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WAVELET THRESHOLDING FOR NON-NECESSARILY
GAUSSIAN NOISE: IDEALISM

BY R. AVERKAMP1 AND C. HOUDRÉ2

Freiburg University and Université Paris XII and Georgia Institute of Technology

For various types of noise (exponential, normal mixture, compactly
supported, . . . ) wavelet thresholding methods are studied. Problems linked
to the existence of optimal thresholds are tackled, and minimaxity properties
of the methods also analyzed. A coefficient dependent method for choosing
thresholds is also briefly presented.

1. Introduction. A common underlying assumption in nonparametric curve/
surface/signal estimation is that the function to estimate has some redundancy and
this is often reflected by the hypothesis that it belongs to a particular functional
class. A similar prior assumption is that limited information is present in this
curve/surface/signal. For example, it could be discontinuous but only at a limited
number of places, or the function to estimate is assumed to have only one mode
or to be monotone. Then, the heuristic for the use of wavelets in non-parametric
estimation is that the expansion of such a function in a wavelet basis is sparse,
that is, only a few of the wavelet coefficients are big and the rest are small and
thus negligible. Hence, in order to estimate the function, one has to estimate the
large wavelet coefficients and discard the rest. This approach has proved useful
and successful as shown, in recent years, by various authors [1, 7, 9–13, 15, 21,
23–25, 28, 33, 39].

Since we do not review the theory of wavelets here, we refer the reader to the
books of Daubechies [8] and Meyer [31, 32] for an introduction to the subject.
Nevertheless, let us just say that in using a multiresolution approach there is a large
family of wavelets with compact support generating orthonormal bases. Moreover,
properties of compactly supported wavelets are at the root of a very efficient analog
of the fast Fourier transform, the so-called fast wavelet transform. With this in mind
and from now on, we use an orthonormal wavelet basis from a multiresolution
analysis adapted to an interval.

Next, nonparametric estimation via wavelet methods is usually divided into
two steps. The first step transforms the data into something which can be input
into the fast wavelet transform, that is, noisy versions (denoted by c̃j0,k) of the
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scaling coefficients cj0,k , with j0 large. The fast wavelet transform is then applied
to this data giving noisy versions of the wavelet coefficients dj,k (denoted by d̃j,k

and called the empirical wavelet coefficients). In the second step, estimates d̂j,k

of the dj,k are computed using the d̃j,k and using the heuristic that the wavelet
transform of the signal is sparse and that the noise is evenly spread over the
empirical wavelet coefficients. From this, estimation of the original function can
easily be obtained.

A simple approach, which can be viewed as a first-order approximation, for
getting the c̃j0,k is to assume that they are given, of the form c̃j0,k = cj0,k + ek ,
where the ek are i.i.d. random variables. Although this might seem rather naive, it
is close to the equidistant design case in a regression problem. Indeed, assuming
for simplicity that f is defined on [0,1] and continuous at xk = 2−j0k, k = 1, . . . ,

n = 2j0 , then

cj0,k = 2j0/2
∫

R

ϕ(2j0x − k)f (x) dx ≈ f (2−j0k)2−j0/2 = f (xk)2
−j0/2,(1.1)

since for the scaling function ϕ,
∫
R

ϕ(x) dx = 1.
A word on notation is needed here: Throughout the text, a ≈ b is used to mean

“about the same,” that is, a/b is approximately 1, and an ∼ bn means that an/bn

tends to 1 as n tends to infinity.
Assume now that we obtained (by some preprocessing) noisy observations of

the cj0,k (:= fk),

c̃j0,k = fk + ek, k = 1, . . . ,2m = n,(1.2)

where the ek are i.i.d. random variables which represent the noise or the
observation errors. Applying a fast wavelet transform Wn to the data (c̃j0,k) gives

w̃j,k = (Wn(f ))j,k + (Wn(e))j,k := wj,k + zj,k,(1.3)

where for the transformed data, we write w·,· rather than d·,· since the coefficients
do not exactly correspond to the wavelet coefficients, due to boundary effects and
since we do not compute the whole “triangle” of coefficients but stop at some level
jtop (and replace the top dj,k, j ≥ jtop, by the cjtop,k).

Again, since the wavelet transform of a “nice” function is sparse, it is expected
that only a small fraction of the wavelet coefficients are big and that the rest are
small and thus negligible. So if a w̃j,k is small, it is reasonable to regard it as
mostly noise and to set wj,k to zero; if it is big, it is reasonable to keep it. This
is known as hard thresholding. Soft thresholding shrinks everything toward zero
by a certain amount, thus reducing the variance of the estimation at the cost of a
higher bias. Nonlinear shrinking policies were first applied to wavelet coefficients
by Donoho and Johnstone [12–14, 16] and in a function space framework by
DeVore and Lucier [11]. (This procedure has some origin in [17]; see also [5].)
In both cases the threshold usually depends on the index (j, k). There is by now
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a variety of papers on these rules, and other shrinking methods have also been
proposed [6, 20] but, all in all, the asymptotic performances of the different
shrinking estimators do not vary much. We refer the reader to the book of
Vidakovic [38] for further information on wavelets in statistics.

Clearly, the thresholds should depend on the type of noise and on the variance
of the noise in the initial data. For i.i.d. normal initial noise, the distribution of
the noise in the wavelet coefficients is also i.i.d. normal. In practice, the normal
noise assumption is not always realistic. For large datasets one can rely on the
central limit theorem and get the same asymptotic results as in the normal case,
but this will not do for small datasets (e.g., see [19]). Matters get worse if the
requirement of independence in the initial noise is dropped; often the initial data
to which the wavelet transform is applied is already the result of preprocessing
(when dealing with irregularly spaced design, random design, density estimation),
and then the noise is neither identically distributed nor independent. In particular,
for noise with tails heavier than normal, the thresholds are sometimes too small. To
date, only a few results directly deal with nonnormal noise ([19, 26, 27], etc.), and
it is the purpose of the present work to help better understand such a case. Let us
describe the content of the present paper. In the next section we recall the “ideal”
denoising method and study it for certain classes of noise. Minimax type results
are obtained in Section 3. In Section 4, compactly supported noises are tackled.
Section 5 deals with compactly supported noise with a smooth density. In the last
section, a different approach to choosing thresholds is introduced (the threshold of
the kth coefficient is always the same, no matter the signal length). This is studied
in a normal framework, the extension to nonnormal noise being briefly indicated.
Various simulations and computations are also presented. At times, our approach
also complements the Gaussian framework. Many of the results presented here
have been announced in [2] and were presented at the 1996–1997 wavelet special
year in Montréal. A companion paper [3] studies the function space approach to
denoising in a not-necessarily normal framework.

2. The ideal method. Let us briefly recall Donoho and Johnstone’s ideal
denoising method [13]. Given noisy wavelet coefficients, that is, the true wavelet
coefficient plus a random term which represents the noise and assuming that one
has knowledge of the true wavelet coefficients, an ideal (oracular) estimator is to
set a noisy coefficient to zero if the variance σ 2 of the noise is greater than the
square of the true wavelet coefficient; otherwise the noisy coefficient is kept. The
mean square error of this estimator is the minimum of σ 2 and of the square of the
coefficient. Under the assumption of i.i.d. normal noise (see also [22] for normal
correlated noise), these authors show that the soft thresholding estimator achieves a
risk at most O(log n) times the risk of this ideal estimator. Moreover, no estimator
is asymptotically better.

The “ideal method” does not require any a priori knowledge of the function to
denoise, but might not be optimal when smoothness class information is available.
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For many “smooth” functions “most of” the wavelet coefficients are rather small
and only a small part of the wavelet coefficients are big. This means that the
risk of the ideal estimator is small and this, in turn, implies that the risk of soft
thresholding is small for these functions.

Let us now assume the regular design situation; that is, we have the observations
Xi = fi + ei , i = 1, . . . , n = 2m, where the ei have finite variance. To this data we
apply a discrete wavelet transform Wn : Rn → R

n which is adapted to an interval
by boundary corrections or by periodization, in any case in such a way that Wn is
an orthonormal transformation.

