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This paper considers adaptive estimation in nonstationary autoregressive
moving average models with the noise sequence satisfying a generalized
autoregressive conditional heteroscedastic process. The locally asymptotic
quadratic form of the log-likelihood ratio for the model is obtained. It is
shown that the limit experiment is neither LAN nor LAMN, but is instead
LABF. For the model with symmetric density of the rescaled error, a new
efficiency criterion is established for a class of defined Mν -estimators. It is
shown that such efficient estimators can be constructed when the density is
known. Using the kernel estimator for the score function, adaptive estimators
are constructed when the density of the rescaled error is symmetric, and it is
shown that the adaptive procedure for the parameters in the conditional mean
part uses the full sample without splitting. These estimators are demonstrated
to be asymptotically efficient in the class of Mν -estimators. The paper
includes the results that the stationary ARMA–GARCH model is LAN, and
that the parameters in the model with symmetric density of the rescaled error
are adaptively estimable after a reparameterization of the GARCH process.
This paper also establishes the locally asymptotic quadratic form of the log-
likelihood ratio for nonlinear time series models with ARCH-type errors.

1. Introduction. Suppose that the observations y1, . . . , yn, are generated by
the autoregressive moving average (ARMA) model with errors generated by the
generalized autoregressive conditional heteroscedastic (GARCH) process,

yt =
p∑

i=1

ϕ0iyt−i +
q∑

i=1

ψ0iεt−i + εt ,(1.1)

εt = ηt

√
ht , ht = α00 +

r∑
i=1

u0iε
2
t−i +

s∑
i=1

v0iht−i ,(1.2)

where ηt is a sequence of independent and identically distributed (i.i.d.) ran-
dom variables, with mean zero, variance one and a common density f ; and
α00 > 0, u01, . . . , u0r , v01, . . . , v0s ≥ 0. Models (1.1) and (1.2) are called the
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nonstationary ARMA–GARCH model if the characteristic polynomial ϕ0(z) =
1 −∑p

i=1 ϕ0iz
i has one unit root taking the value +1, with other roots lying out-

side the unit circle.
In the traditional ARMA model, the errors εt are assumed to be i.i.d. Common

time series practice has provided substantial evidence that these assumptions are
usually inadequate. For example, the conditional variance of the errors may contain
much useful information. Engle (1982) proposed the autoregressive conditional
heteroscedastic (ARCH) model; that is, model (1.2) with s = 0, which can capture
such information. Subsequently, Bollerslev (1986) generalized the ARCH model
to the popular GARCH model (1.2). This is a very important class of time
series models and has been widely investigated and applied in the finance and
econometric literature [see the surveys by Bollerslev, Engle and Nelson (1994)
and Li, Ling and McAleer (2002)]. For ARCH-type time series, there are already
some theoretical results for the quasi-maximum likelihood estimator (QMLE) in
Weiss (1986) and Ling and Li (1997, 1998). However, when ηt is not normal, the
QMLE is not efficient.

For various models with i.i.d. nonnormal errors, much effort has been expended
in obtaining efficient estimators. Such efficiency can usually be achieved by
adaptive estimation. A comprehensive account of the theory and method can
be found in Bickel (1982) and Bickel, Klaassen, Ritov and Wellner (1993)
(henceforth BKRW), with a valuable survey in Robinson (1988). In the time series
context, Kreiss (1987a) investigated the stationary ARMA model, and proved
the locally asymptotic normality (LAN) of the model and constructed adaptive
estimators. Unlike Bickel (1982), Kreiss’ adaptive procedure uses full samples
without splitting and hence is quite useful in practical applications [see also Kreiss
(1987b)]. Koul and Schick (1997) developed a general theoretical framework
for nonlinear AR models with i.i.d. errors, clearly discussed the efficiency and
adaptivity, and especially showed that Stein’s necessary condition can be satisfied
in some models with asymmetric errors. They also investigated several methods of
constructing efficient estimators.

Recently, several authors have examined efficient estimation for ARCH-
type time series. Engle and González-Rivera (1991) proposed a semiparametric
estimator for models (1.1) and (1.2) without a unit root and argued, through
simulation, that the semiparametric approach does not seem to capture the total
potential gain in efficiency. Linton (1993) considered adaptive estimation for the
fixed design regression with ARCH errors. Koul and Schick (1996) investigated
adaptive estimation for a random coefficient AR model, which is an ARCH-type
time series model. Jeganathan (1995) and Drost, Klaassen and Werker (1997)
(henceforth DKW) developed general frameworks suitable for stationary ARCH-
type times series. However, apart from the simple ARCH model in DKW (1997)
and the GARCH(1,1) model in Drost and Klaassen (1997), these conditions
have not been established for the general-order GARCH model or the stationary
ARMA–GARCH model. As Drost and Klaassen (1997) argued, greater technical
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details may be required for more general cases. These general stationary GARCH
and ARMA–GARCH models are included in this paper as special cases.

The above authors considered only stationary time series. There is a growing
interest in efficient estimation for nonstationary time series [see, e.g., Koul and
Pflug (1990), Phillips (1991), Elliott, Rothenberg and Stock (1996) and Jeganathan
(1997)]. Jeganathan (1995) developed a general framework for nonstationary
time series models, specifically, a complete optimal inference procedure for
nonstationary time series with i.i.d. errors.

In this paper, we discuss adaptive estimation for the nonstationary ARMA–
GARCH models (1.1) and (1.2), where we allow the ARMA model to have at
most one unit root. We generalize the frameworks in Jeganathan (1995), DKW
(1997) and Koul and Schick (1997). Under this framework, the locally asymptotic
quadratic (LAQ) form of the log-likelihood ratio for the model is obtained. It is
shown that the limit experiment is neither LAN nor locally asymptotic mixed
normal (LAMN), but is instead the locally asymptotically Brownian functional
(LABF) defined in Jeganathan (1995). For the nonstationary ARMA–GARCH
model, the definition of efficient estimators given in Fabian and Hannan (1982)
is inappropriate. We define efficient estimators in a class of Mν-estimators and
present a new efficiency criterion for the model with symmetric density f . It is
shown that such efficient estimators can be constructed when f is known. Using
the kernel estimator for the score function, adaptive estimators are constructed for
the model with unknown symmetric density f . It is shown that these estimators
are asymptotically efficient in the class of Mν -estimators. In DKW (1997), the
split sample method proposed by Schick (1986) is used for all the adaptively
estimable parameters. In contrast, our adaptive estimation of the parameters in the
ARMA part uses the full sample without splitting and hence may be more useful
in practice.

Our adaptive estimation for the ARMA part depends heavily on the symmetry
assumption. Without this assumption, some different methods of constructing
adaptive estimates were given in Kreiss (1987b), DKW (1997) and Koul and
Schick (1997) for the stationary ARMA model with i.i.d. errors. The research in
this paper can be considered as a first step in exploring optimal inference problems
in nonstationary time series with ARCH errors. Along this route, similar theories
and methods can be developed for the nonstationary ARMA model with alternative
ARCH-type errors, such as E-GARCH and threshold ARCH, among many others.
Another important extension is towards cointegrating time series with multivariate
ARCH-type errors.

This paper proceeds as follows. Section 2 presents a general framework for the
LAQ. Section 3 obtains the LABF form of the log-likelihood ratio, and discusses
adaptivity and efficiency for the nonstationary ARMA–GARCH model. Section 4
develops the efficient and adaptive estimators. Sections 5 and 6 provide the proofs
of the main theorems. Throughout this paper, we will use the following notation:
B ′ denotes the transpose of the vector B; o(1) [O(1)] denotes a series of numbers
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converging to zero (being bounded); oλ(1) [Oλ(1)] denotes a series of random
numbers converging to zero (being bounded) in Pλ,f -probability; Pλ,f and Eλ0

are abbreviated as Pλ and E, respectively; ‖ · ‖ denotes the Euclidean norm; and
L→ denotes convergence in distribution.

2. A general LAQ criterion. In this section, we present a general LAQ
criterion which is a generalization of the criteria in Jeganathan (1995), DKW
(1997) and Koul and Schick (1997). Our discussion follows the fashion of Koul
and Schick (1997).

Let D be a class of Lebesgue densities, � be an open subset of the
k-dimensional real space R

k , and B = {Pλ,χ : (λ,χ) ∈ � × D} be a family of
probability measures, y1, y2, . . . , yn be observable random variables, Y0 be a
p0 × 1 initial (unobservable) vector, and Zt−1(λ) = Zt−1(Ȳt−1, λ) and ht (λ) =
ht (Ȳt−1, λ) be measurable functions of the variables Ȳt−1 and λ, where Ȳt =
(Y0, y1, . . . , yt ) and λ ∈ �. Suppose that, under Pλ,χ , Y0 has a Lebesgue
density qλ,χ and the time series yt have the following structure:

ηt (λ) = [yt − Zt−1(λ)]/√ht(λ), t = 1, 2, . . . ,(2.1)

where the rescaled errors η1(λ), η2(λ), . . . are i.i.d. with density χ ∈ D and
independent of Y0, and the true parameter is (λ0, f ).

For the nonstationary AR model with i.i.d. errors, the LAQ form of the
log-likelihood ratio (LR) was given in Jeganathan (1995). However, he did
not accommodate the perturbation of the unknown density and whether or not
the parameters in the nonstationary AR model are adaptively estimable. By
parameterizing the density, Koul and Schick (1996, 1997) gave some clear
explanations as to the adaptivity of the parameters in the random AR and nonlinear
AR models. This technique requiring the parameterization of densities is discussed
carefully in BKRW (1993). As in Koul and Schick (1996, 1997), we introduce the
following definition.

DEFINITION 2.1. Let c → fc be a map from a neighborhood 
 of the origin
in R

l into D such that f0 = f . We say that c → fc is a regular path if there
exists a measurable function ζ from R to R

l such that
∫ ‖ζ(x)‖2f (x) dx < ∞,∫

ζ(x)ζ ′(x)f (x) dx is nonsingular, and∫ [√
fc(x) −√f (x) − 1

2c′ζ(x)
√

f (x)
]2

dx = o(‖c‖2).

Let P c
λ,n be the restriction of Pλ,fc to Fn, the σ -field generated by {Y0, y1,

. . . , yn}. Denote P 0
λ,n by Pλ,n. Define n(λ1, λ2, c) as the log-LR of P c

λ2,n to Pλ1,n:

n(λ1, λ2, c) = 2
n∑

t=1

[
log

sc,t (λ2)

st (λ1)

]
+ log

qλ2,fc (Y0)

qλ1,f (Y0)
,
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where sc,t (λ) = √
fc(ηt (λ))/ 4

√
ht(λ) and st (λ) = s0,t (λ). Let gt (λ) = (εt (λ),√

ht (λ)) with εt (λ) = yt − Zt−1(λ). We make the following three assumptions.
The first one ensures that the Fisher information is finite for both scale and location
parameters. The second deals with the behavior of the functions gt . The last deals
with the initial densities.

ASSUMPTION 2.1. The density f is absolutely continuous with a.e.-derivative
f ′ and

I1(f ) =
∫

ξ2
1 (x)f (x) dx < ∞ and I2(f ) =

∫
ξ2

2 (x)f (x) dx < ∞,

where ξ1(x) = f ′(x)/f (x) and ξ2(x) = 1 + xξ1(x).

