , which is the same as saying that the indicator functions IFn

converge to IF pointwise. On F, this convergence is metrizable (see the proof
of Proposition 4.1 for one such metric). Hence F has a Borel σ -field. This is our
σ -field.

PROPOSITION 4.1. Let Assumptions A hold. Impose the same conditions
on θ(·) and η = θ(β., S

(1)· , . . . , S(p)· ) as in Theorem 2.1. Then the maps (4.2) and
(4.3) are measurable.

If we now assume that the map S → F, ω → F̂ , is measurable, then standard
considerations yield the measurability of S → R, ω → Pω((− log βt, [log S(i)∗,
logS(j)∗]t , i ≤ j)0≤t≤T ∈ F̂ ) and S × Rp+1 → R, (ω, x) → Â0 = AF̂

0 . Hence
problem (iii) is solved, and the resolution of (ii) follows since (4.2) equals the
expected value of Pω((− logβt , [logS(i)∗, log S(j)∗]t , i ≤ j)0≤t≤T ∈ F̂ ), given H ,
both in the Bayesian and frequentist cases.

4.2. An implementation. We here demonstrate by example that the analysis
we are proposing can, in fact, be carried out. What we have chosen to use as
basis for our development are the results of Jacquier, Polson and Rossi (1994),
which analyzes (among other series) the S&P 500 data recorded daily. The authors
consider a stochastic volatility model that is linear on the log scale,

d log
(
σ 2

t

) = (
a + b log

(
σ 2

t

))
dt + c dWt,

a.k.a., by exact discretization,

log
(
σ 2

t+1
) = (

α + β log
(
σ 2

t

)) + γ εt ,

where W is a standard Brownian motion and the εs are consequently i.i.d.
standard normal. We shall suppose in the following that the effects of interest rate



1428 P. A. MYKLAND

TABLE 3
S&P 500: Posterior distribution of � = ∫ T

0 σ 2
t dt for T = one year∗

(conservative price A0 corresponding to relevant coverage for at the money call option)

Posterior coverage 50% 80% 90% 95% 99%

Upper end of posterior interval
√

� 0.168 0.187 0.202 0.217 0.257

Conservative price A0 9.19 9.90 10.46 11.03 12.54

∗ Posterior is conditional on log(σ 2
0 ) taking the value of the long run mean of log(σ 2); A0

is based on prediction set (1.1) with �− = 0. A 5% p.a. known interest rate is assumed;
S0 = 100.

uncertainty are negligible. With some assumptions, their posterior distribution,
as well as our corresponding options price, are given in Table 3. Note that it is
customary to state the volatility per annum and on a square root scale.

In the above, we are bypassing the issue of conditioning on σ 2
0 . Our excuse

for this is that σ 2
0 appears to be approximately observable in the presence of high

frequency data. Following Foster and Nelson (1996), Zhang (2001) and Mykland
and Zhang (2001a), the error in observation is of the order Op(�t1/4), where �t is
the average distance between observations. See also Andersen, Bollerslev, Diebold
and Labys (2001). What modification has to be made to the prediction set in view
of this error remains to be investigated. It may also be that it would be better to
condition on some other quantity than σ0.

The above does not consider the possibility of also hedging in market traded
options.

5. The effect of interest rates and a general formula for European options.

5.1. Interest rates: market structure and types of prediction sets. When
evaluating options on equity, interest rates are normally seen by practitioners as
a second order concern. In the following, however, we shall see how to incorporate
such uncertainty if one so wishes. We suppose that intervals are set on integral
form, in the style of (1.1). One could then consider the incorporation of interest
rate uncertainty in several ways.