Let Y = Wn(X) be the empirical wavelet coefficients, let θ = Wn(f ) and let
z = Wn(e). Thus Yi = θi + zi , i = 1, . . . , n, and the respective mean square errors
in estimating θ and f are equal. Assuming some knowledge of the true wavelet
coefficients θ , the oracular estimation for θi is then given by θ̌i = Yi if θ2

i > σ 2

and θ̌i = 0 if θ2
i ≤ σ 2. In plain words, an empirical wavelet coefficient is kept if its

contribution to the energy of the function is greater than the variance of the noise;
otherwise it is discarded. The performances of other estimators (in particular of the
soft thresholding estimator T S

λ (x) = (|x| − λ)+ sgn(x) or of the hard thresholding
estimator T H

λ (x) = x1{|x|>λ}) when applied to Y are compared to the benchmark

Bn(θ, σ 2) := σ 2 +
n∑

i=1

min(θ2
i , σ 2),(2.1)

which is the mean square error of θ̌ plus σ 2 which itself represents the penalty
corresponding to the error of the oracular estimator θ̌ if θ = 0 (see [13]). This is
close to assuming that at least one θ2

i is greater than σ 2; note also that Bn(θ, σ 2)

is small in comparison to nσ 2 (the sum of the variances of the components of X)
if θ (the wavelet transform) is sparse.

A further note is necessary here: let f be a function defined on [0,1] and let
Wn be a wavelet transform based on the wavelet ψ ; then it follows from (1.1) that

Wn

(
f (i/n)i=1,...,n

)
j,k ∼ √

n〈f,ψj,k〉.
So, in the sequel, when the thresholds are increasing with n, it is important to
remember that the true wavelet coefficients are also increasing with n, whereas the
variance of the noise in the coefficients remains constant.

If the ei are i.i.d. normal random variables, then so are the zi . Now, for
Yi = θi + zi , i = 1, . . . , n, n ≥ 3, where the θi are parameters of interest and where
the zi are centered i.i.d. normal random variables with variance σ 2, Donoho and
Johnstone [13] proved that

sup
θ∈Rn

E‖T S
λ∗

n
(Y ) − θ‖2

Bn(θ, σ 2)
≤ �∗

n := inf
λ

sup
t∈R

E(T S
λ (X) − t)2

n−1 + min(t2,1)
≤ (1 + 2 logn),

where λ∗
n ≤ σ

√
2 logn is the largest λ attaining �∗

n and where X ∼ N(t,1). (Here
and throughout, ‖ · ‖ denotes the Euclidean norm and θi are real parameters of
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interest.) A result of this type is also proved for i.i.d. random variables with
exponential tails in [19].

Inspired by the above results and their proofs, we now provide for i.i.d. random
variables zi with (known) distribution, a general (nonasymptotic) estimate on
the ratio of thresholding risk and benchmark. It should also be emphasized here
that the result below (as well as Proposition 2.5) does not depend at all on the
correlation among the coefficients (except for their variances). However, for highly
correlated coefficients, the benchmark as defined by (2.1) might not be such a good
measure of estimation.

THEOREM 2.1. Let Yi = θi + zi , i = 1, . . . , n, n ≥ 4, where the zi are
identically distributed symmetric (about zero) random variables with law µ and
such that Ez2

1 = σ 2. Then, the equation

(n + 1)p(λ,0) := 2(n + 1)

∫ ∞
λ

(x − λ)2µ(dx) = λ2 + σ 2,(2.2)

has a unique positive solution λn. Moreover,

�n := inf
λ

sup
θ∈Rn

E‖T S
λ (Y ) − θ‖2

Bn(θ, σ 2)
= sup

θ∈Rn

E‖T S
λn

(Y ) − θ‖2

Bn(θ, σ 2)
= n(λ2

n + σ 2)

(n + 1)σ 2 .

PROOF. For λ ≥ 0, θ ∈ R, let

p(λ, θ) := E|T S
λ (z1 + θ) − θ |2

(2.3)
=

∫
R

(
sgn(x + θ)(|x + θ | − λ)+ − θ

)2
µ(dx),

and let also

Ln(λ) := sup
θ∈R

p(λ, θ)

σ 2/n + min(θ2, σ 2)
.

Then
n∑

i=1

E|T S
λ (Yi) − θi|2 ≤ Ln(λ)

n∑
i=1

(
σ 2

n
+ min(θ2

i , σ 2)

)
= Ln(λ)Bn(θ, σ 2).(2.4)

The function p(λ,∞) := limθ→∞ p(λ, θ) = σ 2 +λ2 is continuous and increasing
on [0,∞), whereas p(λ,0) = 2

∫ ∞
λ (x−λ)2µ(dx) is continuous and nonincreasing

on [0,∞) (decreasing on the positive part of the support of µ, and zero outside
the support). Moreover, p(0,0) = p(0,∞) = σ 2. Hence λn, which is the unique
solution of

p(λ,0)

σ 2/n
= p(λ,∞)

σ 2 + σ 2/n
,
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minimizes

sup
θ∈{0,∞}

p(λ, θ)

σ 2/n + min(θ2, σ 2)
,

that is,

n(λ2
n + σ 2)

(n + 1)σ 2 = inf
λ

sup
θ∈{0,+∞}

p(λ, θ)

σ 2/n + min(θ2, σ 2)
(2.5)

= sup
θ∈{0,+∞}

p(λn, θ)

σ 2/n + min(θ2, σ 2)
.

We now claim that

Ln(λn) = sup
θ∈R

p(λn, θ)

σ 2/n + min(θ2, σ 2)
= sup

θ∈{0,∞}
p(λn, θ)

σ 2/n + min(θ2, σ 2)
.(2.6)

Let λ be fixed, let δθ be the Dirac measure with unit mass at θ and let

fλ,θ (x) := (T S
λ (x) − θ)2 =


(x − θ + λ)2, x ∈ (−∞,−λ],
θ2, x ∈ (−λ,λ),

(x − θ − λ)2, x ∈ [λ,∞).

If λ > h > 0, θ > 0, then

p(λ, θ + h) =
∫

R

fλ,θ+h(x)(µ ∗ δθ+h)(dx)

=
∫

R

fλ,θ+h(x + h)(µ ∗ δθ )(dx)

≥
∫

R

fλ,θ (x)(µ ∗ δθ )(dx) = p(λ, θ),

where the inequality holds since

fλ,θ+h(x + h) =


(x − θ + λ)2, x ∈ (−∞,−λ − h],
(θ + h)2, x ∈ (−λ − h,λ − h),

(x − θ − λ)2, x ∈ [λ − h,∞),

≥ fλ,θ (x).

Thus p(λ, θ) is nondecreasing in θ on (0,∞) and nonincreasing on (−∞,0) since
µ is symmetric. Therefore

sup
|θ |≥σ

p(λ, θ)

σ 2/n + min(θ2, σ 2)
= p(λ,∞)

σ 2/n + σ 2

(
= p(λ,−∞)

σ 2/n + σ 2

)
.(2.7)
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We now claim that θ2 + p(λ,0) ≥ p(λ, θ). Indeed,

θ2 + fλ,0(x) =


θ2 + (x + λ)2, x ∈ (−∞,−λ],
θ2, x ∈ (−λ,λ),

θ2 + (x − λ)2, x ∈ [λ,∞),

≥


(x + λ)2, x ∈ (−∞,−λ − θ],
θ2, x ∈ (−λ − θ, λ − θ),

(x − λ)2, x ∈ [λ − θ,∞),

= fλ,θ (x + θ).

Hence

θ2 + p(λ,0) =
∫

R

(
θ2 + fλ,0(x)

)
µ(dx) ≥

∫
R

fλ,θ (x + θ)µ(dx)

(2.8)
=

∫
R

fλ,θ (x)(µ ∗ δθ )(dx) = p(λ, θ),

which proves our claim. Assume for a moment that p(λn,0) ≥ σ 2/n; it then
follows from (2.8) that for θ ∈ [−σ,σ ],

p(λn, θ)

σ 2/n + min(θ2, σ 2)
= p(λn, θ)

σ 2/n + θ2 ≤ θ2 + p(λn,0)

σ 2/n + θ2 ≤ p(λn,0)

σ 2/n
.(2.9)

We therefore conclude from (2.7) and (2.9) that if p(λn,0) ≥ σ 2/n, then

sup
θ∈R

p(λn, θ)

σ 2/n + min(θ2, σ 2)
= sup

θ∈{0,∞}
p(λn, θ)

σ 2/n + min(θ2, σ 2)
.

