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This paper reviews Herbert Robbins’ research in sequential analysis
(excluding stochastic approximation) from 1952 until roughly 1980. Its
relation to the research of his contemporaries and its impact on subsequent
research are described.

1. Introduction. The period immediately following the Second World War
saw a rapid growth in research across all scientific fields. In statistics, one of the
most imaginative contributors to this growth was Herbert E. Robbins.

Herbert Robbins studied mathematics at Harvard in the 1930s. His initial
research in probability and statistics began during the war, but it was his
appointment to the faculty of the new Department of Mathematical Statistics at
the University of North Carolina that laid the foundation for a career in statistics.
His first paper on sequential analysis [Robbins (1952)] was published shortly
after his two seminal papers on empirical Bayes [Robbins (1951)] and stochastic
approximation [Robbins and Monro (1951)], which are discussed elsewhere in this
issue. While the subject of sequential analysis can be traced back to the work of
Dodge and Romig (1929) and Shewhart (1931), who were interested in problems
of quality control, the modern history of the subject begins with the research of
Wald conducted during World War II [cf. Wald (1947)], the independent, albeit
less systematic contributions of Barnard (1946) and Anscombe (1946) and the
research of Stein (1945) on fixed-width confidence intervals for a normal mean.
Impetus to additional development immediately following the war came from the
research of Wald and Wolfowitz (1948) and Arrow, Blackwell and Girshick (1949)
on the optimality of the sequential probability ratio test.

The purpose of this article is to review Robbins’ research in sequential analysis
(excluding stochastic approximation), which during the 1960s and part of the
1970s was the main focus of his scientific activity. It is convenient to divide
the review thematically into four sections: (i) sequential allocation, (ii) optimal
stopping theory, (iii) sequential estimation and (iv) sequential hypothesis testing,
although some research cuts across more than one category. A general feature of
Robbins’ research was its originality and elegance, which stimulated others to
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think about related problems. I have tried to put his contributions to sequential
analysis into historical perspective by discussing antecedent and subsequent
related research, but I have not attempted a systematic review. To compensate
for this selectivity, I have tried to indicate review articles that contain extensive
bibliographies. See especially Lai (2001), which provides a broad review of
research in sequential analysis (including stochastic approximation).

2. Sequential allocation. Robbins (1952) initiated the statistical discussion
of sequential allocation with the following simple problem. An experimenter will
receive a sequence of rewards X1,X2, . . . by choosing at each time n = 1,2, . . .

to observe a random variable with distribution function F and mean value µ

or a random variable with distribution function G and mean value ν �= µ. The
selection of a distribution to generate Xn can be based on the previous rewards,
X1, . . . ,Xn−1, but once a distribution is selected Xn is generated independently
of the previous Xi . Several different problems and procedures are discussed to
achieve the goal of maximizing in an appropriate sense the expected average
reward

E[(X1 + · · · + Xn)/n].(1)

One result is to show that if one chooses two sparse but infinite sequences of
integers, makes forced choices of F at the times indicated by one sequence, forced
choices of G at the times of the other sequence and at all other times chooses the
distribution that in the past has given the larger average reward, then in the limit
as n → ∞ (1) converges to max(µ, ν). This result illustrates what has come to
be recognized as a general issue in problems of sequential decision making under
uncertainty: the conflict between maximizing one’s immediate expected reward
and gathering information that will be useful in the long run. This problem and a
long line of successors are now referred to as “bandit problems,” since they can be
thought of as involving sequential strategies for playing slot machines (“one-armed
bandits”) having unknown statistical properties.