ASSUMPTION 2.2. There is a sequence Gn of invertible diagonal k × k

matrices with G−1
n → 0 and k×2 random matrices Ut(λ) such that, for all bounded

sequence θn and ϑn, the following statements are true with λn = λ0 + G−1
n θn and

λ̃n = λn + G−1
n ϑn:

(i)
[

inf
1≤t≤n

√
ht (λn)

]−1

= Oλn(1),

(ii)
n∑

t=1

[gt (λ̃n) − gt (λn) − (λ̃n − λn)′Ut(λn)]2 = oλn(1),

(iii) sup
1≤t≤n

‖G−1
n Ut(λn)‖2 = oλn(1),

(iv)
n∑

t=1

‖G−1
n Ut(λn)‖2 = Oλn(1).

ASSUMPTION 2.3.
∫ |qλ,fc (x) − qλ0,f (x)|dx = o(1) as ‖λ − λ0‖ = o(1) and

‖c‖ = o(1), where fc(x) is defined as in Definition 2.1.

We further introduce the following notation:

Wn(λ) = G−1
n

n∑
t=1

Xt(λ)ξ(ηt (λ)), Wζn(λ) = 1√
n

n∑
t=1

ζ(ηt (λ)),

Sn(λ) = G−1
n

n∑
t=1

Xt(λ)Vξ,ξX′
t (λ)G−1

n , Sζn(λ) = G−1
n√
n

n∑
t=1

Xt(λ),

W̃n(λ) =
(

Wn(λ)

Wζn(λ)

)
, S̃n(λ) =

(
Sn(λ) Sζn(λ)V ′

ζ,ξ

Vζ,ξS′
ζn(λ) Vζ,ζ

)
,

where Xt(λ) = Ut(λ)/
√

ht(λ), ξ = (ξ1,−ξ2)′, Vξ,ξ = E[ξ(ηt )ξ
′(ηt )], Vζ,ξ =

E[ξ(ηt )ζ
′(ηt )]′ and Vζ,ζ = E[ζ(ηt )ζ

′(ηt )]. Now, we give the general LAQ
criterion; its proof can be found in the Appendix.
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THEOREM 2.1. Suppose that the path c → fc is regular and that Assump-
tions 2.1–2.3 hold. Let un = (ϑ ′

n, v′
n)′ and vn be a bounded sequence in R

l . Then

(a) n(λn, λ̃n, vn/
√

n) = u′
nW̃n(λn) − u′

nS̃n(λn)un/2 + oλn(1),

(b) Pλ0,n and Pλn,n are contiguous,
(c) S̃n(λn) = S̃n(λ0) + oλ0(1) and W̃n(λn) = W̃n(λ0) − S̃n(λ0)

(θn

0

)+ oλ0(1).

REMARK 2.1. If the LAQ of n(λn, λ̃n, vn/
√

n) is LAN, LAMN or LABF,
then (b) automatically holds [see Kallianpur (1980), Chapter 7 and Jeganathan
(1995), page 850]. In this case, it is sufficient to verify Assumption 2.2 with
λn = λ0 and that

n∑
t=1

∥∥G−1
n [Ut(λn) − Ut(λ0)]

∥∥2 = oλ0(1).(2.2)

Assumption 2.3 means that the starting conditions have a negligible effect. If
Y0 is assumed to be independent of (λ,χ), as in the next section, then this
assumption holds. Koul and Schick (1997) discussed this assumption carefully for
some stationary nonlinear AR models.

REMARK 2.2. When the LAQ is LAN or LAMN, the error model D has a
two-dimensional least favorable path: ξ∗(x) = −ξ(x) + V ′

ζ,ξ V −1ζ(x) with ζ(x) =
(x, x2 − 1)′. Along this path, one can obtain the optimal estimates and discuss the
efficiency and adaptivity. For the stationary nonlinear AR model, Koul and Schick
(1997) showed that the LAQ is LAN, and especially, they found a one-dimensional
least favorable path and generalized the criterion of efficiency in Fabian and
Hannan (1982) and Schick (1988). When the LAQ is LABF, as in the next section,
the notion of efficiency needs to be defined. We shall do so in the next section by
defining efficiency to mean best in a class of estimates. This requires an efficient
estimator to have an expansion similar to the LAMN case and efficient estimators
can be constructed along the lines of DKW (1997) and Koul and Schick (1997).

3. The LABF, adaptivity and efficiency for nonstationary ARMA–GARCH
model. First, it is necessary to isolate the unit root in model (1.1). Note that
ϕ0(z) can be decomposed as (1 − z)φ0(z), where φ0(z) = 1 −∑p−1

i=1 φ0iz
i . Let

wt = (1 −B)yt , where B is the backshift operator. Model (1.1) can be rewritten as

yt = γ0yt−1 + wt, wt =
p−1∑
i=1

φ0iwt−i +
q∑

i=1

ψ0iεt−i + εt ,

where γ0 = 1. In (1.2), we assume that the variance of ηt is one. In this case, all
the parameters in (1.2) can be estimated by the QMLE method, as in Ling and
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Li (1998). However, the parameters in (1.2) are not adaptively estimable; see the
discussion for the GARCH(1,1) model in Drost and Klaassen (1997). Model (1.2)
needs to be reparameterized. Thus, we assume that, under Pλ,χ , yt , t = 1, . . . , n,

satisfy the following structure:

wt(λ) = yt − γyt−1, εt (λ) = wt(λ) −
p−1∑
i=1

φiwt−i (λ) −
q∑

i=1

ψiεt−i (λ),(3.1)

ηt (λ) = εt (λ)/
√

ht (λ), ht (λ) = α0

[
1 +

r∑
i=1

αiε
2
t−i (λ) +

s∑
i=1

βiht−i (λ)

]
,(3.2)

with the initial (unobservable) vector Y0 = (y0, . . . , y1−p, ε0, . . . , ε1−q∗, h0,

. . . , h1−s) and q∗ = max{r, q}, where the rescaled errors η1(λ), η2(λ), . . . are i.i.d.
with density χ ∈ D and independent of Y0, λ = (γ,m′, δ̃′)′, m = (φ′,ψ ′)′ with
φ = (φ1, . . . , φp−1)′ and ψ = (ψ1, . . . ,ψq)′, δ̃ = (α0, δ′)′ with δ = (α1, . . . , αr ,

β1, . . . , βs)
′, and the true parameter (λ0, f ) ∈ � × D . We assume that, for sim-

plicity, the density of Y0 does not depend on the parameters (λ,χ) and, for each
λ ∈ �, the following requirements hold.

ASSUMPTION 3.1. All the roots of φ(z) = 1 −∑p−1
i=1 φiz

i and ψ(z) = 1 +∑q
i=1 ψiz

i are outside the unit circle, with φp−1 
= 0 and ψq 
= 0, and φ(z) and
ψ(z) having no common root.

ASSUMPTION 3.2. α0(
∑r

i=1 αi +∑s
i=1 βi) < 1 with α0 greater than a positive

constant, αi > 0 and βi > 0, and α0
∑r

i=1 αiz
i and 1 − α0

∑s
i=1 βiz

i having no
common root.

ASSUMPTION 3.3. ρ[Eλ(At (λ) ⊗ At(λ))] < 1, where ⊗ denotes the Kro-
necker product, ρ(B) = max{|x| : x is an eigenvalue of B} for some matrix B , Eλ

denotes the expectation under Pλ,f , and

At(λ) =




α0α1η2
t (λ) · · · α0αr η2

t (λ) α0β1 η2
t (λ) · · · α0βsη

2
t (λ)

Ir−1 O(r−1)×1 O(r−1)×s

α0α1 · · · α0αr α0β1 · · · α0βs

O(s−1)×r Is−1 O(s−1)×1


 ,

in which Ii is the i × i identity matrix and Oi×j denotes the i × j zero matrix.

REMARK 3.1. Assumption 3.1 is the usual second-order stationary condition
of the process {wt } in model (3.1). Assumptions 3.2 and 3.3 are the necessary and
sufficient conditions, respectively, for the finite second- and fourth-order moments
of model (3.2) [see Ling (1999) and Ling and McAleer (2002)]. Assumption 3.2 is
not a necessary condition for strict stationarity of model (3.2); see Nelson (1990).
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To state our main result in this section, we need the following notation:

φ−1(z)ψ(z) =
∞∑

i=0

υφψ(i)zi,

ψ−1(z)φ(z) =
∞∑

i=0

υψφ(i)zi,

ψ−1(z) =
∞∑

i=0

υψ(i)zi,

(
1 − α0

s∑
i=1

βiz
i

)−1

=
∞∑

i=0

υβ(i)zi,

(
1 − α0

s∑
i=1

βiz
i

)−1(
α0

r∑
i=1

αiz
i

)
=

∞∑
i=1

υαβ(i)zi,

where υφ0ψ0(i) and υφnψn(i) denote υφψ(i) with λ = λ0 and λn, respectively.
Similarly, define υψ0φ0(i), υψnφn(i), υψ0(i), υψn(i), υβ0(i), υβn(i), υα0β0(i) and

υαnβn(i). Furthermore, we introduce the unobservable processes {(w0
t , ε0

t , h0
t ) : t =

0,±1, ±2, . . .} generated by the following equations:

w0
t =

p−1∑
i=1

φ0iw
0
t−i +

q∑
i=1

ψ0iε
0
t−1 + ε0

t ,

ε0
t = ηt

√
h0

t , h0
t = α00

(
1 +

r∑
i=1

α0iε
02
t−i +

s∑
i=1

β0ih
0
t−i

)
.

By Lemma 5.1 in Section 5, (w0
t , ε0

t , h0
t ) is a fixed function of the {ηt }. Define

∂ε0
t

∂m
= −

∞∑
i=0

υψ0(i)w̃
0
t−i−1,

∂h0
t

∂m
= 2

∞∑
i=1

υα0β0(i)ε
0
t−i

∂ε0
t−i

∂m
,

∂h0
t

∂δ̃
=

∞∑
i=0

υβ0(i)
(
u0

0t−i , ε̃0′
t−i−1

)′
, ε̃0

t = α00
(
ε02
t , . . . , ε02

t−r+1, h0
t , . . . , h0

t−s+1
)′

,

where w̃0
t = (w0

t , . . . ,w0
t−p+2, ε0

t , . . . , ε0
t−q+1)′ and u0

0t = 1 + ∑r
i=1 α0iε

02
t−i +∑s

i=1 β0ih
0
t−i .