Let us now show for n ≥ 4, p(λn,0) ≥ σ 2/n, or equivalently, since p(λn,0)/

(σ 2/n) = (σ 2 + λ2
n)/(1 + 1/n)σ 2, that λ2

n ≥ σ 2/n. Indeed,

p(λ,0) = Eg(z2
1) ≥ g(Ez2

1) = g(σ 2) = Eg(Y 2) = pY (λ,0),

where g(x) = (
√|x| − λ)2+ is convex, where Y is a random variable with law

(δ−σ +δ+σ )/2 and where pY (λ,0) is as in (2.2) with µ replaced by (δ−σ +δ+σ )/2.
Hence p(λ,0) ≥ pY (λ,0) which implies that λn ≥ ξn, where ξn is the solution of
(n + 1)pY (ξ,0) = ξ2 + σ 2. Thus it is enough to prove that for n ≥ 4, ξ2

n ≥ σ 2/n,
but this is easily verified since ξn is the solution (smaller or equal to σ ) of
(n + 1)(σ − ξ)2 = ξ2 + σ 2. Hence (2.4)–(2.6) show that

�n ≤ sup
θ∈Rn

E‖T S
λn

(Y ) − θ‖2

Bn(θ, σ 2)
≤ Ln(λn) = n(λ2

n + σ 2)

(n + 1)σ 2
.

To finish the proof, we now show that λn is the optimal threshold. For λ > 0 we
have (choosing θ = 0 or θ = ∞)

sup
θ∈Rn

E‖T S
λ (Y ) − θ‖2

Bn(θ, σ 2)
≥ max

(
np(λ,0)

σ 2
,
np(λ,∞)

(n + 1)σ 2

)
≥ Ln(λn),
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where the second inequality holds since λn minimizes the second term and Ln(λn)

is the minimum of this term by (2.5) and (2.6). This finishes the proof. �

REMARK 2.2. If the zi are compactly supported on [−M,M],
limλ→M p(λ,0) = 0, thus limn→+∞ λn = M and limn→+∞ �n = (σ 2 + M2)/σ 2.
In this case the risk associated with soft thresholding is comparable to the bench-
mark. For example, if the law of z1 is (δ−σ + δ+σ )/2, then as n → +∞, λn → σ

and �n → 2. Thus the soft thresholding risk is only twice as bad as the benchmark.
For the uniform distribution on [−M,M], the ratio is 4. The ratio becomes worse
if the size of the support is large in comparison to the variance.

REMARK 2.3. Theorem 2.1 is still true if µ is not symmetric. It was
notationally convenient not to include this case above. Replacing in (2.2),

2
∫ ∞
λ

(x − λ)2µ(dx) by
∫ ∞
|x|>λ

(|x| − λ)2µ(dx),

gives a result for arbitrary µ. However, it might be better to use different thresholds
for each side, but this leads to another class of estimators. Nevertheless, then the
optimal pair of thresholds (λleft, λright) is the solution of

(n + 1)

(∫ λleft

−∞
(|x| − λleft)

2µ(dx) +
∫ ∞
λright

(|x| − λright)
2µ(dx)

)
= max(λ2

left, λ
2
right) + σ 2,

as easily seen by the methods presented above.

REMARK 2.4. The previous method of proof can also be applied to other loss
functions, thus removing the second moment assumption on the zi in Theorem 2.1.
This is briefly explained now. Let 	 be an even convex function with 	(0) = 0, and
let m	 := E	(z1) < +∞. Let Bn(θ,m	) := m	 + ∑n

i=1 min(	(θi),m	) and finally
let p	(λ, θ) := E	(T S

λ (z1 + θ) − θ). Then, for all n ≥ n0, the equation

(n + 1)p	(λ,0) = 2(n + 1)

∫ ∞
λ

	(x − λ)µ(dx) = E	(z1 − λ)(2.10)

has a unique positive solution λn with, moreover,

sup
θ∈Rn

E
∑n

i=1 	(T S
λn

(Yi) − θi)

Bn(θ,m	)
= inf

λ
sup
θ∈Rn

E
∑n

i=1 	(T S
λ (Yi) − θi)

Bn(θ,m	)
= nE	(z1 − λn)

(n + 1)m	

.

As in the previous proof, we see that for λ ≥ 0, p	(λ,0) is continuous and
nonincreasing (decreasing on the positive part of the support of µ and zero outside)
while (by the convexity of 	 and since µ is symmetric) p	(λ,∞) = E	(z1 − λ) is
continuous and nondecreasing and moreover p	(0,∞) = m	. These ensure that

p	(λ,0)

m	/n
= p	(λ,∞)

m	 + m	/n
,
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has a unique positive solution λn which minimizes

sup
θ∈{0,∞}

p	(λ, θ)

m	/n + min(	(θ),m	)
,

and np	(λn,∞)/(n + 1)m	 is equal to this minimum. This leads us to a claim
similar to (2.6) but with p replaced by p	 and σ 2 replaced by m	. To prove it,
proceeding as above, we arrive at

sup
|θ |≥	−1(m	)

p	(λ, θ)

m	/n + min(	(θ),m	)
= p	(λ,∞)

m	/n + m	

(
= p	(λ,−∞)

m	/n + m	

)
,(2.11)

which is the 	-version of (2.7). Then for all θ , m	 + p	(λ,0) ≥ p	(λ, θ) and
assuming for a moment that np	(λn,0) ≥ m	, it then follows that for θ ∈
[−	−1(m	), 	

−1(m	)],
p	(λn, θ)

m	/n + min(	(θ),m	)
= p	(λn,0)

m	/n
.

This proves that for all n such that np	(λn,0) ≥ m	,

sup
θ∈R

p	(λn, θ)

m	/n + min(	(θ),m	)
= sup

θ∈{0,∞}
p	(λn, θ)

m	/n + min(	(θ),m	)
,

and the result is proved.

Unfortunately the previous theorem does not, in general, directly apply to
the noisy wavelet coefficients; the requirement of identically distributed random
variables is too strong. In the case of nonidentically distributed random variables,
the next result gives a good suggestion for a threshold and an upper bound for the
ratio of risks, namely compute λn,i for each zi separately, and choose for global
threshold the largest of those λn = supi λn,i . This will give a bound on the ratio
of risks which is more handy (although bigger) than supi �n,i (note that infi �n,i

provides a lower bound). Note also that below the benchmark Bn(θ, σ ) has been
replaced by

∑n
i=1(min(θ2

i , σ 2
i ) + σ 2

i /n) since the variances σ 2
i are no longer the

same and the oracular estimation is done coefficient by coefficient. In light of
the remarks above, it is also clear that below the symmetry (or quadratic loss)
assumption can be removed.

PROPOSITION 2.5. Let Yi = θi + zi , i = 1, . . . , n with n ≥ 4, where the zi are
symmetric (about zero) random variables with law µi such that Ez2

i = σ 2
i . Let

σ̄ 2 = (
∑n

i=1 σ 2
i )/n. For each i, let λn,i be the unique solution of the equation

2(n + 1)

∫ ∞
λ

(x − λ)2µi(dx) = λ2 + σ 2
i , λ > 0,(2.12)
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let λn ≥ supi λn,i and let �n := supi (λ
2
n + σ 2

i )/(σ 2
i (1 + 1/n)). Then

sup
θ∈Rn

E‖T S
λn

(Y ) − θ‖2

σ̄ 2 + ∑n
i=1 min(θ2

i , σ 2
i )

≤ �n.(2.13)

PROOF. The proof is similar to the proof of the previous theorem. All we need
to show is that

sup
θ∈R

pi(λn, θ)

σ 2
i /n + min(θ2, σ 2

i )
≤ �n, i = 1, . . . , n,(2.14)

where pi(λ, θ) := ∫
R

|T S
λ (x + θ)− θ |2µi(dx). As shown in the previous proof, the

left-hand side in (2.14) is smaller than the maximum of

λ2
n + σ 2

i

(1 + 1/n)σ 2
i

and sup
θ∈[−σi,σi ]

pi(λn, θ)

σ 2
i /n + θ2

.