Robbins (1956) returned to this allocation problem by imposing the additional
constraint that the experimenter was limited by a finite memory of the past. This
led to a fascinating sequence of papers culminating in the research of Cover and
Hellman [cf. Cover (1968) and Hellman and Cover (1970) and the references cited
therein]. He returned to it again in Flehinger, Louis, Robbins and Singer (1972)
and Robbins and Siegmund (1974a), but here the motivation and formulation were
somewhat different. The sequential allocation was to be a choice between two
treatments in a sequential clinical trial with immediate responses. The inferior
treatment was to be allocated as infrequently as possible subject to the constraint
that the clinical trial was to end at some finite time with a test of hypothesis
concerning the better treatment. The same conflict between, in this case, allocating
the treatment that appeared to be better and gathering information about the
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relative merits of the two treatments manifested itself. The key to the analysis
in these papers is a “separation” theorem, which, for the case that responses to
the two treatments are normally distributed with possibly different means and a
common variance, allows one to establish a class of valid tests, having essentially
a fixed power function determined by the stopping rule, and then to study the
allocation problem within this class of tests. For subsequent developments along
the same lines, see Louis (1975) and Hayre (1979). A review and discussion
of the gap between theory and practice is found in Siegmund (1985). For a
somewhat different approach, references up to 1985 and another discussion of
the gap between theory and practice, see Bather (1985), Armitage (1985) and
the accompanying discussion. An application where the experimental treatment
seemed so beneficial and the adaptive allocation so complete that very few patients
were assigned to control, thus leading to some controversy about the validity of the
conclusion, is described by Ware (1989).

A different line of development was the attempt to use the approach of dynamic
programming to give an exact solution for a Bayesian formulation of Robbins’
original allocation problem [cf. Bradt, Johnson and Karlin (1956) and Bellman
(1956)]. A breakthrough was provided by Gittins and Jones (1974), who showed
that a discounted version of the allocation problem with product prior distributions
could be reduced to a parameterized family of optimal stopping problems, which
do not involve relations between the different “arms” and are comparatively easy
to solve. See Gittins (1989) for a complete discussion.

Robbins (1952) also discussed what he called the problem of optional stopping,
which is described below under sequential hypothesis testing.

3. Optimal stopping theory. Optimal stopping theory has its roots in the
study of the optimality properties of the sequential probability ratio test of Wald
and Wolfowitz (1948) and Arrow, Blackwell and Girshick (1949). The essential
idea in both of these papers was to create a formal Bayes problem, the solution to
which could be regarded either as an end in its own right or as a deus ex machina
on the way to solving a non-Bayesian problem.

(The non-Bayesian formulation of the optimality property must certainly be
one of the most surprising and profound results of mathematical statistics. It says
that, for a sequence of independent identically distributed observations, given a
sequential probability ratio test of a simple hypothesis against a simple alternative,
any other test with error probabilities no larger than those of the sequential
probability ratio test must have expected sample sizes at least as large as the
sequential probability ratio test under both hypotheses.)

The formal Bayes problem is what we would now call an optimal stopping
problem. A decision maker observes an adapted sequence {Rn,Fn, n ≥ 1}, with
E|Rn| < ∞ for all n. At each time n a choice is to be made, to stop sampling and
collect the currently available reward, Rn, or continue sampling in the expectation
of collecting a larger reward in the future. An optimal stopping rule N is one that
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maximizes the expected reward, E(RN). The key to finding an optimal or close to
optimal stopping rule is the family of equations

Zn = max
(
Rn,E(Zn+1|Fn)

)
, n = 1,2, . . . .(2)

The informal interpretation of Zn is that it is the most one can expect to win
if one has already reached stage n; and equations (2) say that this quantity is
the maximum of what one can win by stopping at the nth stage and what one
can expect to win by taking at least one more observation and proceeding
optimally thereafter. The plausible candidate for an optimal rule is to stop with
N = min{n :Rn ≥ E(Zn+1|Fn)}, that is, stop as soon as the current reward is at
least as large as the most that one can expect to win by continuing. Equations (2)
show that {Zn,Fn} is a supermartingale, while {Zmin(N,n),Fn} is a martingale.
The equations do not have a unique solution, but in the case where the index
n is bounded, say 1 ≤ n ≤ m for some given value of m, the solution of
interest satisfies Zm = Rm. Hence (2) can be solved and the optimal stopping
rule can be found by “backward induction.” The general strategy of optimal
stopping theory is to approximate the case where no bound m exists by first
imposing such a bound, solving the bounded problem and then letting m → ∞.
It is easy to construct examples where this strategy fails, but it succeeds under
broadly applicable conditions. (For examples of its failure, suppose Y1, Y2, . . .