One possibility would be to use a separate interval for the interest rate,

R− ≤
∫ T

0
ru du ≤ R+.(5.1)

In combination with (1.1), this gives A0 = B(S0,R
+,�+); compare Section 2 of

Mykland (2000).
This value of A0, however, comes with an important qualification. It is the value

one gets by only hedging in the stock S and the money market bond β . But things
are rarely that simple.
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To increase the complexity, suppose that one of the securities available in the
market is a zero coupon bond maturing with value $1 at the time T of maturity of
the option. If the price at time t of this bond is �t , then �T = 1. This security,
therefore, has a riskless final payoff, but it is risky from one day to the next, and
it can lose value. This is as opposed to βt , where the immediate return is riskless,
and it cannot lose value, but the return from holding it over time is nonetheless
random (typically).

If such a zero coupon bond exists, and if one decides to trade in it as part of
the super-replicating strategy, the price A0 will be different. We emphasize that
there are two if’s here. For example, � could exist, but have such high transaction
cost that one would not want to use it. Or maybe one would encounter legal
or practical constraints on its use. These problems would normally not occur
for zero coupon bonds, but can easily be associated with other candidates for
“underlying securities.” Market traded call and put options, for example, can often
exist while being too expensive to use for dynamic hedging. There will, in practice,
be substantial room for judgement in these matters.

We emphasize, therefore, that the price A0 depends not only on one’s prediction
region, but also on the market structure. Both in terms of what exists and in terms
of what one chooses to trade in. To reflect the ambiguity of the situation, we shall
in the following describe � as available if it is traded and if it is practicable to
hedge in it.

If we assume that � is, indeed, available, then as one would expect from
Section 3.1, different prediction regions give different values of A0. If one
combines (1.1) and (5.1), the form of A0, given on page 668 of Mykland (2000),
is somewhat unpleasant. Also, one suffers from the problem of setting a two
dimensional prediction region, which will require prediction probabilities in each
dimension that will be higher than 1 − α.

A better approach is the following. Consider the stock price discounted (or
rather, blown up) by the zero coupon bond,

S
(∗)
t = St/�t .(5.2)

In other words, S
(∗)
t is the price of the forward contract that delivers ST at time T .

Suppose that the process S(∗) has volatility σ ∗
t , and that we now have prediction

bounds similar to (1.1), in the form

�∗− ≤
∫ T

0
σ ∗2

t dt ≤ �∗+.(5.3)

We shall see in Section 5.3 that the second interval gives rise to a nice form
for the conservative price A0. For convex European options such as puts and calls,
A0 = B(S0,− log�0,�

∗+). The main gain from using this approach, however, is
that it involves a scalar prediction interval. There is only one quantity to keep track
of. And no multiple comparison type problems.
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TABLE 4
Comparative prediction sets: r nonconstant∗
(convex European options, including calls)

�t available? A0 from (1.1) and (5.1) A0 from (5.3)

No B(S0,R
+,�+) not available

Yes unaesthetic (see text) B(S0,− log �0,�∗+)

∗ The function B is defined in (3.2) and (3.3) for call options, and more generally in (5.10).

The situation for the call option is summarized in Table 4. The value A0 depends
on two issues: is the zero coupon bond available and which prediction region
should one use?

Table 4 follows directly from the development in Section 5.3. The hedge ratio
corresponding to (5.3) is given in (5.12) below.

5.2. The effect of interest rates: the case of the Ornstein–Uhlenbeck model.
We here discuss a particularly simple instance of incorporating interest rate
uncertainty into the interval (5.3). In the following, we suppose that interest rates
follow a linear model [introduced in the interest rate context by Vasicek (1977)],

drt = ar(br − rt ) dt + cr dVt ,(5.4)

where V is a Brownian motion independent of B in (1.2).
The choice of interest rate model highlights the point made in Section 4.1:

this model would be undesirable for hedging purposes as it implies that any
government bond can be hedged in any other government bond, but on the
other hand it may not be so bad for statistical purposes. Incidentally, the other
main conceptual criticism of this model is that rates can go negative. Again,
this is something less bothersome for a statistical analysis than for a hedging
operation. This issue may, however, have become obsolete with the recent apparent
occurrence of negative rates in Japan [see, e.g., “Below zero” (The Economist,
November 14, 1998, page 81)].