Now, the first term above is dominated by �n while for the second term,

sup
θ∈[−σi,σi ]

pi(λn, θ)

σ 2
i /n + θ2

≤ sup
θ∈[−σi,σi ]

pi(λn,0) + θ2

σ 2
i /n + θ2

≤ sup
θ∈[−σi,σi ]

pi(λn,i,0) + θ2

σ 2
i /n + θ2

= λ2
n,i + σ 2

i

σ 2
i (1 + 1/n)

≤ �n,

where the second and third inequalities hold since λn,i ≤ λn, and the equality holds
because of the properties of λn,i obtained in the proof of Theorem 2.1. �

We want to apply the above theorem to empirical wavelet coefficients Yk =
θk +zk . Since Wn is orthonormal, the zk are linear combinations of the initial noise,
that is, zk = ∑n

i=1 w
(n)
k,i ei with

∑n
i=1(w

(n)
k,i )

2 = 1 and λn,k is thus quite complicated
to compute. An alternative is to find an upper bound for the λn,k which only
depends on the initial noise (ei). By Proposition 2.5, to compute an upper bound
for the performance of soft thresholding, we just need to find an upper bound
for all the optimal thresholds. Now, for given symmetric distributions µ1 and µ2
with µ1([t,∞)) ≤ µ2([t,∞)), t ≥ 0, and σ 2

1 = σ 2
2 = σ 2, let λi , i = 1,2, be the

solutions of

2(n + 1)

∫ ∞
λ

(x − λ)2µi(dx) = λ2 + σ 2, λ > 0, n ∈ N, i = 1,2;
where clearly λ2 ≥ λ1. By a classical result of Hoeffding (see [35], page 855), if
the ei are zero mean, bounded i.i.d. random variables (or just bounded independent
or even bounded martingale differences) and, say, with support [−M,M],

P (zk ≥ t) ≤ exp
( −2t2∑

i w
2
k,i(M − (−M))2

)
= exp

( −t2

2M2

)
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for t ≥ 0. Thus an upper bound for the optimal thresholds of the empirical
wavelet coefficients is the solution of (2.2) for the symmetric distribution µ2
defined by µ2([t,∞)) := exp(−t2/(2M2)). In Theorem 2.7, we show that for

this µ2, the solution is asymptotically like
√

2M2 logn. Estimates more precise

than exp(−t2/(2M2)) are available but the asymptotics of the thresholds do not
change much with these. For centered (ei) with exponential tails, estimates on
P (zk ≥ t) are known ([34], Section 2.2) and these also provide upper bounds for
the optimal thresholds for this class of noise.

If (ei) has tails heavier than normal, then the central limit theorem applies and
the distribution of

∑
i wk,iei “tends” to the normal distribution; that is, its tail

is becoming smaller. This tail compression property and the fact that the family
of variance mixtures of normal random variables is closed under mixtures and
convolutions leads us to the following which provides another approach to finding
threshold upper bounds.

PROPOSITION 2.6. Let µ be a variance mixture of normal distributions,
that is, the measure µ defined on R is absolutely continuous with density∫ ∞

0 φs(x)ν(ds), where ν is a probability measure on (0,∞) and where φs is
the centered normal density of variance s. Let Xi , i = 1, . . . , n, be i.i.d. random
variables with law µ, and let g be a convex function on R

+. Finally, let
a1, . . . , an ∈ R, b1, . . . , bn ∈ R, with respective squares written in nonincreasing
order (· · ·a2

i ≥ a2
i+1 ≥ · · ·), (· · ·b2

i ≥ b2
i+1 ≥ · · ·) be such that

∑k
i=1 a2

i ≤ ∑k
i=1 b2

i ,
k = 1, . . . , n − 1, and

∑n
i=1 a2

i = ∑n
i=1 b2

i . Then,

Eg

((
n∑

i=1

aiXi

)2)
≤ Eg

((
n∑

i=1

biXi

)2)
.

PROOF. For y ≥ 0, let RN(y) := Eg(yN2) where N is a standard normal
random variable. Clearly, RN is a convex function since y → g(yx2) is convex for
all x ∈ R. Next, it is easy to see that, for any a1, . . . , an ∈ R and Xi i.i.d. with law
a variance mixture of normals,

∑n
i=1 aiXi is again a variance mixture of normal

random variables. The mixing measure of this sum is given by νa2
1

∗ · · · ∗ νa2
n
,

where for any c > 0, νc is the measure ν(·/c)/c and ν0 is the Dirac measure with
unit mass at 0, and where ν is the mixing measure of Xi . Now,

R(a2
1, . . . , a

2
n) := Eg

((
n∑

i=1

aiXi

)2)

=
∫ +∞
−∞

g(x2)

(∫ ∞
0

· · ·
∫ ∞

0
φ∑n

i=1 a2
i ui

(x)ν(du1) · · ·ν(dun)

)
dx
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=
∫ ∞

0
. . .

∫ ∞
0

(∫ +∞
−∞

g(x2)φ∑
a2
i ui

(x) dx

)
ν(du1) · · ·ν(dun)

= ERN

(
n∑

i=1

a2
i Yi

)
,

where the Yi are i.i.d. random variables with law ν. Since RN is convex, it follows
from [30], Chapter 12, beginning of Section G that R is Schur-convex, which gives
the result. �

Let us now briefly explain how the previous proposition can be used when the
initial noise e = (ei) is i.i.d. with law µ a variance mixture of normals (see also
Proposition 1.5 in [2]). For x ≥ 0, let g(x) = (

√
x − λ)2+. Clearly, g is convex and

g(x2) = (|x| − λ)2+. Now let b1 = 1, b2 = · · · = bn = 0 and let z = (zi)i be the

wavelet transform of e, that is, zi = (Wne)i = ∑n
j=1 w

(n)
i,j ej , where without loss of

generality we assume that the (w
(n)
i,j )2 are in nonincreasing order (for the index j ).

Since
∑n

j=1(w
(n)
i,j )2 = 1, then

E

(∣∣∣∣∣∑
j

w
(n)
i,j ej

∣∣∣∣∣ − λ

)2

+
≤ E

(∣∣∣∣∣∑
j

bj ej

∣∣∣∣∣ − λ

)2

+
,

for all λ > 0. But the terms above are, respectively, equal to 2
∫ ∞
λ (x − λ)2µi(dx)

and 2
∫ ∞
λ (x − λ)2µ(dx), where µi is the law of zi . This implies that the solution

of (2.2) is larger than the solution λn,i of (2.12), providing via (2.13) an upper
bound on the ratio of risks.

The class of variance mixtures of the normal distribution contains many
important distributions, for example, densities of the form h(x) = c1 exp(−c2x

d),
0 < d < 2, or c3/(1 + x2)n, n ≥ 1, where c1, c2, c3 are appropriate constants
(see [18], Chapter XIII and [2]). However, for a specific application, this class
might not be adequate. Nevertheless, it is sometimes possible to carry over
their properties to other “nearby" densities, since we only need an upper bound
on p(λ,0). Indeed, if ei is symmetric, and if there exists a random variable v

whose distribution is a normal mixture such that P (|e1| > x) ≤ KP(|v| > x), for
all x ≥ 0 and some K ≥ 1, then for any a1, a2, . . . ,∈ R,

E

(
T S

λ

(∣∣∣∣∣∑
i

aiei

∣∣∣∣∣
))2

≤ E

(
T S

λ

(
K

∣∣∣∣∣∑
i

aivi

∣∣∣∣∣
))2

,

where the vi are i.i.d. copies of v (this last inequality is a consequence of the
contraction principle (e.g., see [29], Lemma 4.6). Next, if λn is the positive solution
of (n + 1)E(|Kv| − λ)2+ = λ2 + σ 2, then

sup
θ∈R

E(T S
λn

(
∑

i aiei + θ) − θ)2

σ 2/n + min(θ, σ 2)
≤ �n,(2.15)
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where now the coefficients a· are given by the entries of Wn and where �n =
(λ2

n + σ 2)/((1 + 1/n)σ 2). The inequality (2.15) then implies a version like (2.12),
for θ ∈ R

n. If P (|e1| > x) ≤ KP(|v| > x) holds only for x ≥ x0, then (again
by [29], Section 4.2),

E

(
T S

λ

(∣∣∣∣∣∑
i

aiei

∣∣∣∣∣
))2

≤ 1
2E

(
T S

λ

(
2Kx0

∣∣∣∣∣∑
i

aivi

∣∣∣∣∣
))2

+ 1
2E

(
T S

λ

(
2K

∣∣∣∣∣∑
i

aiui

∣∣∣∣∣
))2

:= k(λ)

(2.16)

where the ui are i.i.d. random variables with distribution (δ1 + δ−1)/2 and again
the a· are given by the entries of Wn. So if λn is the solution of (n + 1)k(λ) =
λ2 + σ 2, then again (2.15) holds with �n = (λ2

n + σ 2)/((1 + 1/n)σ 2).
It would be desirable to generalize Proposition 2.6 to a wider class of

distributions, or to obtain a version which directly describes the behavior of the
tails of the sums. Results of this type are available for special classes of
distributions, where the tail of the sums is bounded by the tail of the initial random
variable [4].