Using the same notation as those in Section 2 with Ut = [∂εt (λ)/∂λ, (∂ht (λ)/

∂λ)/2
√

ht (λ)], k = p + q + r + s + 1 and Gn = diag(n,
√

nIk−1), our theorem is
as follows.
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THEOREM 3.1. Suppose that Assumptions 2.1 and 3.1–3.3 hold and the map
c → fc is a regular path such that �̃ below is positive definite. Let un = (ϑ ′

n, v′
n)′

and vn be a bounded sequence in R
l . Then (a) the conclusions of Theorem 2.1

hold, and (b) the matrix S̃ below is almost surely positive definite and, under Pλ0 ,

(W̃n, S̃n)(λ0)
L→(W̃ , S̃) =

[∫ 1

0
M(τ)dB(τ ),

∫ 1

0
M(τ)�M ′(τ ) dτ

]
,

where κ = [1 − φ0(1)]−1ψ0(1), M(τ) = diag(κω1(τ ), Ik−1, Il), B(τ) = (κω2,

N ′
mδ̃

, N ′
ζ )′(τ ), (ω1, ω2,N ′

mδ̃
,N ′

ζ )′(τ ) is a (k + l + 1)-dimensional Brownian

motion with mean zero and covariance τ �̃ = τ
(

� C
C′ Vζ,ζ

)
,

� = E

(
h02

t ξ ′(ηt )X
0′
t ε0

t

X0
t ξ(ηt )ε

0
t X0

t Vξ,ξX0′
t

)
, � = E

(
X0

t Vξ,ξX0′
t X0

t V ′
ζ,ξ

Vζ,ξX0′
t Vζ,ζ

)
,

C =E[ζ(ηt )ε
0
t , Vζ,ξX0′

t ]′, X0
t = (u0′

γ t ,u
0′
mt , u0′

δ̃t
)′, u0

γ t = −[(h0
t )

−1/2,
∑∞

i=1 υα0β0(i)×
ε0
t−i/h0

t ], u0
mt = [(h0

t )
−1/2∂ε0

t /∂m, (2h0
t )

−1∂h0
t /∂m] and u0

δt = [0, (2h0
t )

−1 ×
∂h0

t /∂δ̃].
REMARK 3.2. From the above theorem, we see that the LAQ form of the

log-LR n(λn, λ̃n, v/
√

n) is neither LAN nor LAMN, but is instead LABF.
The score function and information matrix of the unit root may be correlated
with those of the other parameters in the stationary mean part and the GARCH
part. This phenomenon is new in the literature and results in the complicated
limiting distribution (W̃ , S̃). Using Assumptions 3.1–3.3, we can show that
� > 0, as in Weiss (1986) and Ling and Li (1997). Furthermore, for �̃ > 0,
one of the sufficient conditions is E(�t�′

t ) > 0 with �t = [ηt , ξ ′(ηt ), ζ ′(ηt )]′.
However, this condition excludes the normal density. If we further assume that
the path satisfies limc→0

∫
(1 + x4)fc(x) dx = ∫ (1 + x4)f (x) dx, then some two-

dimensional regular paths such that �̃ > 0, can be constructed. Since the argument
becomes more involved, we refer to Koul and Schick (1996, 1997) for the one-
dimensional regular paths.

REMARK 3.3. When D includes only densities that are symmetric about zero,
the limiting distribution in Theorem 3.1(b) can be simplified as follows:

(W̃ , S̃) =




κ
∫ 1

0 ω1(τ ) dω2(τ ) κ2�γ

∫ 1
0 ω2

1(τ ) dτ 0 0 0
N1 0 �m 0 0
N2 0 0 �δ̃ V ′

δ̃ζ

Nζ 0 0 V
δ̃ζ Vζ,ζ


 ,

where (ω1,ω2)(τ ) is a bivariate Brownian motion with mean zero and covariance

τ�1 = τ
(

Eh0
t 1

1 �γ

)
; N1 and

(
N2
Nζ

)
are (p + q − 1)- and (r + s + 1 + l)-normal
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vectors with mean zero and covariances �m and
(

�
δ̃

V ′
δ̃ζ

V
δ̃ζ

Vζ,ζ

)
, respectively, and

independent of (ω1,ω2)(τ ); and �γ = E(u0
γ tVξ,ξu0′

γ t ), �m = E(u0
mtVξ,ξu0′

mt),

�δ̃ = E(u0
δ̃t

Vξ,ξu0′
δ̃t

) with Vξ,ξ = diag(I1(f ), I2(f )), and V ′
δ̃ζ

= Eu0
δ̃t

V ′
ζ,ξ . In this

case, the LR is the product of a LABF and a LAN (a special LABF). If we assume
that the unit root in (1.1) is known and not estimated, then from Theorem 3.1,
we see that model (3.1), (3.2) belongs to the LAN family. Using slightly stronger
conditions, this result is a generalization of Drost and Klaassen (1997) and DKW
(1997) for stationary ARCH-type time series.

In LAN models, Hájek (1972), Fabian and Hannan (1982) and Koul and
Schick (1997) established the precise notion of efficiency. Jeganathan [(1995),
Section 3] discussed the efficiency of the estimators in LAMN models. However,
the definition and discussion they gave are inappropriate for the current case. As in
Jeganathan (1995), in order to obtain some useful optimality properties, we need to
restrict the competing class of estimators. We first make the following assumption.

ASSUMPTION 3.4. The density f is symmetric and D includes only densities
that are symmetric about zero.

Furthermore, let ν̂n be a k1-dimensional subvector of λ̂n. Similarly define
ν and ν0. Denote ν̇0 = ∂ν/∂λ′|λ=λ0 . By the definition of Gn, it is obvious that
there is a k1 × k1 matrix G∗

n satisfying G∗
nν̇0G−1

n = ν̇0. We define a class of
estimators, namely Mν-estimators. Let � be the set of all measurable functions
π = (π1, π2)′ from R → R2 with π1 odd and π2 even such that E[π(ηt )] = 0
and E[‖π(ηt )‖2] < ∞, and the (diagonal 2 × 2) matrices Vπ,π and Vπ,ξ are
positive definite. For each π ∈ �, let Wn(λ,π) = G−1

n

∑n
t=1 Xt(λ)π(ηt(λ)) and

Sn(λ,π) =∑n
t=1 G−1

n Xt (λ)Vπ,ξX′
t (λ)G−1

n .

DEFINITION 3.1. An estimator ν̄n of ν0 is said to be an Mν -estimator at
(λ0, f ) if G∗

n(ν̄n − ν0) = ν̇0S−1
n (λ0, π)Wn(λ0, π) + oλ0(1) for some π ∈ �.

The class of Mν-estimators is very wide and includes the QMLE and MLE (if
available). Now, we define the optimality properties of Mν -estimators and present
an efficiency criterion for estimators in the class Mν below. In the following
definition, we suppose that Assumptions 2.1 and 3.1–3.4 hold, under which every
Mν -estimator has a limiting distribution under Pλ0 (see Proof of Theorem 3.2 in
Section 5).

DEFINITION 3.2. Let Mν be the set of all Mν-estimators. We say that ν̄n is

efficient if ν̄n ∈ Mν and ν̄n
L→G (a random vector) under Pλ0 , such that E(GG′) ≤

E(GπG′
π) for any ν̄πn ∈ Mν with ν̄πn

L→Gπ under Pλ0 .
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THEOREM 3.2. Suppose that Assumptions 2.1 and 3.1–3.4 hold. If a sequence
of estimators ν̂n of ν0 has the asymptotic representation

G∗
n(ν̂n − ν0) = ν̇0S−1

n (λ0)Wn(λ0) + oλ0(1),

then the estimator ν̂n belongs to Mν and is efficient, where (Wn,Sn)(λ0) is the
k × (k + 1) upper left corner of (W̃n, S̃n)(λ0).

In LAN models, various definitions based on the locally asymptotic minimax
risk for adaptivity were given in Bickel (1982), Fabian and Hannan (1982),
and Koul and Schick (1997), among others. Roughly speaking, these definitions
are equivalent to saying that a sequence of adaptive estimators has the same
asymptotic information matrix as the estimators in the case with known density.
The information matrix can completely explain the perturbation of the unknown
density to the score function in LAN and LAMN models. However, in the LABF
model, the information matrix does not have this advantage and it is difficult to
extend their definitions to our case. The following definition stresses only the fact
that the estimator of ν0 without the knowledge of the true density can achieve the
same asymptotic distribution as its estimator when f is known.

DEFINITION 3.3. When the density function f is unknown, if an estimator ν̂n

of ν0 is efficient, then it is called adaptive.

In this sense, the adaptive estimator has the same asymptotic distribution as the
MLE, if the latter is available. In Section 4, we will show how to construct an
adaptive estimator (γ̂n, m̂n) for (γ0,m0). After projecting the score function and
the information matrix of (δ̃, c) into those corresponding to α0, we can obtain that
the score function and the information matrix of δ0 are, respectively,

Wδn(λ) = − 1

2
√

n

n∑
t=1

[
l̇δt (λ) − µ̂δ(λ)

]
ξ2(ηt (λ)),

Sδn(λ) = 1

4n

{
n∑

t=1

l̇δt (λ)l̇′δt (λ) −
[

n∑
t=1

l̇δt (λ)

][
n∑

t=1

l̇′δt (λ)

]}
I2(f ),

and �δ = [E(l̇0
δt l̇

0′
δt )−E(l̇0

δt )E(l̇0′
δt )]I2(f )/4, with l̇δt (λ) = h−1

t (λ)∂ht (λ)/∂δ, l̇0
δt =

h0−1
t ∂h0

t /∂δ, and µ̂δ(λ) = n−1∑n
t=1[h−1

t (λ)∂ht (λ)/∂δ]. Section 4 will show that
we can construct an adaptive estimator for δ0.

For the ARCH(p) and GARCH(1, 1) models, DKW (1997) and Drost and
Klaassen (1997) have shown that α0 is not adaptively estimable. It is not easy to
explain that α0 is not adaptively estimable under our framework. When the density
function f is asymmetric, a similar definition on the Mν-estimators can be given,
but in this case, the forms of the corresponding score function and information
matrix are different from those in Definition 3.1. Having specified the class of
Mν -estimators, efficiency can be defined similarly. Since our emphasis is on the
symmetric case, it is not discussed here.



ADAPTIVE ESTIMATION FOR ARMA–GARCH 653

4. Efficient and adaptive estimators. In order to construct the efficient
estimator, we need to assume that a Gn-consistent initial estimator is available. In
fact, the QMLE in Ling and Li (1998) can be taken as such an initial estimator. For
technical reasons, we also need to restrict the initial estimator to be discrete. The
idea of discretization was first proposed by Le Cam (1960), and has become an
important technical tool in the construction of efficient estimators. Some further
applications of the technique can be found in Bickel (1982), Kreiss (1987a),
Jeganathan (1995) and Koul and Schick (1997), among others. We now provide
the following definition and lemma.

DEFINITION 4.1. A sequence of estimators {λ̄n} measurable in terms of Fn

is called discretized Gn-consistent if, for any small ε > 0, there exist a constant

 > 0 and an integer K > 0 such that Pλ0(‖Gn(λ̄n −λ0)‖ < 
) > 1−ε uniformly
in n and, for each n, λ̄n takes on at most K different values in �n = {λ ∈
R

k :‖Gn(λ − λ0)‖ ≤ 
}.

LEMMA 4.1. Assume �n(λ), n = 1, 2, . . . , to be a sequence of random
variables which depends on λ ∈ �, an open subset in R

k . If, for each sequence
{λn} ∈ � satisfying Gn(λn−λ0) is bounded by a constant 
 > 0, �n(λn) = oλ0(1),
then �n(λ̄n) = oλ0(1) for discretized Gn-consistent estimators λ̄n.

The proof of this lemma is similar to that of Lemma 4.4 in Kreiss (1987a),
and hence is omitted. Based on the initial estimator, the efficient estimator can
be obtained by a one-step Newton–Raphson iteration if the density f is known.
This gives the following theorem, which comes directly from Theorem 2.1(c),
Theorem 3.1(a) and Lemma 4.1.

THEOREM 4.1. Suppose that λ̄n is a discretized Gn-consistent estimator, and
Assumptions 2.1 and 3.1–3.4 hold. Let

λ̃n = λ̄n + G−1
n S−1

n (λ̄n)Wn(λ̄n).

Then Gn(λ̃n − λ0) = S−1
n (λ0)Wn(λ0) + oλ0(1), and hence λ̃n is an efficient

estimator.