Suppose that the time T to maturity of the discount bond � is sufficiently short
that there is no risk adjustment, in other words, �0 = E exp{− ∫ T

0 rt dt}. One can
then parametrize the quantities of interest as follows: there are constants ν and γ

so that
∫ T

0
rt dt has distribution N(ν, γ 2).(5.5)

It follows that

log�0 = −ν + 1
2γ 2.(5.6)
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In this case, if we suppose that the stock follows (1.2), then (5.4) and (5.5) yield
∫ T

0
σ ∗2

u du =
∫ T

0
σ 2

u du + γ 2.(5.7)

Prediction intervals can now be adjusted from (1.1) to (5.3) by incorporating the
estimation uncertainty in γ 2. Nonlinear interest rate models, such as the one from
Cox, Ingersoll and Ross (1985), require, obviously, a more elaborate scheme.

5.3. General European options. We here focus on the single prediction
set (5.3). The situation of constant interest rate (Section 3.1) is a special case of
this, where the prediction set reduces to (1.1).

THEOREM 5.1. Under Assumptions A, and with prediction set (5.3), if one
hedges liability η = g(ST ) in St and �t , the quantity A0 in (2.1) has the form

A0 = sup
τ

Ẽ�0g

(
1

�0
S̃τ

)
,(5.8)

where the supremum is over all stopping times τ that take values in [�∗−,�∗+],
and where P̃ is a probability distribution on C[0, T ] so that

dS̃t = S̃t dW̃t with S̃0 = s0,(5.9)

where s0 is the actual observed value of S0.

The proof is given in Section 7.
If one compares this with the results concerning nonconstant interest in

Mykland (2000), the above would seem to be more elegant, and it typically yields
lower values for A0. It is also easier to implement since S̃ is a martingale.

To consider the case of convex or concave options, write

B(S,R,�) = exp(−R)Eg
(
S exp

(
R − �/2 + √

�Z
))

,(5.10)

where Z is standard normal. As in Section 3.1, the Black–Scholes (1973)–Merton
(1973) price at time t for stock price S and nonrandom constant interest r and
volatility σ 2 can be written B(St , r(T − t), σ 2(T − t)) .

In our case, if g is convex (e.g., call and put options), then the martingale
property of S̃ yields that the A0 in (5.8) has the value

A0 = B
(
S0,− log�0,�

∗+)
.(5.11)

In the case of concave g, one similarly gets that A0 = B(S0,− log�0,�
∗−).

It is shown in Section 7 that the delta hedge ratio for convex g is

∂B

∂S

(
St ,− log �t,�

∗+ −
∫ t

0
σ ∗2

u du

)
.(5.12)

In practice, one has to make an adjustment similar to that at the end of Section 3.1.
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6. The practical role of prediction set trading. How does one use this form
of trading? If the prediction probability 1 − α is set too high, the starting value
may be too high given the market price of contingent claims.

There are, however, at least three other ways of using this technology. First of
all, it is not necessarily the case that α need to be set all that small. A reasonable
way of setting hedges might be to use a 60% or 70% prediction set, and then
implement the resulting strategy. It should also be emphasized that an economic
agent can use this approach without necessarily violating market equilibrium;
compare Heath and Ku (2001).

On the other hand, one can analyze a possible transaction by finding out what is
the smallest α for which a conservative strategy exists with the proposed price as
starting value. If this α is too small, the transaction might be better avoided.

A main way of using conservative trading, however, is as a backup device for
other strategies. Suppose that a market participant implements a self financing
trading strategy with portfolio value Vt . The usual approach if such a strategy
goes wrong in the sense of losing substantial amounts of money, is to liquidate
the holding: buy back the option and sell the hedging portfolio. This can be quite
expensive.

As an alternative, one can do the following. While trading with portfolio V ,
also monitor the evolution of a conservative value At , based on a 1 − α prediction
interval. Also, set aside reserves of K dollars, with K > A0 −V0. The exit strategy
is then to switch from portfolio V to portfolio A if V ∗

t goes so low that it hits
A∗

t − K (the superscript “∗” refers, as usual, to discounting). This provides an
orderly and presumably less expensive exit, as it avoids liquidation.