are independent Bernoulli variables equal to 0 or 1 with probability 1/2 and
put Rn = [n/(n + 1)]2nY1 · · ·Yn. Then E(Rn+1|Fn) > Rn unless Rn = 0, so an
optimal rule when one is restricted to stop by stage m is to stop the first time Yn = 0
or at stage m, whichever occurs first. The limit of such rules is to stop as soon as
Yn = 0, which leads with probability 1 to the smallest possible reward. For this
problem no optimal stopping rule exists. Putting Rn = −[n/(n + 1)]2nY1 · · ·Yn

yields an example where the optimal rule when the process is truncated after
m observations is to stop after the first observation, no matter what the finite value
of m, but the overall optimal rule is to stop the first time Yn = 0, which is not the
limit of rules for the truncated process.)

For Wald’s problem of testing a simple hypothesis against a simple alternative,
the reward after n observations is the negative (since this problem is formulated
in terms of losses) of the sum of two terms: (i) the posterior expected loss for an
optimal Bayes test based on a sample of fixed size n and (ii) the cost, assumed to be
proportional to n. Following the analysis of Arrow, Blackwell and Girshick (1949),
the problem was recognized and discussed as an abstract optimal stopping problem
by Snell (1952). Bellman (1957) created the field of “dynamic programming”
by applying the heuristic principles underlying (2) to a wide class of sequential
decision problems, both deterministic and stochastic.

Chow and Robbins (1961, 1963, 1967) [cf. also Siegmund (1967)] clarified and
generalized the theoretical foundations of optimal stopping theory. In particular,
they gave reasonably general sets of conditions under which an optimal rule exists
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and can be computed by evaluating the limit of the truncated problems as m → ∞.
At the same time they identified several intriguing, concrete optimal stopping
problems whose simplicity of description can conceal surprising subtleties.

Chow and Robbins (1961) define the “monotone” case, which is the only
large class of optimal stopping problems that can be solved explicitly. Chow and
Robbins (1965a) is concerned with a reward sequence Rn equal to the proportion
of heads in n tosses of a fair coin. Subsequent contributions of importance are
due to Dvoretzky (1967), who generalized the results of Chow and Robbins to
averages of independent, identically distributed random variables with finite mean
and variance, Shepp (1969), who obtained an exact description of the optimal
stopping rule for an analogous problem involving Brownian motion and used the
invariance principle to relate this to the Chow–Robbins–Dvoretzky version of the
problem, and Klass (1973), who dealt with the case where the underlying random
variables need not have finite second moment.

Chow, Moriguti, Robbins and Samuels (1964) is concerned with one version
of the “secretary problem.” There are m candidates for a secretarial position, who
are to be interviewed in a random order. After the nth interview, n = 1,2, . . . ,m,
the interviewer can rank the candidates already interviewed and hence knows
the relative ranks of the first n candidates. The interviewer is allowed to hire
any of the candidates at the times of their interviews, but cannot return to an
earlier candidate after initiating the next interview. The goal is to minimize the
expected true rank of the candidate hired. (A well-known, much simpler, version
of the problem has as the goal of the interviewer to maximize the probability of
hiring the candidate who ranks 1 among all the candidates. That version has for
large m the solution that the interviewer should wait until me−1 of the candidates
have been interviewed and then hire the next candidate who has the relative rank
of 1 at the time of the interview. The probability of hiring the candidate whose
actual rank is 1 converges to e−1.) For the problem of minimizing the expected
rank of the selected candidate, Lindley (1961) attempted unsuccessfully to obtain
an approximate solution by solving a single, heuristically derived differential
equation. Chow, Moriguti, Robbins and Samuels (1964) report that a heuristic
solution based on an infinite number of differential equations suggests that the
limit as m → ∞ of the minimal expected true rank of the secretary hired equals