In practice, the density is usually unknown. In the following, we will construct
an adaptive estimator which does not depend on the density but has the same
efficiency as when the density is known. We merge α00 into f , which is
equivalent to assuming that ηt has a finite variance α00 and that the true
parameter α00 in model (3.2) is equal to 1. In the remainder of this section and
Section 6, denote (γ,m′, δ′)′ by λ. Similarly, define λ0 and λ̂n. We introduce the
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notation:

Wγ n(λ) = 1

n

n∑
t=1

[
1√

ht(λ)

∂εt (λ)

∂γ
ξ1(ηt (λ)) − 1

2ht(λ)

∂ht (λ)

∂γ
ξ2(ηt (λ))

]
,

Wmn(λ) = 1√
n

n∑
t=1

[
1√

ht(λ)

∂εt (λ)

∂m
ξ1(ηt (λ)) − 1

2ht (λ)

∂ht(λ)

∂m
ξ2(ηt (λ))

]
,

Sγ n(λ) = 1

n2

n∑
t=1

[
1

ht (λ)

(
∂εt (λ)

∂γ

)2

I1(f ) + 1

4h2
t (λ)

(
∂ht(λ)

∂γ

)2

I2(f )

]
,

Smn(λ) = 1

n

n∑
t=1

[
1

ht (λ)

∂εt (λ)

∂m

∂εt (λ)

∂m′ I1(f ) + 1

4h2
t (λ)

∂ht(λ)

∂m

∂ht (λ)

∂m′ I2(f )

]
,

W1n(λ) =

Wγ n(λ)

Wmn(λ)

Wδn(λ)


 , S1n(λ) =


Sγ n(λ) 0 0

0 Smn(λ) 0
0 0 Sδn(λ)


 ,

where Wδn(λ) and Sδn(λ) are defined as in Section 3.
Now we construct adaptive estimators for λ0. Using the usual kernel density

estimator for ξ1(x), we define

f̂a,j (x, λ) = 1

2a(n − 1)

n∑
i=1,i 
=j

[
K
(
x + ηi(λ), a

)+ K
(
x − ηi(λ), a

)]
,(4.1)

where j = 1, . . . , n, and K(x) = e−x/(1 + e−x)2 is the logistic kernel,

ξ̂1n,j (x, λ) = f̂ ′
an,j (x, λ)

bn + f̂an,j (x, λ)
(4.2)

and ξ̂2n,j (x, λ) = xξ̂1n,j (x, λ) + 1, with an and bn satisfying na3
nbn → ∞. Define

Î1n(λ) and Î2n(λ) as follows:

Î1n(λ) = 1

n

n∑
t=1

ξ̂2
1n,t

(
ηt (λ), λ

)
and Î2n(λ) = 1

n

n∑
t=1

[
ηt (λ)ξ̂1n,t

(
ηt (λ), λ

)+ 1
]2

.

Denote [Ŵγ n(λ), Ŵ ′
mn(λ)] by [Wγ n(λ),W ′

mn(λ)] with ξi(ηt (λ)) replaced by
ξ̂in,t (ηt (λ), λ), and diag[Ŝγ n(λ), Ŝmn(λ)] by diag[Sγ n(λ), Smn(λ)] with Ii(f )

replaced by Îin(λ), where i = 1, 2. Wγ n(λ), Wmn(λ), Sγ n(λ) and Smn(λ) are
estimated by Ŵγ n(λ), Ŵmn(λ), Ŝγ n(λ) and Ŝmn(λ), respectively.

To estimate the score function of δ, we need the split sample technique. This
technique was proposed by Schick (1986) and was also used by DKW (1997). Let
kn be an integer such that kn/n → τ ∈ (0, 1). Split the residual η1(λ), . . . , ηn(λ)
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into two parts, namely (η1(λ), . . . , ηkn(λ)) and (ηkn+1(λ), . . . , ηn(λ)). Denote

f̂ (1)
a (x, λ) = 1

2akn

kn∑
i=1

[
K

(
x + ηi(λ)

a

)
+ K

(
x − ηi(λ)

a

)]
,

f̂ (2)
a (x, λ) = 1

2a(n − kn)

n∑
i=kn+1

[
K

(
x + ηi(λ)

a

)
+ K

(
x − ηi(λ)

a

)]
.

Define ξ̂
(i)
2n (x,λ) = f̂

(i)′
an (x, λ)/ [bn + f̂

(i)
an (x, λ)]. Wδn(λ) is estimated by

Ŵδn(λ) = − 1

2
√

n

kn∑
t=1

[
1

ht(λ)

∂ht (λ)

∂δ
− µ̂δ(λ)

]
ξ̂

(2)
2n,t

(
ηt (λ), λ

)

− 1

2
√

n

n∑
t=kn+1

[
1

ht(λ)

∂ht (λ)

∂δ
− µ̂δ(λ)

]
ξ̂

(1)
2n,t

(
ηt (λ), λ

)
,

where µ̂δ(λ) is defined as in Section 3.
The main result in this section is the following theorem, which indicates that

the parameter λ0 is adaptively estimable.

THEOREM 4.2. Suppose that λ̄n is a discretized Gn-consistent estimator, and
that Assumptions 2.1 and 3.1–3.4 hold. Let

λ̂n = λ̄n + G−1
n Ŝ−1

1n (λ̄n)Ŵ1n(λ̄n).

Then Gn(λ̂n − λ0) = S−1
1n (λ0)W1n(λ0) + oλ0(1), and hence λ̂n is an adaptive

estimator, where Gn = diag(n,
√

nIk−2), Ŵ1n(λ) = [Ŵγ n(λ), Ŵ ′
mn(λ), Ŵ ′

δn(λ)]′
and Ŝ1n(λ) = diag[Ŝγ n(λ), Ŝmn(λ), Ŝδn(λ)].

REMARK 4.1. In Theorem 4.2, we use the full sample without splitting for
(γ0,m′

0)′. This method is different from that used in DKW (1997) and may be
more useful in practical applications, as in the simulation evidence in Koul and
Schick (1997). This method is also different from that in Koul and Schick where
they need to truncate the variable Ḣj . The adaptive estimate of δ0 is constructed by
the split sample method, because no symmetry can be used in the score function
of δ. If we make a suitable truncation to h−1

t (λ)∂ht (λ)/∂δ − µ̂δ , as in Koul and
Schick [(1997), Sections 5 and 6] and use the results in Schick (1987) and Schick
and Susarla (1988), it is possible to avoid splitting the sample.

REMARK 4.2. Theorem 4.2 includes the new results that, by deleting the
corresponding component for the unit root, the adaptive procedure above can be
used for the stationary ARMA–GARCH model, and that the adaptive estimators
achieve the smallest asymptotic covariance matrix in LAN models.
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TABLE 1
The empirical bias and standard deviation of LSE, QMLE, AE and EE;

n = 250, and 1000 replications

γ0 = −0.5 γ0 = 0.5 γ0 = 0.8 γ0 = 1.0

Bias SD Bias SD Bias SD Bias SD

LSE 0.0088 0.0640 −0.0036 0.0634 −0.0079 0.0444 −0.0075 0.0151
QMLE 0.0043 0.0403 −0.0002 0.0407 −0.0036 0.0289 −0.0046 0.0100
AE 0.0004 0.0175 0.0001 0.0176 0.0005 0.0118 −0.0005 0.0028
EE 0.0004 0.0162 0.0002 0.0160 0.0005 0.0107 0.0005 0.0026

To see how well the adaptive estimator (AE) performs in finite samples
compared with the QMLE and LSE for both the nonstationary and stationary cases,
we simulate the following simple AR–GARCH model:

yt = γ0yt−1 + εt , εt = ηt

√
ht , ht = α00(1 + α0ε2

t + β0ht−1),(4.3)

where ηt is i.i.d. with density f (x) = [0.5e−(x−3)2/2/
√

2π + 0.5e−(x+3)2/2/√
2π ]/√10 and α00 = 1. This density has been frequently used for investigating

the finite-sample behavior of adaptive estimates, as in Kreiss (1987a) and Shin
and So (1999). In the simulation, γ0 = −0.5, 0.5 and 0.8 for the stationary
case, and 1.0 for the nonstationary case, and (α0, β0) = (0.57, 0.02). We use the
optimal bandwidth an given in Silverman [(1986), page 40] which is automatically
searched from the data and bn = 0.0001a

1/3
n . The reason for the choice of

an and bn was given by Shin and So (1999). The sample size is n = 250, and
1000 replications are used. Since the performance of the AE for (α0, β0) in finite
samples has been investigated in Drost and Klaasen (1997), we report here only the
results for γ0 in Table 1. In this table, the efficient estimator (EE) is constructed as
in Theorem 4.1 and the QMLE is described as in Ling and Li (1998). From these
results, we can see that the AE and EE are much more efficient than the LSE and
QMLE, while the AE and EE are very similar. Meanwhile, the biases of the AE
and EE are smaller than those of the LSE and QMLE.

REMARK 4.3. The adaptive estimator γ̂n of γ0 can be used to construct a unit

root test. From Theorems 3.1(b) and 4.2, we have n(γ̂n − 1)
L→ ∫ 1

0 w1(τ ) dw2(τ )/

κ�γ

∫ 1
0 w2

1(τ ) dτ . Let

B1(τ ) = 1

σε

w1(τ )

and

B2(τ ) = − 1

σ 2
ε

√√√√ σ 2
ε

σ 2
ε �γ − 1

w1(τ ) +
√√√√ σ 2

ε

σ 2
ε �γ − 1

w2(τ ),
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where σ 2
ε = Eε02

t . Then B1(τ ) and B2(τ ) are two independent standard Brownian
motions. As shown in Ling and Li (1998), we can show that

n(γ̂n − 1)
L→

∫ 1
0 B1(τ ) dB1(τ )

σ 2
ε �γ κ

∫ 1
0 B2

1 (τ ) dτ
+
√

σ 2
ε �γ − 1

σ 2
ε �γ κ

∫ 1
0 B1(τ ) dB2(τ )∫ 1

0 B2
1 (τ ) dτ

.(4.4)

The second term in (4.4) can be simplified to [
√

σ 2
ε �γ − 1/(σ 2

ε �γ κ)] ×
(
∫ 1

0 B2
1 (τ ) dτ )−1/2ξ , where ξ is a standard normal random variable independent

of
∫ 1

0 B2
1 (τ )dτ [see Phillips (1989)]. Let τ̂AEn = S

−1/2
γ n [n(γ̂n − 1)]. Then we have

τ̂AEn
L→ρ

∫ 1
0 B1(τ ) dB1(τ )√∫ 1

0 B2
1 (τ ) dτ

+
√

1 − ρ2ξ,(4.5)

where ρ = 1/
√

σ 2
ε �γ ∈ (0, 1). The asymptotic distribution of τ̂AEn depends on a

nuisance parameter ρ. Its critical values can be obtained through the simulation
method, with the estimated ρ̂ as given in Hansen (1995) and Shin and So
(1999).

Testing for unit roots has been a mainstream topic in econometrics for quite
some time, so it is important to find more powerful tests for both theory and
application. For the AR model with i.i.d. errors, the popular Dickey–Fuller
(henceforth DF) test based on LSE has been widely used. For the AR–GARCH
model, the DF test still is valid for the hypothesis H0 : γ0 = 1 [see Ling, Li and
McAleer (2002)]. The QMLE in Ling and Li (1998) may be used to construct the
unit root test: τ̂QEn = (σ 2

ε K2ρ)(
∑n

i=2 y2
t−1)1/2(γ̂QEn − 1), which has the same

asymptotic distribution as (4.5) with ρ = (σ 2
ε Kc)

−1/2, where γ̂QEn denotes the

QMLE of γ0, Ku = E(1/h0
t ) + uα2

0
∑∞

k=1 β
2(k−1)
0 E(ε2

t−k/h02
t ), and c = Eη4

t − 1.
Since QMLE is more efficient than LSE, τ̂QEn should be more powerful than
the DF test. Note that the AE is more efficient than both the QMLE and
LSE. It is expected that the τ̂AEn test is more powerful than both the DF test
and τ̂QEn.