In general, the distribution of the noise in the coarser levels of the transformed
signal is difficult to compute, and as a consequence of Propositions 2.5 and 2.6,
we used thresholds based on the initial noise. If this noise has tails heavier than
normal, then the thresholds for the coarser levels are higher than actually necessary.
In a minimax approach this does not really matter. As shown in [3], and depending
on the noise, from some level on upward the thresholds can be chosen as in the
normal case. Also for the finer level, the thresholds based on the initial noise
are also often too high. For example, let X be a random variable with a Laplace
distribution with EX2 = 1 and λn such that (1 + n)pX(λ,0) = λ2 + 1. Let Y be
an independent copy of X and let ξn be the solution of (1 + n)p

(X+Y )/
√

2(ξ,0) =
ξ2 + 1 [again, pX and p

(X+Y )/
√

2 are defined as in (2.3) with µ, respectively,

replaced by the law of X and the law of (X + Y )/
√

2]. Then (see Figure 1 and
thanks to G. Nason) for n = 512, λn = 2.85, for n = 216, λn = 5.43, while
the respective values of ξn are ξn = 1.81 and ξn = 3.55. So, for the Laplace
distribution, it is reasonable to expect that the optimal thresholds for the finer level
wavelet coefficients are much smaller than the optimal ones.

To finish this section, asymptotic rates for λn and �n are obtained for
exponentially decreasing densities. This result applies when h, below, grows
asymptotically at least as fast as a fractional polynomial and, in particular, taking
h(x) = x2/2 recovers a normal result given in [13]. Some numerical comparisons
between optimal and asymptotic thresholds for some classes of distributions are
also presented.
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THEOREM 2.7. Let µ be absolutely continuous with variance σ 2 and density
f (x) = C exp(−h(x)) (C normalizing constant) where h is even, continuous and
increasing on [0,∞), and such that lim infx→∞ h(cx)

h(x)
> 1, for all c > 1. Let λn be

the solution of (2.2) and let �n = n(λ2
n + σ 2)/(σ 2(n + 1)). Then

lim
n→∞

h−1(logn)

λn

= 1 and lim
n→∞

(h−1(logn))2 + σ 2

σ 2�n

= 1.

PROOF. First let us note a consequence of the conditions imposed on h

[showing, e.g., that in the proof we only need f (x) = C exp(−h(x)), for x large
enough]. If λ tends to infinity, then for all x ∈ R, h(cλ)−h(x +λ)− log(λ2 + σ 2)

tends to plus infinity if c > 1 and to minus infinity if 0 < c < 1. Set q(λ) :=
(λ2 + σ 2)/2

∫ ∞
λ (x − λ)2f (x) dx − 1, λ > 0, which clearly defines an increasing

function. For 0 < δ < 1, we now claim that q(λ)f ((1 + δ)λ) → 0, and that
q(λ)f ((1 − δ)λ) → +∞, as λ → +∞. For the first limit, let λ ≥ 1. Then(

λ2 + σ 2

2
∫ ∞
λ (x − λ)2f (x) dx

− 1
)
f

(
(1 + δ)λ

)
≤ λ2 + σ 2∫ ∞

λ (x − λ)2f (x) dx
f

(
(1 + δ)λ

)
=

(∫ ∞
0

x2 f (x + λ)

f ((1 + δ)λ)(λ2 + σ 2)
dx

)−1

→ 0,

since

f (x + λ)

f ((1 + δ)λ)(λ2 + σ 2)
= exp

(
h
(
(1 + δ)λ

) − log(λ2 + σ 2) − h(x + λ)
)

and, by assumption, this last term tends to infinity, for all x, as λ → +∞. Let us
turn to the second limit,

q(λ)f
(
(1 − δ)λ

) ≥
(

2
∫ ∞

0
x2 f (x + λ)

f ((1 − δ)λ)(λ2 + σ 2)
dx

)−1

− f
(
(1 − δ)λ

)
→ +∞,

as λ → +∞. The second summand on the right-hand side above converges to 0.
The integrand in the first summand is equal to x2 exp(h((1 − δ)λ) − h(x + λ) −
log(λ2 + σ 2)), which, by assumption, converges to zero, for all x ∈ R. Therefore
the integral tends to 0 and the whole term to plus infinity. Thus for x sufficiently
large (depending on δ),

1

f ((1 − δ)x)
≤ q(x) ≤ 1

f ((1 + δ)x)
,
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hence
1

1 − δ
f −1(1/y) ≥ q−1(y) ≥ 1

1 + δ
f −1(1/y),

for y large enough. Since λn is the solution of q(λn) = n, it follows that

lim
n→∞

λn

f −1(1/n)
= lim

n→∞
λn

h−1(logn)
= 1. �

REMARK 2.8. If f above is asymptotically like the inverse of a fractional
polynomial, that is, if there is a d > 3 such that limx→∞ f (x)xd ∈ (0,∞), then
easy computations yield p(λ,0) ∼ cλ2−d , implying that λn ∼ d

√
cn, for some

constants c > 0.

REMARK 2.9. The additional summand σ 2 in the benchmark Bn(θ, σ 2) can
be moderately increased without changing the asymptotics of the thresholds.
Indeed, if σ 2 is replaced by cnσ

2, with cn = O((log n)β), β > 0, then after
changing q , above, to q(λ) := (λ2 + σ 2)/p(λ,0) − cn, the optimal thresholds are
still the solution of q(λ) = n, and the asymptotic behavior of q−1 is not changed.
Thus the asymptotic behavior of the thresholds is not changed either.

Although there are in general no closed form formulas for the thresholds
in Theorem 2.1, it is quite easy to compute numerical approximations. The
results of such computations, using Mathematica, are presented in Figure 1 (see
also [13] for the normal case). The types of noise distributions considered are
the normal distribution, the Laplace distribution and the distribution with the
density c1 exp(−c2

√|x|). Additionally, the optimal thresholds for densities with
polynomial decay, the uniform distribution and some mixtures of them are also
given. All distributions are scaled to have variance 1. In Figure 1 the densities are
only labeled by their functional part, that is, the actual density is the functional part

n → 32 128 512 2048 65536 224 232

φ 1.28 1.67 2.04 2.40 3.22 4.35 5.31
exp(−|x|) 1.58 2.19 2.85 3.55 5.43 8.70 12.15
exp(−√|x|) 2.18 3.26 4.60 6.21 11.6 24.2 42.1
1−1,1(x) 1.04 1.26 1.42 1.53 1.66 1.72 1.74
1/(x10 + 1) 1.11 1.40 1.68 1.99 2.96 5.53 10.3
1/(x4 + 1) 1.99 3.28 5.30 8.46 27.0 171 1088
1/((x + 20)4 + 1) 2.78 4.67 7.64 12.3 40.0 256 1625
1/((x + 0.1)4 + 1) 2.08 3.44 5.57 8.91 28.5 181 1149
999φ(x) + 1/(x + 1)4 1.28 1.67 2.05 2.42 3.51 22.0 141
99φ(x) + 1/(x + 1)4 1.29 1.69 2.10 2.57 7.23 47.9 306
9φ(x) + 1/(x + 1)4 1.37 1.93 2.89 4.82 16.2 105 666

FIG. 1. The optimal thresholds for some densities.
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FIG. 2. Ratio of asymptotic threshold and optimal threshold for the normal distribution.

scaled such that it has variance 1. For example, exp(−x2) is the functional part of
the standard normal density φ. The rationale for a maximal n = 232 is that most
of today’s (December 1999) computers are not able to work with datasets larger
than 232 (32 bit address bus).

Figure 2 (resp. 3) shows the ratio of the asymptotic threshold and of the
optimal threshold for the normal distribution (resp., the Laplace distribution).
The horizontal axis represents the base 2 logarithm of the sample size. As one
sees, the asymptotics in Theorem 2.7 work very slowly, since for the normal
distribution (resp. the Laplace distribution) and 223 (resp. 227) data points, this
ratio is approximately 1.3.