∞∏
j=1

[1 + 2/j ]1/(j+1) ≈ 3.8695.(3)

In view of their inability to make this approach rigorous, they analyze the backward
induction equations (2) characterizing the optimal rule to give a direct proof
of (3). The use of differential equations was made precise by Mucci (1973) by
direct calculation. An ingenious alternative approach was suggested by Rubin
(1966), where in a brief abstract he described a version of the problem involving
an infinite number of candidates. This approach and its natural relation to the
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original problem were developed by Gianini and Samuels (1976), Gianini (1977)
and Lorenzen (1979). For reviews of the many variations on this problem and
the extensive related literature, see Freeman (1983), Petrucelli (1988) and
Samuels (1991).

The general theory of optimal stopping and a number of examples are described
in the books by Chow, Robbins and Siegmund (1971) and Shiryayev (1978).
Using related arguments, Chow, Robbins and Teicher (1965) gave an elegant
generalization of Wald’s identity from the first moment to the second and higher
moments.

Whereas optimal stopping theory in discrete time as described above is, in
principle, completely understood, there are admittedly relatively few cases where
one can compute an optimal rule without the use of numerical methods. For
optimal stopping problems in continuous time, one finds analytic advantages in
the computation of optimal rules and foundational difficulties. The pioneering
efforts to exploit the advantages were due to Chernoff (1961), Shiryayev (1963)
and Bather (1962). Moriguti and Robbins (1962) should also be mentioned, but
this appears to have been a one-time diversion. The interplay between the analytic
simplifications of continuous time, which often allow a substantial reduction
in the dimensionality of the parameter space, and the numerical advantages of
the equations (2) in discrete time has been beautifully exploited by Chernoff
[e.g., Chernoff (1961, 1972) and Chernoff and Petkau (1985)]. In spite of
considerable success in solving specific continuous-time problems, a completely
general theoretical foundation seems still to be lacking. See Chernoff (1972) and
Shiryayev (1978). For a thoroughly “modern” application to mathematical finance,
see the AitSahlia–Lai (1999) solution of the American option.

At the same time that Chow and Robbins were developing their general
theory of optimal stopping, there were two parallel, rather different approaches
to conceptually similar problems. These were Blackwell’s investigations of the
foundations of dynamic programming [Blackwell (1962, 1965, 1967)] and Dubins
and Savage’s (1965) gambling theory. Unlike optimal stopping theory, neither
of these problems starts from a fixed probability space with a given stochastic
process defined on it, and one may encounter an uncountably infinite number of
possible actions at each stage. As a consequence, there are substantial technical
impediments to a rigorous interpretation of (an appropriate version of) (2),
which, in turn, lead to some reflection on the proper role of measure theory
at the foundation of probability theory. For a beautiful survey of a rich variety
of models and applications that neatly avoids technical issues of foundations, see
Whittle (1982, 1983).

4. Sequential estimation. Sequential hypothesis testing purports to be a
more efficient way to accomplish something that can be accomplished with
a fixed sample size. For problems of estimation, sequential methods allow the
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experimenter to obtain estimators of specified precision, which is often impossible
using a fixed sample.