To confirm our conjecture, we present a small simulation experiment for these
unit root tests. Using the same model as in (4.3) with the same sample size, repli-
cations, and the same method for the choice of an and bn, we investigate the size
for γ0 = 1.0 and local power for γ0 = 0.95, 0.97, 0.98 and 0.99. The critical values
of the DF test come from Table 8.5.3 in Fuller (1976). The critical values of τ̂QEn

and τ̂AEn are generated through 20,000 replications of an i.i.d. bivariate N(0, I2)

process. From Table 2, it is clear that the sizes of the three tests are very close
to the nominal 5% and 10% levels, and that their powers are consistent with our
expectations.
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TABLE 2
The power and size of lower tail unit root tests for AR(1)–GARCH(1,1) models;

n = 250, and 1000 replications

Significance level 5% Significance level 10%

γ0 0.950 0.970 0.980 0.990 1.000 0.950 0.970 0.980 0.990 1.000

DF test 0.904 0.549 0.319 0.166 0.055 0.974 0.775 0.534 0.285 0.120
τ̂QEn 0.997 0.894 0.643 0.219 0.038 1.000 0.973 0.839 0.437 0.078
τ̂AEn 1.000 0.999 0.995 0.895 0.060 1.000 0.999 0.997 0.954 0.094

5. Proofs of Theorems 3.1 and 3.2. For simplicity, we assume that the initial
values are yi = 0, εi = 0 and hi = ω0 for i ≤ 0, which does not make any essential
difference to the proof. We first introduce some lemmas. Lemma 5.1 comes
directly from Theorem 2.1 in Ling and Li (1997) and Theorem 6.2 in Ling (1999),
which gives the basic properties of the process (w0

t , h0
t ). Lemma 5.2 gives the

expansion of (wt , ht )(λ). Lemma 5.3 is a basic result for verifying Assumption 2.2.

LEMMA 5.1. Under Assumptions 3.1 and 3.2, the process (w0
t , h0

t ) is strictly
stationary and ergodic and almost surely has the following causal expansions:

(a) w0
t =

∞∑
i=0

υφ0ψ0(i)ε
0
t−i ,

(b) h0
t = ι′ζt + ι′

∞∑
i=1

i−1∏
i=0

At−iζt−i ,

where ε0
t = ηt

√
h0

t , At = At(λ0), ι = (0, . . . , 0, 1, 0, . . . , 0)′(r+s)×1 with the

(r + 1)st element being 1, ζt = ζt (λ0) and ζt (λ) = (α0η2
t (λ), 0, . . . , 0, α0,

0, . . . , 0)′, with the first and (r + 1)st elements being α0η2
t and α0, respectively.

Furthermore, if Assumption 3.3 holds, then ε0
t and w0

t have finite fourth moments.

LEMMA 5.2. If Assumptions 3.1 and 3.2 hold, then under Pλ, (wt , ht )(λ) has
the following expansions:

(a) wt(λ) =
t−1∑
i=0

υφψ(i)εt−i (λ),

(b) ht(λ) = ι′ζt (λ) + ι′
t−1∑
j=1

j−1∏
i=0

At−i (λ)ζt−j (λ) + ι′
t−1∏
i=0

At−i (λ)ε̃0,

where εt (λ) = ηt (λ)
√

ht(λ), ι and ζt (λ) are defined as in Lemma 5.1, and
ε̃0 = (0, . . . , 0,ω0, . . . ,ω0)

′ with the last s elements being ω0. Furthermore, if
Assumption 3.3 holds, then E(ht(λ0) −h0

t )
2 = O(ρt ), E(εt (λ0) − ε0

t )2 = O(ρt )
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and E(wt(λ0)− w0
t )2 = O(ρt ), where O(·) holds uniformly in all t , t ≥ 1, and

0 < ρ < 1.

PROOF. Under Pλ, model (3.2) can be rewritten as

ε̃t (λ) = ζt (λ) + At(λ)ε̃t−1(λ),(5.1)

where ε̃t (λ) = [ε2
t (λ), . . . , ε2

t−r+1(λ), ht (λ), . . . , ht−s+1(λ)]′. After iterating (5.1)
t-steps, we show that (b) holds. Similarly, it can be shown that (a) holds. By
expansion (b) of this lemma and Assumption 3.3, we can show that

E
(
ht(λ0) − h0

t

)2 = E

[
ι′

t−1∏
i=0

At−i ε̃0 − ι′
∞∑

j=t

j−1∏
i=0

At−iζt−j

]2

= O(ρt ).(5.2)

By (5.2) and expansion (a) of this lemma, the other cases can be proved. This
completes the proof. �

LEMMA 5.3. If Assumptions 3.1–3.3 hold, then it follows that

(a) max
1≤t≤n

|n−1/2yt | = Oλ0(1),

(b) n−1/2 max
1≤t≤n

w2
t (λn) = oλ0(1).

PROOF. By Lemma 5.2(a), under Pλ0 ,

1√
n

y[nτ ] = 1√
n

[nτ ]∑
i=1

wi(λ0) = 1√
n

[nτ ]∑
i=1

i−1∑
j=0

υφ0ψ0(j)εi−j (λ0)

= 1√
n

( [nτ ]∑
i=0

υφ0ψ0(i)

)( [nτ ]∑
j=1

εj (λ0)

)
+ 1√

n
R1n(τ )

= [1 − φ0(1)]−1ψ0(1)
1√
n

[nτ ]∑
j=1

εj (λ0) + 1√
n

R1n(τ ) + 1√
n

R2n(τ ),

where R1n =∑[nτ ]
i=0 υφ0ψ0(i)(

∑[nτ ]
j=[nτ ]−i+1 εj (λ0)) and R2n = (

∑∞
i=[nτ ]+1 υφ0ψ0(i))

× (
∑[nτ ]

j=1 εj (λ0)). By Lemma 5.2(a), we have n−1/2 max1≤t≤n |εt (λ0)| = n−1/2 ×
max1≤t≤n |ε0

t | + oλ0(1). Since ε0
t is strictly stationary with a finite vari-

ance, n−1/2 max1≤t≤n |ε0
t | = oλ0(1) [see Chung (1968), page 93]. Thus, by As-

sumption 3.1, it is easy to show that n−1/2 max0≤τ≤1 |R1n(τ )| = oλ0(1) and
n−1/2 max0≤τ≤1 |R2n(τ )| = oλ0(1). Furthermore, by Lemma 5.4 below and the
continuity theorem, (a) holds.

Now we show that (b) holds. Under Pλ0 , we have wt(λn) = wt(λ0) −
θ1nyt−1/n, where θ1n is the first component of θn. By (a) of this lemma,
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n−1/2 max1≤t≤n(θ1nyt−1/n)2 = oλ0(1). By Lemma 5.2(a), we have n−1/2 ×
max1≤t≤n w2

t (λ0) = n−1/2 max1≤t≤n w02
t + oλ0(1). Since w02

t is strictly stationary
with a finite variance (see Lemma 5.1), n−1/2 max1≤t≤n w02

t = oλ0(1) [see Chung
(1968), page 93]. Thus (b) holds. This completes the proof. �

PROOF OF THEOREM 3.1(a). Since it is assumed that Y0 is independent
of (λ,χ), Assumption 2.3 is obviously satisfied. By Theorem 2.1 and Remark 2.1,
it is sufficient to verify Assumption 2.2 with λn = λ0 and (2.2). First, (i) obviously
holds. The proofs of (ii)–(iv) and (2.2) mainly use Assumption 3.1 and Lemma 5.3,
and some basic inequalities. Since the techniques are similar, only the proof
of (2.2) is presented. We need to prove that

n∑
t=1

∥∥∥∥G−1
n

[
∂εt (λn)

∂λ
− ∂εt (λ0)

∂λ

]∥∥∥∥
2

= oλ0(1),(5.3)

n∑
t=1

∥∥∥∥ G−1
n√

ht(λn)

∂ht (λn)

∂λ
− G−1

n√
ht(λ0)

∂ht (λ0)

∂λ

∥∥∥∥
2

= oλ0(1),(5.4)

where, by Assumptions 3.1 and 3.2, we can show that

∂εt (λ)

∂γ
= −

t−1∑
i=0

υψ(i)yt−i−1,
∂εt (λ)

∂m
= −

t−1∑
i=0

υψ(i)w̃t−i−1(λ),

∂ht(λ)

∂m̃
= 2

t−1∑
i=1

υαβ(i)εt−i (λ)
∂εt−i (λ)

∂m̃
,

∂ht (λ)

∂δ̃
=

t−1∑
i=0

υβ(i)
( u0t−i (λ)

α0ε̃t−i−1(λ)

)
,

where m̃ = (γ,m′)′, w̃t (λ) = [wt(λ), . . . ,wt−p+2(λ), εt (λ), . . . , εt−q+1(λ)]′,
u0t (λ) = 1 +∑r

i=1 αiε
2
t−i (λ) +∑s

i=1 βiht−i (λ), and ε̃t (λ) is defined as in (5.1).
Again, since these proofs are similar, we prove only (5.4).

Note that ht(λ) has a lower bound uniformly in all t and in a neighborhood
of λ0. By Taylor’s expansion, it can be shown that (5.4) is bounded by[∥∥∥∥Gn

∂2ht (λ
∗
n)

∂λ∂λ′ Gn

∥∥∥∥
2

+
∥∥∥∥Gn

∂ht (λ
∗
n)

∂λ

∥∥∥∥
4]

O(1),(5.5)

where λ∗
n = λ0 + κ̃nGnθn with |κ̃n| < 1, and O(1) holds uniformly in all t . By

Assumptions 3.1 and 3.2, it is direct to show that (5.5) is bounded by

O(1)

[
1

n2
max

1≤t≤n
y4

t + 1

n3/2
max

1≤t≤n
y2

t

(5.6)

+ 1

n
max

1≤t≤n
w4

t (λ∗
n) + 1√

n
max

1≤t≤n
w2

t (λ∗
n)

]
,

where O(1) holds uniformly in all t . By (5.5), (5.6) and Lemma 5.3, we can show
that (5.4) holds. This completes the proof. �
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Now, we introduce an invariance principle. For this, we need the following
notation: X̃t (λ) = [u′

γ t (λ), u′
mt(λ), u′

δ̃t
(λ)]′ with uγ t(λ) = −[h−1/2

t (λ), h−1
t (λ) ×∑t−1

i=1 υαβ(i)εt−i (λ)], umt(λ) = [h−1/2
t (λ)∂εt (λ)/∂m, (2ht (λ))−1∂ht (λ)/∂m], and

u
δ̃t (λ) = [0, (2ht(λ))−1∂ht(λ)/∂δ̃].

LEMMA 5.4. Suppose the assumptions of Theorem 3.1 hold. Then,

1√
n

[nτ ]∑
t=1

[
εt ,
(
X̃t ξ(ηt )

)′
, ζ ′(ηt )

]′
(λ0)

L→(w1,w2,N ′
mδ̃

,N ′
ζ )′(τ )

in Dk+l+1[0, 1],
under Pλ0 , where (ω1,ω2,N ′

mδ̃
,N ′

ζ )′(τ ) are defined as in Theorem 3.1, and
D[0, 1] denotes the Skorokhod space.