FIG. 3. Ratio of asymptotic threshold and optimal threshold for the Laplace distribution.
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3. Near minimaxity. If the noise is normal, thresholding achieves the
minimax rate in the class of all estimators, that is,

lim
n→∞ inf

θ̂
sup
θ∈Rn

E‖θ̂ − θ‖2

Bn(θ, σ 2)

1

�n

= 1,

where the infimum is taken over all estimators and where �n is now computed for
the normal distribution [13]. For a special class of distributions one can also show
that soft thresholding is asymptotically “near” minimax; that is, the 1 on the above
right-hand side is replaced by a constant. This result is a natural consequence of
Theorem 2.7 and of our next result (again the normal case is recovered by taking
below h(x) = x2/2).

THEOREM 3.1. Let Yi = θi + zi , i = 1, . . . , n, where the zi are i.i.d. random
variables with Ez1 = 0 and Ez2

1 = σ 2 and law µ. Let µ be absolutely continuous
with density f of the form f (x) = C exp(−h(x)) (C a normalizing constant),
where h is even, continuous and increasing on [0,∞). Further, let

lim sup
x→∞

h−1(x)

h−1(x − 2 logx)
= 1.

Then

lim inf
n→∞ inf

θ̂
sup
θ∈Rn

E‖θ̂ − θ‖2

Bn(θ, σ 2)

σ 2

(h−1(logn))2 ≥ 1,

where the infimum is taken over all estimators θ̂ of θ .

PROOF. We prove this bound by computing Bayes risks (a strategy already
used in the proof of Theorem 3 in [13]). For 0 < ε < 1 and a > 0, let Fε,a :=
εδa + (1 − ε)δ0, where δc denotes the Dirac measure with unit mass at c. The
a priori measure for θ ∈ R

n is Qn := ⊗n
i=1 Fεn,an , with εn and an specified later.

For now, it suffices to assume that εn → 0 and an → ∞. First we consider the
one-dimensional case, and compute the Bayes risk for estimating θ1 ∈ R given
Y1 = θ1 + z1, where the a priori measure for θ1 is Fε,a . Let M := Fε,a ∗ f ; that is,
for any A,B , Borel sets in R,

M(A,B) = (1 − ε)δ0(A)

∫
B

f (x) dx + εδa(A)

∫
B

f (x − a) dx.

Let �1 and �2 be the projection from R
2 to the first, respectively, the second

coordinate. In this context, the Bayes estimator for θ is

dε,a(x) = EM(�1|�2 = x) = 0(1 − ε)f (x) + aεf (x − a)

(1 − ε)f (x) + εf (x − a)
(3.1)

= εf (x − a)

εf (x − a) + (1 − ε)f (x)
a.
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Thus,

EFε,aEθ1(dε,a − θ1)
2

= ε

∫ +∞
−∞

(
dε,a(x) − a

)2
f (x − a) dx + (1 − ε)

∫ +∞
−∞

dε,a(x)2f (x) dx

≥ εa2
∫ +∞
−∞

(
1 − εf (x − a)

εf (x − a) + (1 − ε)f (x)

)2

f (x − a) dx(3.2)

= εa2
∫ +∞
−∞

(
(1 − ε)f (x)

εf (x − a) + (1 − ε)f (x)

)2

f (x − a) dx

= (1 − ε)2εa2
∫ +∞
−∞

f (x)2

(εf (x − a) + (1 − ε)f (x))2
f (x − a) dx.

Let us further lower bound (3.2). For any α ∈ (0,1), there exists a c > 0 such that∫ c
−c f (x) dx ≥ α, while for any β > 0, assume that there exist (as will be shown

below) ε > 0 and a > 0 such that βf (a + c) ≥ ε
1−ε

f (0). Then, since f is even and
decreasing on [0,+∞), βf (x) ≥ ε

1−ε
f (x − a), for all x ∈ (a − c, a + c). In turn,

this implies that for all x ∈ (a − c, a + c),

f (x)2

(εf (x − a) + (1 − ε)f (x))2
≥ f (x)2

((1 − ε)f (x)(1 + β))2
,

and using (3.2),

EFε,aEθ1(dε,a − θ1)
2 ≥ (1 − ε)2

(1 − ε)2

α

(1 + β)2
εa2 = α

(1 + β)2
εa2.(3.3)

Let us now show how to apply the above inequalities to the multivariate Bayes
case. Let α (hence c) and β be fixed, let εn, an be sequences such that
nεn → ∞ and βf (an + c) ≥ εn

1−εn
f (0), and finally let mn := (nεn)

2/3,Nn :=
#{θi 
= 0, i = 1, . . . , n},An := {Nn ≤ nεn + mn}, and pn := Qn(A

c
n), where

# denotes cardinality. We now prove that pn = Qn(Nn − nεn > mn) = o(εn) by
using Bennett’s inequality [35], page 851. This inequality provides the first step
below, where the function k(x) := 2((1 + x) log(1 + x) − x)/x2 is continuous,
decreasing on (0,∞) and such that k(0) = 1,

pn ≤ exp
(
− mn/

√
n

2εn(1 − εn)
k

(
mn/

√
n

εn(1 − εn)
√

n

))

≤ exp
(
−(εnn)2/3

2εn

√
n

k

(
(εnn)2/3

nεn(1 − εn)

))

= exp
(
−1

2
ε−1/3
n n1/6k

(
(εnn)−1/3

1 − εn

))
(3.4)
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≤ exp
(
−1

4
ε−1/3
n n1/6

)
[for n large enough since nεn → ∞ and k(0) = 1]

= o(εn).

We are now ready to tackle the Bayes risk of Qn. Let dn be the (Rn-valued) Bayes
estimator for Qn and let di

n, i = 1, . . . , n, be its ith coefficient. In view of (3.1) it
is clear that 0 ≤ di

n ≤ an. Next,

EQnEθ

‖dn(Y ) − θ‖2

Bn(θ, σ 2)
≥ 1

σ 2(1 + nεn + mn)
EQnEθ

n∑
i=1

(
di
n(Y ) − θi

)21An

≥ 1

σ 2(1 + nεn + mn)

(
EQnEθ

n∑
i=1

(
di
n(Y ) − θi

)2 − npna
2
n

)

[since Eθ(d
i
n(Y ) − θi)

21Ac
n
≤ pna

2
n]

(3.5)

= 1

σ 2(1 + nεn + mn)

(
n∑

i=1

EQnEθi

(
di
n(Y ) − θi

)2 − npna
2
n

)

≥ 1

σ 2(1 + nεn + mn)

(
nεna

2
n

α

(1 + β)2 − npna
2
n

)
∼ α

(1 + β)2σ 2 a2
n,

using (3.3) and since pna
2
n = o(εna

2
n) and mn = o(nεn). Let us now choose

εn and an. Remember that εn has to satisfy nεn → ∞ and that an must be such
that f (an + c) ≥ εn

β(1−εn)
f (0). Thus, if nεn = logn and since f −1 is decreasing,

we can optimally choose

an = h−1
(

logn − log log n + log
(

1 − logn

n

)
+ logβ − logf (0)

)
− c.(3.6)

Because of the conditions imposed on h−1, we have an ∼ h−1(logn). Since
α and β are arbitrary, the theorem follows by letting α → 1 and β → 0. �

REMARK 3.2. Above, the time domain i.i.d. assumption which is natural
in view of the regression model (1.2) could be replaced by independence and
the (less natural) requirement that the ratio of two arbitrary noise densities is
uniformly bounded above and below. It should also be noted that the proof
just presented readily adapts to a general symmetric, continuous and decreasing
noise density f , since a lower bound for the Bayes risk similar to (3.5) can be
obtained where now an = f −1(εn/(β(1 − εn))f (0)) − c. Above, the condition
lim supx→∞ h−1(x)/(h−1(x − 2 logx)) = 1 (where actually lim sup = lim, since
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h−1 is increasing on [0,+∞)) was mainly imposed to simplify the resulting
asymptotic behavior of an in (3.6) and is satisfied if h grows at most as fast as
a fractional polynomial. Combining the last two theorems we see that if the noise
in the data is i.i.d. and its density is asymptotically like exp(−h(x)) where h is a
fractional polynomial, then soft thresholding is optimal in the minimax sense, it
has the asymptotically best ratio of risk and benchmark.