For example, the usual confidence interval for a normal mean based on a
sample of size n has a random length proportional to the sample standard
deviation, sn. Stein (1945) showed that a sequential (in fact, a two stage) procedure
could produce a confidence interval having a length that is prescribed by the
experimenter and does not depend on the variance of the distribution. After taking
n0 ≥ 2 observations, one uses sn0 to choose an appropriate random sample size
N − n0 for a second stage of sampling. Since Stein’s procedure uses only sn0 to
estimate the population standard deviation, even though the (often much larger)
final sample size contains more information, it presumably is inefficient. Stein
(1949) and Anscombe (1953) suggested completely sequential methods, where
one recalculates the sample variance after each observation and stops sampling as
soon (after some minimum sample size) as the empirical length of the standard
confidence interval is smaller than the desired length. Stein very briefly and
Anscombe more systematically showed by clever heuristic analyses that this
confidence interval has asymptotically the desired coverage probability and that
the stopping rule is fully efficient asymptotically as the prescribed length converges
to 0, in the sense that its expectation is asymptotic to what would be required if
one knew the variance and used the easily calculated fixed sample size required to
achieve the prescribed length.

Chow and Robbins (1965b) gave a rigorous version of (parts of) Anscombe’s
argument and generalized it by showing that for a first-order asymptotic analysis
the assumption of a normal distribution could be replaced by application of an
appropriate central limit theorem [due to Anscombe (1952)]. This pointed the way
to a large number of generalizations and extensions [e.g., Gleser (1965), Simons
(1968), Sen and Ghosh (1971), Srivastava (1971)]. Woodroofe (1977) [see also
Woodroofe (1986)] used the nonlinear renewal theory that he had developed in the
context of hypothesis testing (see below) to justify the second-order asymptotic
approximations of Anscombe (1953). See also Hall (1981), who showed that
similar asymptotic results could be obtained with three stages of sampling.

Motivated by Robbins and Siegmund (1976), which is concerned with fixed-
width confidence intervals for the log odds, Siegmund (1982) and Lai and
Siegmund (1983) studied examples (the log odds ratio in paired Bernoulli trials
and the first-order nonexplosive autoregression, respectively) where the first-order
asymptotic behavior of the fixed-width sequential confidence interval is found to
hold uniformly in the unknown parameters over the entire parameter space. This
contrasts with the corresponding fixed-sample-size procedures where asymptotic
convergence near the ends of the parameter space is in one case very slow and in
the other involves a completely different limit from what one finds in the interior
of the parameter space.
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5. Sequential hypothesis testing. Although the beginning of sequential
analysis in Wald’s wartime research centered on hypothesis testing, most of
Robbins’ research in sequential hypothesis testing occurred only in the late
1960s and 1970s. An important exception is found in Robbins (1952), where
he commented on an earlier paper of Feller (1940) about statistical methods
in extrasensory perception. Feller had observed that protocols in extrasensory
perception did not specify an unambiguous sample size, but seemed to allow
the experimenter the flexibility to choose the sample size based on the unfolding
sequence of data. Thus, in testing a hypothesis that a coin is fair by observing a
sequence of tosses of the coin, apparently one might choose the data-dependent
sample size

N = inf
{
n : |Sn| ≥ cn1/2},(4)

where Sn equals the accumulated excess of heads over tails in the first n tosses
and c is some suitable (large) constant. On the one hand, for a fair coin and any
large fixed value of n, one knows from the central limit theorem that P {|Sn| ≥
cn1/2} ≈ 2[1 − �(c)], where � is the standard normal distribution. For large c

this probability is small, so the occurrence of the event that |Sn| ≥ cn1/2 would
be interpreted in favor of the alternative hypothesis that the probability p of
heads differs from 1/2. On the other hand, by the law of the iterated logarithm,
P {|Sn| ≥ cn1/2 for infinitely many n} = 1, so by choosing the value of n to be the
random variable N defined in (4), one could be sure to reject a true null hypothesis.
Feller concluded that consequently these tests were invalid. Robbins countered that
although what Feller wrote was mathematically true, it might not render the tests
completely invalid if one took into account what might be reasonable practical
constraints in the choice of N . To illustrate his point, he discussed normally
distributed random variables, which under the null hypothesis were to have mean 0,
under the alternative were to have nonzero mean and in all cases were to have unit
variance. He assumed that the experimenter was restricted to take a sample size
that contained at least m0 and at most m1 observations. For the probability

P
{
Sn ≥ cn1/2 for some m0 ≤ n ≤ m1

}
,(5)

he then derived an upper bound in the form of a function of c and (m1/m0 − 1),
which is small if c is sufficiently large and m1/m0 is not too large. Robbins
concludes that by imposing a suitable restriction on the range of possible values of
the random sample size, one could devise a test that allowed for some flexibility in
the choice of sample size without falling prey to the difficulty identified by Feller,
and he poses the problem of finding a good approximation for the probability (5).