7. Proofs.

PROOF OF THEOREM 2.1. Assume the conditions of Theorem 2.1. Let
m ≥ K , and define θ(m) by

θ(m)(β., S
(1)· , . . . , S(p)·

)
= θ

(
β., S

(1)· , . . . , S(p)·
)
IC

(
β., S

(1)· , . . . , S(p)·
) − mβT I

C̃

(
β., S

(1)· , . . . , S(p)·
)
,

where C̃ is the complement of C.
On the other hand, for given probability P ∗ ∈ Q∗, define σ

ij
u by

[
logS(i)∗, log S(j)∗]

t =
∫ t

0
σ ij

u du.

Also, for c as a positive integer, or c = +∞, set

Q∗
c =

{
P ∗ ∈ Q∗ : sup

t
|rt | +

∑
i

σ ii
t ≤ c

}
.

Let P ∗
c be the set of all distributions in Q∗

c that vanish outside C. Under
Assumptions A, there is a c0 < +∞ so that P ∗

c is nonempty for c ≥ c0.
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Also, consider the set Q∗
c (t) of distributions on C[t, T ]p+1 satisfying the same

requirements as those above, but instead of (iv) (in Assumptions A) that, for all
u ∈ [0, t], βu = 1 and S

(i)
u = 1 for all i.

(1) First, let c0 ≤ c < +∞. Below, we shall make substantial use of the
fact that the space Q∗

c (t) is compact in the weak topology. To see this, invoke
Propositons VI.3.35, VI.3.36 and Theorem VI.4.13 of Jacod and Shiryaev [(1987),
pages 318 and 322].

Consider the functional C[0, t]p+1 × Q∗
c (t) → R given by

θ
(m)
t

(
b., s

(1)· , . . . , s(p)· ,P ∗) = E∗btβ
−1
T θ(m)

(
b.β., s

(1)· S(1)· , . . . , s(p)· S(p)·
)
.

Also, set for m ≥ K ,

θ
(m)
t = (

b., s
(1)· , . . . , s(p)·

) = sup
P ∗∈Q∗

c (t)

θ
(m)
t

(
b., s

(1)· , . . . , s(p)· ,P ∗).
The supremum is Ft -measurable since this σ -field is analytic (see Remark 2.1),
and since the space Q∗

c (t) is compact in the weak topology. The result then follows
from Theorems III.9 and III.13 of Dellacherie and Meyer [(1978), pages 42 and
43]; see also the treatment in Pollard [(1984), pages 196 and 197].

Since, again, the space Q∗
c (t) is compact in the weak topology, it follows that

the supremum is a bounded. By convergence, A(m)∗
t = β−1

t θ
(m)
t (β., S

(1)· , . . . , S(p)· )

is an (Ft )-supermartingale for all P ∗ ∈ Q∗
c . Also, in consequence, (A

(m)∗
t ) can

be taken to be càdlàg, since (Ft ) is right continuous. This is by the construction
in Proposition I.3.14 (pages 16 and 17) in Karatzas and Shreve (1991). Set
A

(m)
t = βtA

(m)∗
t (the càdlàg version).

(2) Consider the special case where η = −KβT , and call Ã
(m)∗
t the resulting

supermartingale. Note that Ã
(m)∗
t ≤ −K on the entire space, and set

τ = inf
{
t : Ã(m)∗

t < −K
}
.

τ is an Ft stopping time by Example I.2.5 (page 6) of Karatzas and Shreve (1991).
By definition, A

(m)∗
t ≥ Ã

(m∗)
t everywhere. Since both are supermartingales, we

can consider a modified version of A
(m)∗
t so that it takes new value

A
(m)
t = lim

u↑τ
A(m)

u for τ ≤ t ≤ T .