PROOF. By Lemma 5.2, it follows that

εt (λ0) − ε0
t = Oλ0(ρ

t ) and X̃t (λ0) − X0
t = Oλ0(ρ

t ),

where 0 < ρ < 1, X0
t is defined as in Theorem 3.1, and Oλ0(·) holds uniformly in

all t . Thus,

1√
n

[nτ ]∑
t=1

[
εt ,
(
X̃t ξ(ηt )

)′
, ζ ′(ηt )

]′
(λ0)

(5.7)

= 1√
n

[nτ ]∑
t=1

[
ε0
t ,
(
X0

t ξ(ηt )
)′

, ζ ′(ηt )
]′ + oλ0(1),

where oλ0(1) holds uniformly in all τ ∈ [0, 1]. Denote W ∗0
t = [ε0

t , (X0
t ξ(ηt ))

′,
ζ ′(ηt )]′. Then W ∗0

t is a strictly stationary and ergodic martingale difference with
E(W ∗0

t W ∗0′
t ) = �̃. It is easy to verify that n−1/2∑[nτ ]

t=1 W ∗0
t satisfies the conditions

of Theorem 4.1 in Hall and Heyde (1980), and hence n−1/2 ∑[nτ ]
t=1 W ∗0

t converges
to (w1,w2,N ′

mδ̃
, N ′

ζ )′(τ ) in Dk+l+1[0, 1]. Furthermore, by (5.7), we complete the
proof. �

PROOF OF THEOREM 3.1(b). Since �̃ > 0, it is obvious that S̃ > 0 a.s. As in
the proof of Theorem 4.1 in Ling and Li (1998), we can show that

1

n

n∑
t=1

∂gt−1(λ0)

∂γ
ξ ′(ηt ) = 1

n

n∑
t=1

yt−1u0
γ tξ

′(ηt ) + oλ0(1)

(5.8)
L→κ

∫ 1

0
w1(τ ) dw2(τ ),
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where the last step holds by Theorem 2.2 in Kurtz and Protter (1991) and
Lemma 5.4. Similarly, we have

1

n2

n∑
t=1

∂gt−1(λ0)

∂γ
Vξ,ξ

∂g′
t−1(λ0)

∂γ
= 1

n2

n∑
t=1

y2
t−1u0

γ tVξ,ξu0′
γ t + oλ0(1).

Denote σγ t = u0
γ tVξ,ξu0′

γ t . Using a similar technique as in Theorem 3.4 in Ling
and Li (1998), we can show that, under Pλ0 ,

1

n

n∑
t=1

|σγ t − Eσγ t | = Oλ0(1),
1√
n

max
1≤t≤n

|σγ t − Eσγ t | = oλ0(1),(5.9)

and

1

n
E

[
n∑

t=1

(σγ t − Eσγ t)

]2

→ σ 2
0 ,

(5.10)
1√
n

[nτ ]∑
t=1

(σγ t − Eσγ t)
L→ σ0ω0(τ ) in D[0, 1],

where σ0 is a nonnegative constant and ω0(τ ) is a standard Brownian motion. By
Theorem 3.1 in Ling and Li (1998), (5.9), (5.10), Lemma 5.4 and the continuity
theorem, it follows that

1

n2

n∑
t=1

∂gt−1(λ0)

∂γ
Vξ,ξ

∂g′
t−1(λ0)

∂γ

= Eσγ t

n2

n∑
t=1

y2
t−1 + 1

n2

n∑
t=1

y2
t−1
[
u0

γ tVξ,ξu0′
γ t − Eσγ t

]+ oλ0(1)(5.11)

= Eσγ t

n2

n∑
t=1

y2
t−1 + oλ0(1)

L→κ2Eσγ t

∫ 1

0
w2

1(τ ) dτ.

Similarly, we can show that, under Pλ0 ,

1

n3/2

n∑
t=1

∂gt−1(λ0)

∂γ
Vξ,ξ

∂gt−1(λ0)

∂m′
L→ E

(
u0

γ tVξ,ξu0′
mt

)
κ

∫ 1

0
w1(τ ) dτ,(5.12)

1

n3/2

n∑
t=1

∂gt−1(λ0)

∂γ
Vξ,ξ

∂gt−1(λ)

∂δ̃′
L→ E

(
u0

γ tVξ,ξu0′
δ̃t

)
κ

∫ 1

0
w1(τ ) dτ,(5.13)

1

n3/2

n∑
t=1

∂gt−1(λ0)

∂γ
V ′

ζ,ξ

L→ Eu0
γ tV

′
ζ,ξ κ

∫ 1

0
w1(τ ) dτ.(5.14)
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Denote umδ̃ =
(

umt

u
δ̃t

)
(λ0) and u0

mδ̃
=
(

u0
mt

u0
δ̃t

)
. By Lemma 5.2 and the ergodic

theorem, we can show that

1

n

n∑
t=1

(umδ̃Vξ,ξu′
mδ̃

) = 1

n

n∑
t=1

(
u0

mδ̃
Vξ,ξu0′

mδ̃

)+ oλ0(1)

(5.15)
= E
(
u0

mδ̃
Vξ,ξu0′

mδ̃

)+ oλ0(1),

1

n

n∑
t=1

umδ̃V
′
ζ,ξ = 1

n

n∑
t=1

u0
mδ̃

V ′
ζ,ξ + oλ0(1) = Eu0

mδ̃
V ′

ζ,ξ + oλ0(1).(5.16)

By Theorem 2.2 in Kurtz and Protter (1991) and Lemma 5.4, all the limiting
distributions involved in W̃n(λ0) and S̃n(λ0) are jointly convergent. Finally, by
Lemma 5.4, (5.8) and (5.11)–(5.16), we can show that (W̃n, S̃n)(λ0) converges
weakly to (W̃ , S̃) = [∫ 1

0 M(τ)dB(τ ),
∫ 1

0 M(τ)�M ′(τ ) dτ ] under Pλ0 . This com-
pletes the proof. �

PROOF OF THEOREM 3.2. It is obvious that the estimator ν̂n belongs
to Mν . Let ν̄πn be any Mν-estimator corresponding to the functional π(x).
Denote ε∗

πt (λ0) = uγ t(λ0)[π1(ηt ),π2(ηt )]′. As in the proof of Lemma 5.4, we
can show that, under Pλ0 , n−1/2∑[nτ ]

t=1 (εt , ε∗
πt )(λ0) converges to (ω1,ωπ2)(τ ) in

D2[0, 1], where (ω1,ωπ2)(τ ) is a bivariate Brownian motion with mean zero and

covariance τ
(

Eh0
t 1

1 �∗
πγ

)
, and �∗

πγ = E(u0
γ tVπ,πu0′

γ t ) with Vπ,π ≡ diag{Jπ1, Jπ2}.
Denote �∗

πm = E(u0
mtVπ,πu0′

mt), �∗
πδ̃

= E(u0
δ̃t

Vπ,πu0′
δ̃t

), �πγ = E(u0
γ tVπ,ξu0′

γ t ),

�πm = E(u0
mtVπ,ξu0′

mt ) and �πδ̃ = E(u0
δ̃t

Vπ,ξu0′
δ̃t

) with Vπ,ξ ≡ diag{c1, c2}. Under
Assumptions 2.1 and 3.1–3.4, as in Weiss (1986) and Ling and Li (1997), we
can show that the matrices �∗

πm, �∗
πδ̃

, �πm, and �πδ̃ are positive definite, and
(Wn,Sn)(λ0, π) converges weakly to

(W,S)(π) =

κ
∫ 1

0 ω1(τ ) dωπ2(τ ) κ2�πγ

∫ 1
0 ω2

1(τ ) dτ 0 0
Nπ1 0 �πm 0
Nπ2 0 0 �

πδ̃




under Pλ0 , with Nπ1 and Nπ2 being two independent normal vectors with mean
zero and covariances �∗

πm and �∗
πδ̃

, respectively, independent of (ω1,ωπ2)(τ ).
Thus, G∗

n(ν̄πn − ν0) converges weakly to Gπ = ν̇0S−1(π)W(π) under Pλ0 , and

E(GπG′
π ) = ν̇0 diag(�πγ ,�πm,�πδ̃) ν̇′

0,

where �πγ = κ−2�−2
πγ E[∫ 1

0 w1(τ ) dwπ2(τ )/
∫ 1

0 w2
1(τ ) dτ ]2, �πm = (c1P +

c2Q)−1(P Jπ1 + QJπ2)(c1P + c2Q)−1 and �πδ̃ = Jπ2c
−2
2 R−1, with

P = E

(
1

h0
t

∂ε0
t

∂m

∂ε0
t

∂m′
)

, Q = 1

4
E

(
1

h0
t

∂h0
t

∂m

∂h0
t

∂m′
)
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and

R = 1

4
E

(
1

h02
t

∂h0
t

∂δ̃

∂h0
t

∂δ̃′

)
.

Let ν̇0S−1
n (λ0)Wn(λ0)

L→G. From Theorem 3.1(b) and Remark 3.3, we obtain

E(GG′) = ν̇0 diag(�γ ,�m,�
δ̃
)ν̇′

0,

where �γ = κ−2�−2
γ E[∫ 1

0 w1(τ ) dw2(τ )/
∫ 1

0 w2
1(τ ) dτ ]2, �m = (P I1(f ) +

QI2(f ))−1 and �
δ̃
= I−1

2 (f ) R−1. By the Cauchy inequality and the definition
of c1 and c2, we know that I1(f )Jπ1 ≥ c2

1 and I2(f )Jπ2 ≥ c2
2. It is obvious that

�
δ̃
≤ �

πδ̃
. After some algebra, we have

�m − �πm

= (c1P + c2Q)−1[P (P Jπ1 + QJπ2)
−1P (c1P + c2Q)−1(c2

1 − I1(f )Jπ1

)
+Q(P Jπ1 + QJπ2)

−1Q(c1P + c2Q)−1(c2
2 − I2(f )Jπ2

)
+P (P Jπ1 +QJπ2)

−1Q(c1P + c2Q)−1(c1c2 − I1(f )Jπ2

)
+Q(P Jπ1 +QJπ2)

−1P (c1P + c2Q)−1(c1c2 − I2(f )Jπ1

)]
(5.17)

≤ (c1P + c2Q)−1[P (P Jπ1 + QJπ2)
−1Q(c1P + c2Q)−1(c1c2 − I1(f )Jπ2

)
+Q(P Jπ1 +QJπ2)

−1P (c1P + c2Q)−1(c1c2 − I2(f )Jπ1

)]
≤ (c1P + c2Q)−1(Q−1Jπ1 + P −1Jπ2)

−1(c1P + c2Q)−1

× [2c1c2 − 2
(
I2(f )Jπ1I1(f )Jπ2

)1/2]≤ 0.