The same statistical issue of sampling to a foregone conclusion was addressed
again in Darling and Robbins (1967) with an altogether different approach. It was
assumed that a sequence of independent and normally distributed random variables
with mean µ and variance 1 is observed sequentially. If µ ≤ 0, one wants to



HERBERT ROBBINS AND SEQUENTIAL ANALYSIS 357

observe the process indefinitely, but if µ is positive, one is required to indicate
this condition as soon as possible. This leads to the notion of an α-level test of
power one of the hypothesis µ ≤ 0 against the alternative µ > 0, which is by
definition a stopping rule N with the property that Pµ(N < ∞) ≤ α (< 1) for
all µ ≤ 0, while Pµ(N < ∞) = 1 for all µ > 0. Invoking the stopping rule is
interpreted as a declaration that µ > 0. In addition to satisfying the constraints on
Pµ(N < ∞), one wants to minimize in some suitable sense the expected amount
of sampling, Eµ(N), for µ > 0. Darling and Robbins (1967) showed that a test
of power one can be obtained as a stopping rule of the form N = inf{n :Sn ≥ cn}
(infφ = +∞), where cn ≥ cn1/2 for large n, to avoid the problem of the law of
the iterated logarithm identified by Feller, and cn/n → 0 as n → ∞. They also
discussed a two-sided version of the problem along with the related notion of a
confidence sequence: a sequence of random intervals In with the property that
Pµ(µ ∈ In for all n ≥ 1) ≥ 1 − α.

The problem was discussed in a number of subsequent papers, for example,
Robbins (1970) and Robbins and Siegmund (1970, 1974b). Cornfield (1966) is
also motivated by the issue of optional stopping and arrives at somewhat similar
ideas, expressed from a Bayesian perspective. Related results of considerable
technical virtuosity motivated by quite different statistical issues are found in
Farrell (1964).

To describe these and related results, let Y1, Y2, . . . be a sequence of random
variables and let Fn denote the σ -algebra generated by Y1, . . . , Yn. Let P and Q

denote two probability measures on the sequence of Y ’s and let Pn and Qn

denote the restriction of these probabilities to Fn. (In applications P will denote
probability under a specific hypothesis, e.g., that the Y ’s are independent and
normally distributed with mean 0 and variance 1, while Q is related in a natural
way to an alternative hypothesis.) Suppose that Qn and Pn are mutually absolutely
continuous for every value of n and let Zn = log dQn/dPn. For any stopping time,
possibly infinite valued, following Wald, we have

P {N < ∞} =
∞∑
1

P {N = n} =
∞∑
1

∫
{N=n}

e−Zn dQ =
∫
{N<∞}

e−ZN dQ.(6)

For the special case N = inf{n :Zn ≥ b} (infφ = +∞), we obtain

P {N < ∞} = exp(−b)

∫
{N<∞}

exp[−(ZN − b)]dQ ≤ exp(−b).(7)

Similar arguments in the special case that Y1, Y2, . . . are independent, identically
distributed random variables under both P and Q are the basis of Wald’s analysis
of the sequential probability ratio test. For example, let Pµ be the probability that
makes the Y ’s independently and normally distributed with mean µ and variance 1.
Let P = P0 and Q = Pµ1 for some fixed µ1 > 0. Then

Zn = µ1Sn − nµ2
1/2,(8)
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so the inequality Zn ≥ b is equivalent to Sn ≥ nµ1/2 + b/µ1, and (7) yields a
well-known inequality. However, since Pµ{N = ∞} > 0 whenever 0 < µ < µ1/2,
this special case cannot be used for a test of power one.