REMARK 3.3. Again, and as previously noticed, the benchmark can be
moderately increased. One of the last steps in the proof of the previous theorem
asserts that

1

σ 2(1 + nεn + mn)

(
nεna

2
n

α

(1 + β)2
− npna

2
n

)
∼ α

(1 + β)2σ 2
a2
n.

The constant 1 in the denominator on the left-hand side can be replaced by cn.
The ∼ remains valid if cn/(εnn) → 0. To keep the same rate for an it is
necessary that log εn ∼ − logn. Thus, if for example cn ∼ (logn)p , then with
εn = (logn)p+1/n we get the same asymptotic rate for an and for the Bayes risk
for Qn.

In contrast to Theorem 3.1, our next result [which applies to the wavelet domain
model (1.3)] is only about the rate of the ratios. The idea of the proof is the same
in both results, but the proof is now complicated by the fact that we do not have
a closed form expression for the density of the noise in the empirical wavelet
coefficients. Since we have to rely on rough bounds for these tails, we only get
a statement about the rate.

THEOREM 3.4. Let the observations Xi = fi + ei , i = 0, . . . , n − 1 =
2m − 1, be given, where the fi are parameters of interest and the ei are
i.i.d. random variables with law µ and variance σ 2. Let µ be absolutely
continuous with density g of the form g(x) = C exp(−h(x)) (C a normalizing
constant), where h is even, continuous and increasing on [0,∞). Further,
let lim supx→∞ h(cx)/h(x) < ∞, for all c > 0. Apply a periodic wavelet
transform Wn to these observations, taking for every n the same compactly
supported generating wavelet. Let θ = Wn(f ). Then

lim inf
n→∞ inf

θ̂
sup
θ∈Rn

E‖θ̂ − θ‖2

Bn(θ, σ 2)

1

(h−1(log n))2
> 0,

where the infimum is taken over all estimators θ̂ of θ .

PROOF. We apply a wavelet transform Wn derived from a multiresolution
analysis generated by a common compactly supported wavelet. The fixed filter
length is N , N is even, and Yj,k, θj,k and zj,k , 0 ≤ k ≤ 2j − 1, 0 ≤ j ≤ m − 1, are
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respectively the kth wavelet coefficient at the level j , of Wn(X), Wn(f ) and Wn(e).
Let θ̂j,k be an estimator for θj,k , where θ̂j,k may depend on all the Xi . We compute
below an asymptotic lower bound for supθ (

∑
j,k E|θ̂j,k − θj,k|2)/Bn(θ, σ 2), by

computing a Bayes risk. For 0 < ε < 1 and a > 0, let Fε,a be defined as in the
proof of the previous theorem. The a priori measure for θj,k is Fεn,an if j = m− 1,
and δ0 otherwise. For now, it suffices to know that εn → 0 and that an → ∞. The
a priori measure Qn for θ ∈ R

n is the product measure of the a priori measures of
the coordinates. In the sequel, we omit the level coefficient m−1, since we are only
concerned with the coefficients in this level. Let us now observe the following: For
n greater than a certain bound, the filter coefficients d0, . . . , dN−1 used to compute
the θj,k no longer depend on n. Thus θi = ∑N−1

	=0 d	f2i+	 where the indices for f

are considered modulo n, since we are using a periodic wavelet transform. On
the other hand, given the a priori measure Qn (that is, assuming that the wavelet
coefficients for the levels j < m − 1 are 0) one computes the fi by

fi :=
N−1∑

	=0, 	 even

d	θ(i−	)/2 if i is even,

and

fi :=
N−1∑

	=0, 	 odd

d	θ(i−	)/2 if i is odd.

This follows immediately from the fact that Wn is orthonormal, that is, WT
n =

W−1
n . For 0 ≤ i ≤ n/2 − 1, set

Qi
n(·) := Qn(· ∩ {θi+j = 0,1 ≤ |j | ≤ N/2 − 1})

Qn({θi+j = 0,1 ≤ |j | ≤ N/2 − 1}) ,

where 0/0 is understood as 0. If Qi
n is the a priori measure, then θi and fj are

independent whenever j < 2i or j > 2i + N − 1. Hence the Bayes estimator
for θi given the a priori measure Qi

n only depends on f2i, . . . , f2i+N−1. As one
easily checks the projection of Qi

n on f2i , . . . , f2i+N−1 is εnδ(d0,...,dN−1)an +
(1 − εn)δ(0,...,0). Hence the Bayes estimator bi for θi given Qi

n is

bi(x) := gan(x)εn

gan(x)εn + (1 − εn)g0(x)
an, x ∈ R

N,

where gan (resp. g0) is the density of X2i , . . . ,X2i+N−1 if (f2i , . . . , f2i+N−1) =
an(d0, . . . , dN−1) [resp. if (f2i, . . . , f2i+N−1) = (0, . . . ,0)]. In other words,
gan(x) = ∏N−1

	=0 g(x	 −and	) and g0(x) = ∏N−1
	=0 g(x	). Now let θ̂i be an estimator

for θi . Then

EQnEθi
(θ̂i − θi)

2 ≥ (1 − εn)
N−2EQi

n
Eθi

(bi − θi)
2.(3.7)
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Next, we proceed to compute the Bayes risk of bi given the a priori measure Qi
n:

EQi
n
Eθi

(bi − θi)
2 = (1 − εn)Eθi=0b

2
i + εnEθi=an(bi − an)

2

≥ εn

∫
RN

(
gan(x)εn

g0(x)(1 − εn) + gan(x)εn

an − an

)2

gan(x) dx(3.8)

= εna
2
n

∫
RN

(
g0(x)(1 − εn)

g0(x)(1 − εn) + gan(x)εn

)2

gan(x) dx.

Set dmax := maxi=0,...,N−1 |di|. Let 0 < α < 1. Then there exists a c > 0
(depending on α) such that

∫
[−c,c]N g0(x) dx ≥ α. Now define In := [−c, c]N +

an(d0, . . . , dN−1), and assume that εn and an are such that (1 − εn)g0(x) ≥
2εngan(x), for all x ∈ In. Thus using (3.8),

EQi
n
Eθi

(bi − θi)
2 ≥ εna

2
n

∫
In

(
g0(x)(1 − εn)

g0(x)(1 − εn)3/2

)2

gan(x) dx ≥ 4

9
εna

2
nα,

which implies via (3.7)

EQnEθi
(θ̂i − θi)

2 ≥ 4
9(1 − εn)

N−2εna
2
nα.

Hence for α large enough and n greater than a certain bound, the Bayes risk for
estimating a single θi is greater than or equal to 4

10εna
2
n. Let εn and an be sequences

such that (1 − εn)g0(x) ≥ 2εngan(x), for all x ∈ In, with also limn→∞ nεn =
+∞. Set mn := (nεn/2)2/3, and as in the previous proof let Nn := #{θi 
= 0,

i = 0, . . . , n/2 − 1}, An := {Nn ≤ nεn/2 + mn}, and pn := Qn(A
c
n). Recall also

from (3.4) that pn = o(εn). Let θ̂j,k be an estimator for θj,k and, without loss of
generality, assume again that 0 ≤ θ̂m−1,k ≤ an. Now, given Qn, that is, assuming
that the wavelet coefficients for the levels j < m − 1 are 0, it follows that

EQnEθ

∑
j,k |θ̂j,k − θj,k|2

Bn(θ, σ 2)

≥ EQnEθ

∑
k |θ̂k − θk|2

σ 2(1 + Nn)

(leaving the index m − 1 out, that is, θk := θm−1,k)

≥ 1

σ 2(1 + nεn/2 + mn)
EQnEθ

∑
k

|θ̂k − θk|21An

≥ 1

σ 2(1 + nεn/2 + mn)
EQnEθ

∑
k

|θ̂k − θk|2 − n

2
pna

2
n

[since Eθ1Ac
n
|θ̂k − θk|2 ≤ Qn(A

c
n)a

2
n = pna

2
n]

= 1

σ 2(1 + nεn/2 + mn)

∑
k

EQnEθ |θ̂k − θk|2 − n

2
pna

2
n
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≥ 1

σ 2(1 + nεn/2 + mn)

(
n

2

4

10
εna

2
n − n

2
pna

2
n

)
(for n large enough)

≥ 1

3σ 2
a2
n [for n large enough and since pn = o(εn)].