In view of Proposition I.3.14 (again) in Karatzas and Shreve (1991), this does not
interfere with the super-martingale property of A

(m)∗
t .

Now observe two particularly pertinent facts: (i) The redefinition of A(m) does
not affect the initial value, since P ∗

c is nonempty, and (ii) A
(m)
t = A

(K)
t for all t ,

since m ≥ K .
(3) On the basis of this, one can conclude that

A
(K)
0 = sup

P ∗∈P ∗
c

E∗(η∗),(7.1)
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as follows. By the weak compactness of Q∗
c , there is a P ∗

m such that for given

(b0, s
(1)
0 , . . . , s

(p)
0 ), θ

(m)
0 (b., s

(1)· , . . . , s(p)· ) ≤ θ
(m)
0 (b., s

(1)· , . . . , s(p)· ,P ∗
m) + m−1.

Also, there is a subsequence P ∗
mk

that converges weakly to some P ∗.
Recall that m is fixed, and is greater than K . It is then true that, for mk ≥ m, and

with C̃ denoting the complement of C,

A
(K)∗
0 = A

(m)∗
0

= θ
(m)
0

(
b0, s

(1)
0 , . . . , s

(p)
0

)
≤ θ

(mk)
0

(
b0, s

(1)
0 , . . . , s

(p)
0 ,P ∗

mk

) + m−1
k

≤ E∗
mk

β−1
T θ

(
β., S

(1)· , . . . , S(p)·
) + P ∗

mk
(C̃)(K − mk) + m−1

k

≤ E∗
mk

β−1
T θ

(
β., S

(1)· , . . . , S(p)·
) + P ∗

mk
(C̃)(K − m) + m−1

k

≤ E∗β−1
T θ

(
β., S

(1)· , . . . , S(p)·
) + lim sup

k→+∞
P ∗

mk
(C̃)(K − m) + o(1)

(7.2)

as k → ∞. The first term on the right-hand side of (7.2) is bounded by the
weak compactness of Q∗

c . The left-hand side is a fixed, finite number. Hence,
lim supP ∗

mk
(C̃) = 0. By the Q∗-closedness of C, it follows that P ∗(C) = 1.

Hence, (7.2) yields that the right-hand side in (7.1) is an upper bound for
A

(K)∗
0 = A

(m)∗
0 . Since this is also trivially a lower bound, (7.1) follows.

(4) Now make A
(m)
t dependent on c, by writing A

(m,c)
t . For all Q∗ ∈ Q∗,

the A
(m,c)∗
t are all Q∗-supermartingales, bounded below by −m. A

(m,c)∗
t is

nondecreasing in c. Let A
(m,∞)
t denote the limit as c → +∞. By Fatou’s lemma,

for Q∗ ∈ Q∗ and for s ≤ t ,

E∗(
A

(m,∞)∗
t |Fs

) ≤ lim inf
c→+∞ E∗(

A
(m,c)∗
t |Fs

) = lim inf
c→+∞ A(m,c)∗

s = A(m,∞)∗
s .

Hence A
(m,∞)∗
t is a supermartingale for all m ≥ K . Also, by construction,

A
(m,∞)∗
T ≥ η∗. By the results of Kramkov (1996) or Mykland (2000), A

(m,∞)
t+ is,

therefore, a super-replication of η.
For the case of t = 0, (7.1) yields that

A
(m,∞)
0 = sup

P ∗∈P ∗
E∗(η∗),(7.3)

where the nonobvious inequality (≥) follows from monotone convergence and
assumption (2.7). Since one can choose m = K , Theorem 2.1 is proved. �

PROOF OF PROPOSITION 3.1. Extend the space Cp+1 to Cp+q . Consider
the set Q̃ of probabilities Q̃ on Cp+q for which the projection onto Cp+1 is
in Q and so that ([log S(i)∗, logS(j)∗]t , i ≤ j) are indistinguishable from (x

(k)
t ,

k = p + 2, . . . , p + q). Now consider the set (in Cp+q ) F ′ = {ω : (β, x(p+2), . . . ,

x(p+q)) ∈ F }. For every Q̃ ∈ Q̃, let the set CQ be given by (3.6). Then
Q̃(CQ�F ′) = 0. Hence F ′ is in the completion of Ft ⊗ {Cq−1,∅} with respect
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to Q̃. It follows that there is a C in FT so that P ∗(C�F ′) = 0 for all P ∗ ∈ Q∗.
This is our C.