Now let P = P0 be as above and

Q =
∫ ∞
−∞

Pµφ(µ)dµ,(9)

where φ is the standard normal density. Then

Zn = [
S2

n/(n + 1) − log(n + 1)
]
/2,(10)

so Zn ≥ b is equivalent to

|Sn| ≥ {
(n + 1)[log(n + 1) + 2b]}1/2

.(11)

This can be used to define a two-sided test of power one of µ = 0 against µ �= 0,
and by inversion a confidence sequence for the normal mean µ. The case where
the integral in (9) is restricted to the positive half-line yields a one-sided test of
power one.

As suggested above, there are natural theoretical questions connnecting tests
of power one and the law of the iterated logarithm. See Farrell (1964) and
Robbins and Siegmund (1970, 1974b). Indeed, the investigation of these issues
in Robbins and Siegmund (1970) led to the discovery of an error in the classical
paper of Feller (1946), with complete resolution in Bai (1989), who used a result
in Feller (1970).

Although tests of power one and confidence sequences are theoretically and
intuitively appealing, because of their unbounded and indeed possibly infinite
sample size they appear to have no direct application. However, by focusing
attention on simple conceptual and technical problems, these and related ideas
have proved very useful in the design and analysis of practical procedures. Some
examples follow.

(i) Armitage, McPherson and Rowe (1969), Armitage (1975) and Pocock (1977)
suggested the use of “repeated significance tests” for clinical trials. In this context,
the random variable Yn represents the difference in response to two treatments
within the nth pair in a sequential clinical trial, or the sum of such differences
within the nth group in a group sequential trial. For simplicity and because
a number of more complicated models reduce to this one asymptotically by
the central limit theorem, the Y ’s are assumed to be independent and normally
distributed with mean µ and variance 1. The hypothesis of no treatment effect is
µ = 0. The sample size is min(N,m), N is defined by (4) and m is a fixed upper
bound for the sample size. The hypothesis is rejected if and only if N ≤ m, so the
significance level is P0{N ≤ m}. This is closely related to the probability in (5) and
was evaluated by Armitage, McPherson and Rowe (1969) by repeated numerical
integration.
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Theoretical approximations to the significance level of a repeated significance
test and other related sequential tests were given by Lai and Siegmund (1977),
who used the representation (6) and the log likelihood ratio arising from (9), and
by Woodroofe (1976), who developed a completely different method having roots
in Anscombe (1953). Generalizations to multiparameter exponential families were
obtained by Woodroofe (1978), Lalley (1983) and Hu (1988). See Woodroofe
(1982) and Siegmund (1985) for more complete discussions and related references.

(ii) Similarly, the expected sample size approximations given by Siegmund
(1985) for repeated significance tests build on the earlier results for tests of power
one obtained by Robbins and Siegmund (1974b), Pollak and Siegmund (1975) and
Lai and Siegmund (1979).

(iii) Sequential change-point detection utilizes methods discussed in the
preceding paragraphs in conjunction with optimal stopping theory. Lorden (1971)
observed that the sequential CUSUM test of Page (1954) for detection of a change
in a normal mean from an initial value of µ = 0 to the value µ = µ1 �= 0 can
be described as follows: for each k = 0,1,2, . . . , let Nk denote N applied to the
“shifted” data Zk+n − Zk , n = 1,2, . . . , where Zn is defined in (8). Detection
of a change occurs at min(Nk + k). Lorden used inequality (7) in proving the
asymptotic optimality of this sequential CUSUM test. Siegmund and Venkatraman
(1995) and Pollak (1985, 1987) give an in-depth study of a related stopping rule
suggested initially by Shiryayev (1963), which was derived from optimal stopping
theory applied to a particular Bayesian version of the problem.