Now, we show that �γ ≤ �πγ . Let ε∗∗
t (λ0) = ε∗

t (λ0)/�γ and ε∗∗
πt (λ0) =

ε∗
πt (λ0)/�πγ , where ε∗

t (λ0) = uγ t(λ0)ξ(ηt ). As in the proof of Lemma 5.4, we
can show that, in D2[0, 1], n−1/2∑[nτ ]

t=1 (ε∗∗
t , ε∗∗

πt )(λ0) converges to the bivariate
Brownian motion (ω∗

2,ω∗
π2)(τ ), which has mean zero and covariance

τ

(
�−1

γ �−1
γ

�−1
γ �∗

πγ �−2
πγ

)
.(5.18)

Denote Wγ n and Wπγ n as the first elements of Wn(λ0) and Wn(λ0, π), respec-
tively, and Sγ n and Sπγ n as the (1, 1)th elements of Sn(λ0) and Sn(λ0, π),
respectively. From the proof of Theorem 3.1(b), we see that the asymptotic
distributions of S−1

γ n Wγ n and S−1
πγ nWπγ n are the same as the distributions

of Gγ ≡ [κ ∫ 1
0 ω2

1(τ ) dτ ]−1 ∫ 1
0 ω1(τ ) dω∗

2(τ ) and Gπγ ≡ [κ ∫ 1
0 ω2

1(τ ) dτ ]−1 ×∫ 1
0 ω1(τ ) dω∗

π2(τ ), respectively. Let 
 = �∗
πγ �−2

πγ − �−1
γ . As in the proof

of (5.17), we can show that 
 ≥ 0. Using (5.18) and Lemma 3.1 of Phillips
(1989), we can show that the distribution of Gπγ is the same as that of Gγ +
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κ−1
1/2[∫ 1
0 ω2

1(τ ) dτ ]−1/2!, where ! is standard normal and independent of Gγ

and
∫ 1

0 ω2
1(τ ) dτ . Thus, �πγ = E[G2

πγ ] = E[G2
γ ] + κ−2
E[∫ 1

0 ω2
1(τ ) dτ ]−1 ≥

E[G2
γ ] = �γ . Finally, we have that E(GG′) ≤ E(GπG′

π). This completes the
proof. �

6. Proof of Theorem 4.2. By Lemma 4.1, it is sufficient to prove that

Îin(λn) = Ii(f ) + oλ0(1), i = 1, 2,(6.1)

Ŵ1n(λn) = W1n(λn) + oλ0(1),(6.2)

where λn is defined as in Lemma 4.1. By Theorem 2.1(b) and Theorem 3.1(a),
Pλ0,n and Pλn,n are contiguous. Note that Ŵ1n(λn) and W1n(λn) are measurable in
terms of Fn. Thus, it is sufficient to prove (6.1), (6.2) under Pλn,n.

Let ξn = f ′
n/(bn + fn) with fn(x) = ∫ f (x − anz)K(z) dz, and ξ̂1n(x,λ) =

f̂ ′
an

(x, λ)/[bn + f̂an(x, λ)] with f̂an(x, λ) = ∑n
i=1[K(x + ηi(λ), a) + K(x −

ηi(λ), a)]/2n. It follows from work in Schick [(1987), pages 99 and 100] and
Schick and Susarla (1988) that

sup
x∈R

Eλn

[
ξ̂1n(x,λn) − ξn(x)

]2 = O(n−1a−3
n b−1

n ),(6.3)

∫
(1 + x2)[ξn(x) − ξ1(x)]2f (x) dx → 0 as n → ∞,(6.4)

sup
x∈R

∣∣ξ̂1n(x,λ) − ξ̂1n,t (x, λ)
∣∣≤ c

na2
nbn

,(6.5)

for some constant c and all t = 1, . . . , n. From (6.3) and (6.5), it follows that

1

n

n∑
t=1

Eλn

{
η2i

t (λn)
[
ξ̂1n,t (ηt (λn)) − ξn(ηt (λn))

]2}= O(n−1a−3
n b−1

n ),(6.6)

where i = 0, 1. By (6.4) and (6.6), we know that (6.1) holds.
In the following, we show that (6.2) holds. By (6.3)–(6.5) and na3

nbn → ∞, it
follows that

"1,n ≡ Eλn

∫
(1 + x2)

[
ξ̂1n(x,λn) − ξ1(x)

]2
f (x) dx = o(1)(6.7)

and

"2,n ≡ max
1≤t≤n

∫
(1 + x2)

∣∣ξ̂1n(x,λn) − ξ̂1n,t (x, λn)
∣∣2f (x) dx ≤ c

n2a4
nb2

n

(6.8)

for some constant c. Let cn = max{5cn−2a−4
n b−2

n ,"
1/4
1,n },

An,t =
{∫

(1 + x2)
[
ξ̂1n,t (x, λ) − ξ1(x)

]2
f (x) dx ≤ cn

}
(6.9)
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and An =⋂n
t=1 An,t . By the Markov inequality,

Pλn,n(Ac
n) ≤ Pλn,n

(∫
(1 + x2)

[
ξ̂1n(x,λ) − ξ1(x)

]2
f (x) dx ≥ cn/4

)

+ Pλn,n("2,n ≥ cn/4)(6.10)

≤ 16"1,n

c2
n

≤ 16"
1/2
1,n → 0,

as n → ∞. For any ε > 0,

Pλn,n

(‖Ŵ1n(λn) − W1n(λn)‖ ≥ ε
)

(6.11)
≤ Pλn,n(Ac

n) + ε−2Eλn

[‖Ŵ1n(λn) − W1n(λn)‖2IAn

]
.

By (6.10) and (6.11), it is sufficient for (6.2) to prove that

Eλn

[‖Ŵ1n(λn) − W1n(λn)‖2IAn

]= o(1).(6.12)

For simplicity, we denote ξ̂in,t (ηt (λn), λn) as ξ̂it , i = 1, 2. By the triangle
inequality,

Eλn

{[Ŵγ n(λn) − Wγ n(λn)]IAn

}2

≤ 2Eλn

{
1

n

n∑
t=1

[
1√

ht(λn)

∂εt (λn)

∂γ

(
ξ̂1t − ξ1(ηt (λn))

)]
IAn

}2

(6.13)

+ 1

2
Eλn

{
1

n

n∑
t=1

[
1

ht(λn)

∂ht (λn)

∂γ

(
ξ̂2t − ξ2(ηt (λn))

)]
IAn

}2

≡ 2B1n + 1

2
B2n.

Note that ξ̂1t and ξ1(ηt (λn)) are odd functions of ηt (λn). We have that

B1n = 1

n2

n∑
t=1

Eλn

{
1

ht (λn)

[
ξ̂1t − ξ1(ηt (λn))

]2
IAn

∣∣∣∣∂εt (λn)

∂γ

∣∣∣∣
2}

(6.14)

≤ cn

n2

n∑
t=1

Eλn

{
1

ht (λn)

∣∣∣∣∂εt (λn)

∂γ

∣∣∣∣
2}

.

Since h−1
t (λn) is bounded and ∂εt (λn)/∂γ = ∑t−1

j=0 υψn(j)yt−j−1, by Assump-
tion 3.1, we can show that

B1n ≤ O(1)
cn

n2

n∑
t=1

max
1≤j≤n

Eλny
2
j .(6.15)
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Under Pλn,n, yj = ∑j
i=1(1 − θ1n/n)j−iwi(λn) and wi(λn)=∑i−1

j=0 υφnψn(j)×
εi−j (λn). Thus, we can show that, as n → ∞,

B1n ≤ O(1)
cn

n

n∑
t=1

max
1≤j≤n

Eλnε
2
j (λn) = O(1)cnEλnε

2
j (λn) = o(1).(6.16)

To study B2n, let Gn,t be the σ -field generated by {|η1(λn)|, . . . , |ηn(λn)|} and
{Y0, y1, . . . , yt }. Since f is symmetric under Pλn,n, we have that

Eλn[ηt (λn)|Gn,t ] = 0.(6.17)

We now consider the cross-terms in the expansion of B2n. Denote ξ∗
t =

[ηt (λn)ξ̂1t − ηt (λn)ξ1(ηt (λn))]IAn . We have that

Hnti ≡ Eλn

[
1

ht+i (λn)ht (λn)

∂ht+i (λn)

∂γ

∂ht (λn)

∂γ
ξ∗
t+iξ

∗
t

]

= Eλn

{
2

ht+i (λn)ht (λn)

[
i∑

j=1

υαnβn(j)εt+i−j (λn)yt+i−j−1

]
∂ht(λn)

∂γ
ξ∗
t+i ξ

∗
t

+ 4

ht+i (λn)ht (λn)

[
t+i−1∑
j=i+1

υαnβn(j)εt+i−j (λn)yt+i−j−1

]

×
[

t−1∑
j=1

υαnβn(j)εt−j (λn)yt−j−1

]
ξ∗
t+iξ

∗
t

}
.

Since ξ̂2t and ξ2(ηt (λn)) are symmetric functions of ηt (λn), it follows that√
ht+i−j (λn) yt+i−j−1[∑t−1

j1=1 υαnβn(j1)εt−j1(λn)yt−j1−1]ξ∗
t+i ξ

∗
t /ht+i (λn)ht (λn)

is the even function of ηt+i−j (λn) when i + 1 ≤ j ≤ t + i − 1. Since An is

Gn,t -measurable for any t = 1, . . . , n, and εt+i−j (λn) = ηt+i−j (λn)
√

ht+i−j (λn),
by (6.17), we have that

Hnti = Eλn

{
4

ht+i (λn)ht (λn)

[
t−1∑
j=1

υαnβn(j + i)υαnβn(j)ε2
t−j (λn)y2

t−j−1

]
ξ∗
t+i ξ

∗
t

}
.

Furthermore, since υαnβn(i) = O(ρi) with ρ ∈ (0, 1) and independent of λn, we
have

|Hnti | ≤ O(1)ρi max
1≤j<t

Eλn[ε2
j (λn)y2

j−1|ξ∗
t+iξ

∗
t |],(6.18)
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where O(1) holds uniformly in all t . By Assumption 3.1, (6.18) and the inequality
2|ξ∗

t+iξ
∗
t | ≤ ξ∗2

t+i + ξ∗2
t , we have

B2n = 1

n2

n∑
t=1

Eλn

{
1

h2
t (λn)

[
∂ht (λn)

∂γ

]2

ξ∗2
t

}
+ 2

n2

n−1∑
t=1

n−t∑
i=1

Hnti

≤ O(1)

n2

{
n∑

t=1

max
1≤j<t

Eλn[ε2
j (λn)y2

j−1ξ
∗2
t ]

+
n−1∑
t=1

n−t∑
i=1

ρi max
1≤j<t

Eλn[ε2
j (λn)y2

j−1ξ
∗2
t+i ]
}

(6.19)

≤ O(1)cn

n2

{
n∑

t=1

max
1≤j≤n

Eλn[ε2
j (λn)y2

j−1]

+
n−1∑
t=1

n−t∑
i=1

ρi max
1≤j≤n

Eλn[ε2
j (λn)y2

j−1]
}

= O(1)
cn

n
max

1≤j≤n
Eλn[ε2

j (λn)y2
j−1].

Note that Eλn[ε2
j (λn)εi(λn)εi1(λn)] = 0 for any i 
= i1. We can show that

B2n = O(1)cnEλn[ε4
j (λn)] = o(1).(6.20)

By (6.13), (6.16) and (6.20), we can obtain Eλn[|Ŵγ n(λn) − Wγ n(λn)|2IAn] =
o(1). In a similar manner, we can obtain that Eλn[‖Ŵmn(λn) − Wmn(λn)‖2IAn] =
o(1). To complete the proof, it is sufficient to show that

Eλn‖Ŵδn(λn) − Wδn(λn)‖2 = o(1).(6.21)

Since the logistic kernel K(x) for Ŵδn(λn) satisfies the conditions in Theorem 4.1
in Koul and Schick (1997), the proof of (6.21) is similar to that of Theorem 3.1 in
DKW (1997) and hence is omitted. This completes the proof.