To show that C is Q∗-closed, suppose that a sequence (in Q∗) P ∗
n → P ∗ weakly.

Construct the corresponding measures P̃ ∗
n and P̃ ∗ in Q̃. By Corollary VI.6.7

(page 342) in Jacod and Shiryaev (1987), P̃ ∗
n → P̃ ∗ weakly. Hence, since F and

hence F ′ is closed, if P̃ ∗
n (F ′) → 1, then P̃ ∗(F ′) = 1. The same property must then

also hold for C. �

PROOF OF PROPOSITION 4.1. Let d be the uniform metric on Cq , that is,
d(x, y) = ∑

i=1,...,q supt∈[0,T ] |xi
t − yi

t |. Let {zn} be a countable dense set in Cq

with respect to this metric. It is then easy to see that

ρ(F,G) = ∑
n∈N

1

2n

(|d(zn,F ) − d(zn,G)| ∧ 1
)

is a metric on F whose associated convergence is the pointwise one.
We now consider the functions fm(F,x) = (1 − md(x,F ))+. These are

continuous as maps F × C[0, T ]q → R. From this, the indicator function IF (x) =
infm∈N f (x) is upper semicontinuous, and hence measurable. The result for (4.2)
then follows from Exercise 1.5.5 (page 43) in Stroock and Varadhan (1979). The
development for (4.3) is similar. �

PROOF OF THEOREM 5.1. The At be a self financing trading strategy in
St and �t that covers payoff g(ST ). In other words,

dAt = θ
(0)
t d�t + θ

(1)
t dSt and At = θ

(0)
t �t + θ

(1)
t St .

If S
(∗)
t = �−1

t St , and similarly for A
(∗)
t , this is the same as asserting that

dA
(∗)
t = θ

(1)
t dS

(∗)
t .

This is by numeraire invariance and/or Itô’s formula. In other words, for a fixed
probability P , under suitable regularity conditions, the price of payoff g(ST )

is A0 = �0A
(∗)
0 = �0E

(∗)A
(∗)
T = �0E

(∗)g(S
(∗)
T ), where P (∗) is a probability

distribution equivalent to P under which S(∗) is a martingale.
It follows that Theorem 2.1 can be applied as if r = 0 and one wishes to hedge

in security S
(∗)
t . Hence, it follows that

A0 = sup
P ∗∈P ∗

�0E
(∗)g

(
S

(∗)
T

)
.

By using the Dambis (1965) or Dubins and Schwarz (1965) time change, the result
follows. �

Derivation of the hedging strategy (5.12). As discussed in Mykland (2000),
the function B(S,R,�) defined in (5.10) satisfies two partial differential equa-
tions, namely, 1

2BSSS2 = B� and −BR = B − BSS. It follows that −BRR =
BR − BSRS and BRS = BSSS.
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Now suppose that �t is a process with no quadratic variation. We then get the
following from Itô’s lemma:

dB(St ,�t,− log �t) = BS dSt − BR

1

�t

d�t + B�(d〈logS∗〉t + d�t).(7.4)

If one looks at the right-hand side of (7.4), the first line is the self financing
component in the trading strategy. One should hold BS(St ,�t,− log�t) units of
stock, and BR(St ,�t,− log�t)/�t units of the zero coupon bond �. In order for
this strategy to not require additional input during the life of the option, one needs
the second line in (7.4) to be nonpositive. In the case of a convex or concave payoff,
one just uses d�t = −d〈logS∗〉t , with �0 as �∗+ or �∗−, as the case may be. �
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