(iv) For the fixed-sample problem of testing whether a sequence of normally
distributed observations has a constant mean against the alternative of at most one
change in the mean when (for simplicity) the variance is known, the log likelihood
ratio statistic is

max
1≤j≤n

|Sj − jSn/n|/[j (1 − j/n]1/2,

which is closely related to the max1≤j≤n |Sj |/j1/2 of a repeated significance test.
Siegmund (1985, 1986) uses a mixture of likelihood ratios similar to (9) and an
argument along the lines of Lai and Siegmund (1977) to give an approximation to
the significance level. A related problem of interest is to test the hypothesis of a
constant mean value against the alternative that over some interval, say from j to k,
where j < k are both unknown, the observations have a mean value that differs
from the baseline value that they have outside the interval [j, k]. Since this test
involves a two-dimensional maximization with respect to the two putative change
points, an argument using (6), which depends strongly on the linear structure of
the indexing set and the stopping time N , does not appear to generalize. Siegmund
(1988) has adapted Woodroofe’s (1976) alternative method to deal with this and
other problems involving maxima of multiply indexed random fields. Yakir and
Pollak (1998) have recently introduced a change of measure different from (6),
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which does not use stopping times or intrinsically require a linearly ordered
indexing set. See Siegmund and Yakir (2000a) for applications to a number of
change-point-like problems and Siegmund and Yakir (2000b) for an application to
pairwise local sequence alignments in searching protein data bases.

(v) Statistical analysis of genetic mapping leads naturally to problems very
similar to that of testing for a constant normal mean against the alternative of
at most one change, but now the basic underlying observations are the discrete
skeleton of an Ornstein–Uhlenbeck-like process, which can be studied by a change
of measure or by Woodroofe’s (1976) method. See Feingold, Brown and Siegmund
(1993) for a detailed discussion.

Another example of the intersection of sequential hypothesis testing and
optimal stopping theory, which again involves Robbins’ reaction to the ideas
of Anscombe, arises out of Anscombe’s (1963) review of the first edition of
Armitage’s Sequential Medical Trials [Armitage (1960)]. Anscombe criticized
Armitage’s formulation on the grounds that it was not explicitly decision theoretic
or Bayesian in its approach. For an idealized model, which involved pairwise
allocation of two treatments until a (random) time when a decision is made to
treat all future patients up to a previously specified horizon with what was judged
to be the better of the two treatments, Anscombe formulated a set of costs that
balanced the risk of making a wrong decision against the delay in choosing
the better treatment for application to all patients in the future. After assigning
a prior distribution to the difference in mean values of responses to the two
treatments, the problem becomes one of optimal stopping. Anscombe conjectured
an approximation to an optimal rule, which leads to something quite different
from the tests suggested in Armitage (1960) and the repeated significance tests
he favored in the second edition of his book in 1975. Lai, Levin, Robbins and
Siegmund (1980) showed that Anscombe’s suggested procedure is not particularly
close to the optimal stopping rule, but it nevertheless performs about as well as
the optimal rule and another heuristically motivated rule they suggested. Chernoff
and Petkau (1981, 1985) have made related contributions from a similar point of
view. Armitage (1985) discusses reasons why these models have not found their
way into the practice of clinical trials.

6. Summary. I have discussed Robbins’ research in sequential analysis—its
relation to previous and to contemporaneous research and its influence on subse-
quent research. We see that unlike stochastic approximation and empirical Bayes,
where his first articles were arguably unprecedented, sequential analysis was a
rapidly developing subject when Robbins made his first contributions. Conse-
quently, his recurrent contributions can be seen as a dialogue with his contem-
poraries that has influenced succeeding generations. Although necessarily selec-
tive, I hope this review has shown that by virtue of his ability to identify simple
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conceptual problems containing the germ of important general ideas, Herbert Rob-
bins’ research in sequential analysis was a major intellectual achievement that has
changed forever the way we think about a large class of challenging problems.
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