APPENDIX: PROOF OF THEOREM 2.1.

Before giving the proof of Theorem 2.1, we introduce the following notation
and lemma. Let ξ̃ = (ξ ′, ζ ′)′, G̃n = diag(Gn,

√
nIl), Ũt (λ) = diag(Xt (λ), Il) and

Y (λ) = [y − Zt(λ)]/√ht(λ). For simplicity, we denote Y (λn) by Y and Y (λ̃n)

by Yn. Similarly, denote ht , hnt , Zt , Znt , gt , gnt , ηt , ηnt , Ũt and Ũnt .
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LEMMA A.1. Under the assumptions of Theorem 2.1, it follows that:

(a)
n∑

t=1

Eλn

[(
u′

nG̃−1
n Ũt ξ̃ (ηt )

)2∣∣Ft−1
]= Oλn(1),

(b)
n∑

t=1

Eλn

[(
u′

nG̃−1
n Ũt ξ̃ (ηt )

)2
I{|u′

nG̃−1
n Ũt ξ̃ (ηt )|>ε}

∣∣Ft−1

]
= oλn(1),

(c)

∣∣∣∣∣
n∑

t=1

{(
u′

nG̃−1
n Ũt ξ̃ (ηt )

)2 − Eλn

[(
u′

nG̃−1
n Ũt ξ̃ (ηt )

)2∣∣Ft−1
]}∣∣∣∣∣= oλn(1),

(d)
n∑

t=1

∫ {√fvn/
√

n(Yn)

4
√

hnt

−
√

f (Y )
4
√

ht

− 1

2
u′

nG̃−1
n Ũt

(ξ̃
√

f )(Y )
4
√

ht

}2

dy = oλn(1).

PROOF. By Assumptions 2.1 and 2.2(i) and (iv), and the finiteness of∫ ‖ζ(x)‖2f (x) dx, (a) holds. By Assumptions 2.1 and 2.2, and using a similar
argument as in Koul and Schick [(1997), page 253], we can show that (b) holds.
By (3.15) of McLeish (1974) and (a) and (b) of this lemma, (c) holds.

The proof of (d) is similar to that for (2.15) in Koul and Schick (1997). The
right-hand side of (d) is bounded by 3(T1n + T2n + T3n), where

T1n =
n∑

t=1

∫
h

−1/2
nt

(
f

1/2
vn/

√
n
− f 1/2 − v′

n

2
√

n
ζf 1/2

)2

(Yn) dy

= n

∫ (
f

1/2
vn/

√
n
− f 1/2 − v′

n

2
√

n
ζf 1/2

)2

(x) dx = o(1)

by Definition 2.1;

T2n = ‖vn‖2

n

n∑
t=1

∫
‖h

−1/4
nt (ζf 1/2)(Yn) − h

−1/4
t (ζf 1/2)(Y )‖2 dy

≤ O(1)R2
2n

∫
‖(ζf 1/2)(x)‖2 dx

+ O(1) sup
|s1|≤R1n,|s2|≤R2n

∫ ∥∥(ζf 1/2)
(
x(1 + s2) + s1

)− (ζf 1/2)(x)
∥∥2

dx

= oλn(1),

where

R1n =
[

max
1≤t≤n

(|Znt − Zt |h−1/2
nt

)2]1/2

= oλn(1)
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and

R2n =
[

max
1≤t≤n

(|√hnt −√ht |h−1/2
nt

)2]1/2

= oλn(1)

by Assumption 2.2(i)–(iii), and the above equation holds by
∫ ‖ζ(x)‖2 ×

f (x) dx < ∞ and Lemma 19 in Jeganathan (1995); and

T3n =
n∑

t=1

∫ [
h

−1/4
nt f 1/2(Yn) − h

−1/4
t f 1/2(Y ) − 1

2ϑ ′
nG−1

n Uth
−3/4
t (ξf 1/2)(Y )

]2
dy.

In order to show that T3n = oλn(1), denote U∗
nt = gnt −gt , Y ∗

n = [y −Zt −u(Znt −
Zt)]h∗−1/2

nt and h∗
nt = [h1/2

t + u(h
1/2
nt − h

1/2
t )]2. By Assumption 2.1 and using

Cauchy’s form of Taylor’s theorem on the function f ∗(u) = h
∗−1/4
nt f 1/2(Y ∗

n ),
T3n is bounded by

n∑
t=1

∫ 1

0

∫ [
U∗

nth
∗−3/4
nt (ξf 1/2)(Y ∗

n ) − ϑ ′
nG−1

n Uth
−3/4
t (ξf 1/2)(Y )

]2
dy du

≤
n∑

t=1

∫ 1

0

∫
{ϑ ′

nG−1
n Ut [h∗−3/4

nt (ξf 1/2)(Y ∗
n ) − h

−3/4
t (ξf 1/2)(Y )]}2 dy du(A.1)

+
n∑

t=1

‖U∗
nt − ϑ ′

nG−1
n Ut‖2 max{h−1

t , h−1
nt }
∫

‖(ξf 1/2)(x)‖2 dx,

where the second term is oλn(1) by Assumptions 2.1 and 2.2(i) and (ii), and the
first term is bounded by

[
O(1) sup

|s1|≤R1n,|s2|≤R2n

∫
‖(ξf 1/2)

(
x(1 + s2) + s1

)− (ξf 1/2)(x)
∥∥2

dx

+ O(1)R2
2n

∫ ∥∥(ξf 1/2)(x)‖2 dx

] n∑
t=1

‖G−1
n Unt‖2 = oλn(1)

by Assumptions 2.1 and 2.2(iv) and Lemma 19 in Jeganathan (1995). Thus,
T3n = oλn(1) and hence (d) holds. This complete the proof. �

Now, we prove Theorem 2.1. The basic idea of the proof comes from Le Cam
(1970), Fabian and Hannan (1982), BKRW (1993) and DKW (1997).

PROOF OF THEOREM 2.1. Let Tnt = 2[svn/
√

n,t (λ̃n)/st (λn) − 1] and Bn =
{max1≤t≤n |Tnt | < ε} for some small enough ε > 0. Then, on the event Bn, the
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log-LR has the Taylor expansion

n

(
λn, λ̃n,

vn√
n

)
= 2

n∑
t=1

log
(

1 + 1

2
Tnt

)
+ n0

=
n∑

t=1

Tnt − 1

4

n∑
t=1

T 2
nt + 1

6

n∑
t=1

αntT
3
nt + n0,

where |αnt | < 1 and n0 = log[q
λ̃n,fvn/

√
n
(Y0)/qλn,f (Y0)] = oλn(1) by Assump-

tion 2.3.
To prove (a), it is sufficient to show that

n∑
t=1

{
Tnt − u′

nG̃−1
n Ũt ξ̃ (ηt ) + 1

4Eλn

[(
u′

nG̃−1
n Ũt ξ̃ (ηt )

)2∣∣Ft−1
]}= oλn(1),(A.2)

n∑
t=1

{
T 2

nt − Eλn

[(
u′

nG̃−1
n Ũt ξ̃ (ηt )

)2∣∣Ft−1
]}= oλn(1),(A.3)

max
1≤t≤n

|Tnt | = oλn(1) and
n∑

t=1

T 3
nt = oλn(1).(A.4)

Note that
∫ [sy

vn/
√

n,t
(λ̃n) − s

y
t (λn)]2 dy = −Eλn(Tnt |Fn), where s

y
t (λ) is

defined as st (λ) with ηt (λ) replaced by Y , and similarly define s
y

vn/
√

n,t
(λ). By

Lemma A.1(a) and (d), and the inequality |a2 −b2| ≤ (1 +α)(a −b)2 +b2/α with
α > 0 and a, b ∈ R,∣∣∣∣∣

n∑
t=1

{
Eλn(Tnt |Ft−1) + 1

4
Eλn

[(
u′

nG̃−1
n Ũt ξ̃ (ηt )

)2∣∣Ft−1
]}∣∣∣∣∣

≤ (1 + α)

n∑
t=1

∫ [
s
y

vn/
√

n,t
(λ̃n) − s

y
t (λn) − 1

2
u′

nG̃−1
n Ũt ξ̃ (Yt )s

y
t (λn)

]2

dy

(A.5)

+ 1

4α

n∑
t=1

Eλn

[(
u′

nG̃−1
n Ũt ξ̃ (ηt )

)2∣∣Ft−1
]

= oλn(1 + α) + Oλn

(
1

α

)
= oλn(1),

where the last equation holds by first letting n → ∞ and then letting α → ∞.
Let Dnt = Tnt − u′

nG̃−1
n Ũt ξ̃ (ηt ). Then

∑n
t=1 Eλn{[Dnt − Eλn(Dnt |Fn)]2|

Ft−1} ≤∑n
t=1 Eλn(D

2
nt |Ft−1) = oλn(1) by Lemma A.1(d), and hence

∑n
t=1[Dnt −

Eλn(Dnt |Fn)] = oλn(1) by Remark 3.7(iii) in Fabian and Hannan (1982). Note
that Eλnξ̃ (ηt ) = 0. We have

∑n
t=1[Dnt − Eλn(Tnt |Fn)] = oλn(1). Furthermore,
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by (A.5), we know that (A.2) holds. For (A.3), by Lemma A.1(c), it is sufficient to
show that ∣∣∣∣∣

n∑
t=1

{
T 2

nt − [u′
nG̃−1

n Ũt ξ̃ (ηt )
]2}∣∣∣∣∣= oλn(1).(A.6)

Note that
∑n

t=1 Eλn[D2
nt I{|Dnt |>ε}|Ft−1] ≤ ∑n

t=1 Eλn(D
2
nt |Ft−1) = oλn(1) by

Lemma A.1(d). By (3.15) of McLeish (1974),
∑n

t=1 D2
nt = oλn(1). Now, by

Lemma A.1 and using a similar argument as for (A.5), we can show that
(A.6) holds. By Lemmas A.1(b) and (d), and following the steps in DKW
[(1997), page 794], we can show that max1≤t≤n |Tnt | = oλn(1). By (A.3) and
Lemma A.1(a), we have

∑n
t=1 T 2

nt = Oλn(1), and hence
∑n

t=1 T 3
nt = oλn(1). Thus,

(A.4) holds.
By (a) of this theorem, n(λ0, λn, 0) = u′

nW̃n(λ0) − u′
nS̃n(λ0)un/2 + oλ0(1),

and n(λ0, λn, 0) = −n(λn,λn + G
′−1
n (−θn), 0) = −[ũ′

nW̃n(λn) − ũ′
nS̃n(λn) ×

ũn/2] + oλn(1) with ũn = (−θ ′
n, 0)′. By Assumptions 2.1 and 2.2, we can

show that W̃n(λn) = Oλn(1) and S̃n(λn) = Oλn(1). Note that W̃n(λn) and
S̃n(λn) are measurable in terms of Fn and hence they are bounded under
Pλn,n. Thus, n(λ0, λn, 0) is bounded under both Pλ0,n and Pλn,n, which
implies (b). The first part of (c) holds by Assumption 2.2 and the second part
holds by exploring the equation: n(λ0, λn, 0) + n(λn,λn + G

′−1
n ϑn, vn/

√
n) −

n(λ0, λn + G
′−1
n ϑn, vn/

√
n) = 0. This completes the proof. �
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