Take εn := logn
n

, assume n is so large that εn < 1/2, and choose

an := h−1
(

1

N
(logn − log logn) − log

(
g(0)

N
√

4
)) − c.

It then follows that

h(an + c) = − log
(
g(0)

N
√

4
) + 1

N
(logn − log log n),

equivalently, exp(−h(an + c)) = g(0) N
√

logn/n
N
√

4, that is, g(an + c) =
g(0) N

√
εn

N
√

4. Since εn < 1/2 and |dmax| ≤ 1,

g(dmax an + c) ≥ g(0) N
√

εn
N

√
2/(1 − εn);

thus

(1 − εn)

N−1∏
	=0

g(d	an + c) ≥ 2εng(0)N,

and finally

(1 − εn)g0(x) ≥ 2εngan(x)

for all x ∈ In. Our choice of an has fulfilled the required conditions, and since
an ∼ c1h

−1(log n) for some constant c1 > 0, the theorem is proved. �

4. Compactly supported distributions. In the previous section, we com-
puted lower asymptotic bounds for thresholding for some classes of noise. To do
so, we made use of the facts that half of the coefficients are in the finest level,
and that the distribution of the noise in this level is “close” to the distribution of
the original noise. We consider now compactly supported noise and show that the
asymptotic performance of the wavelet domain thresholding is not better than for
normal noise. Here we will use the fact that the distribution of the noise in the

√
n

coarser level coefficients is “close” to the normal distribution. From the discussion
before Proposition 2.6, the result below can be complemented by the fact that for
compactly supported noise, �n (as defined below) is such that �n = O(log n) (see
also the next section).
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THEOREM 4.1. Let the observations Xi = fi + ei , i = 1, . . . , n = 2m, be
given, where the fi are parameters of interest and the ei are zero mean, compactly
supported (on [−M,M]) i.i.d. random variables with variance σ 2. Apply a
periodic wavelet transform Wn to these observations, taking for every n the same
compactly supported generating wavelet. Assume moreover that the corresponding
wavelet basis is Hölder continuous of index β > 0. Let Y = Wn(X), let θ = Wn(f )

and let

�n := inf
(λ.,.)∈Rn

sup
θ∈Rn

∑
j,k E|T S

λj,k
(Yj,k) − θj,k|2

Bn(θ, σ 2)
.(4.1)

Then lim infn→∞ �n/(2 logn) ≥ 1.

PROOF. Let z = Wn(e), where the wavelet transform Wn is derived from a
multiresolution analysis generated by a common compactly supported wavelet ψ ,
and the fixed filter length is N . To prove the result, we need to lower bound p(λ,0)

corresponding to the noise (zj,k) in the wavelet coefficients, where again zj,k =∑n
i=1 w

(n)
j,k,iei , with

∑n
i=1(w

(n)
j,k,i)

2 = 1. We first show that maxk,i,j≤h |w(n)
j,k,i | ≤

C2(j−m)/2, for some constant C and where for a fixed q ∈ (0,1), h = h(n) =
[log2(n

q)] ([·] denotes integer part). This first step is needed to apply known
estimates to control the tail behavior of zj,k . Recall that if Wn is generated
by a compactly supported wavelet not necessarily adapted to an interval, then
w

(n)
j,k,i = 〈ψj,k, ϕm,i〉, where ϕ is the scaling function associated to the wavelet ψ ,

and again n = 2m. It is also well known that if ϕ is Hölder continuous with
exponent β , then

sup
i,k

∣∣2(m−j)/2〈ψj,k, ϕm,i〉 − ψ(2j−mi − k)
∣∣ ≤ C12β(j−m),(4.2)

for some constant C1 and m − j > j0, for some j0 ([8], page 205). But Wn is a
periodic wavelet transform adapted to [0,1]; that is, for j ≥ 0 and 0 ≤ k < 2j , ψj,k

and ϕj,k are replaced by

ψ
per
j,k (x) := ∑

i∈Z

ψj,k(x + i) and ϕ
per
j,k(x) := ∑

i∈Z

ϕj,k(x + i);

thus w
(n)
j,k,i = 〈ψper

j,k , ϕ
per
m,i〉. Since for m large enough, ϕ

per
m,i(x) = ϕm,i (x − [x]) and

since in the construction of each ψ
per·,· only at most N wavelets are involved, a

bound similar to (4.2) continues to hold, but with C1 replaced by a constant C2

depending on N and C1. Hence

max
k,i

|w(n)
j,k,i| ≤ 2(j−m)/2N‖ψ‖∞ + C22(j−m)(β+1/2) ≤ C32(j−m)/2,(4.3)
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where C3 := C2 + N‖ψ‖∞. Now

sup
θ∈Rn

∑
j,k E|T S

λj,k
(Yj,k) − θj,k|2

Bn(σ
2, θ)

(4.4)

≥ max
(∑

j≤h,k E(T S
λj,k

(zj,k))
2

σ 2
,

∑
j≤h,k(λ

2
j,k + σ 2)

(2h+1 + 1)σ 2

)
,

where this lower bound is obtained by choosing, respectively, θj,k = 0 for all j, k

and

θj,k =
{∞, j ≤ h,

0, elsewhere.

Because of (4.4), from now on we will only be concerned with the levels 0, . . . , h,
and in the rest of the proof when (j, k) is an index then implicitly j ≤ h.

To bound the first term in the maximum in (4.4) we use the following version
of Kolmogorov’s converse exponential inequality (see [36], Section 5.2).

Let (Xi) be a finite sequence of independent, zero mean random variables such
that ‖Xi‖∞ ≤ D, for all i. Then for every γ > 0, there exist positive reals K(γ )

(large enough) and ε(γ ) (small enough) such that for every t satisfying t ≥ K(γ )b

and tD ≤ ε(γ )b2,

P

(∑
i

Xi > t

)
≥ exp

(
−(1 + γ )t2

2b2

)
,(4.5)

where b2 = ∑
i EX2

i .
Let us now show how to use (4.5), and let γ > 0. Recall that ‖ek‖∞ ≤

M < ∞ for all k, that by (4.3) maxj≤h,k,i ‖w(n)
j,k,iei‖∞ ≤ C3M2(h−m)/2, and that∑

i E(w
(n)
j,k,iei)

2 = σ 2. Thus for t ≥ K(γ )σ and t ≤ ε(γ )σ 22(m−h)/2/(C3M),

P (|zj,k| > t) ≥ 2 exp
(
−(1 + γ )t2

2σ 2

)
.(4.6)

In addition to (4.6), let us also state two estimates we need. First, by Chebychev’s
inequality,

P (|zj,k| ≥ λj,k + 1) ≤ E
(
T S

λj,k
(zj,k)

)2
.(4.7)

Second, thanks to the uniform convergence in the CLT with rate (see [34],
Section 5.2) for all x > 0, there exists an n0 = n0(x) such that for all n ≥ n0,

2P (|zj,k| ≥ σx) ≥ 1 − �(x),(4.8)

where � is the standard normal distribution function.
Now let (λ∗

j,k,n) be a set of optimal thresholds for the right-hand side of (4.1)

and let 0 < α < 1. Recall that j ≤ h, hence #{λj,k,n, j ≤ h} = 2h+1 (again,
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# denotes cardinality) and thus at least one of the following three conditions holds:

#
{
λ∗

j,k,n ∈
(
K(γ )σ,

ε(γ )σ 22(m−h)/2

C3M

)}
≥ (1 − α)2h+1,(4.9)

or

#{λ∗
j,k,n ≤ K(γ )σ } ≥ α2h,(4.10)

or

#
{
λ∗

j,k,n ≥ ε(γ )σ 22(m−h)/2

C3M

}
≥ α2h.(4.11)

Combining (4.4) and (4.7) leads to

�n ≥ max
(∑

j≤h,k P (|zj,k| ≥ λ∗
j,k,n + 1)

σ 2 ,

∑
j,k((λ

∗
j,k,n)

2 + σ 2)

(2h+1 + 1)σ 2

)
.(4.12)

Assuming (4.9) and using (4.6), (4.12) becomes

�n ≥ max

( ∑
j≤h,k

2

σ 2
exp

(
−(1 + γ )(λ∗

j,k,n + 1)2

2σ 2

)
,

∑
j≤h,k((λ

∗
j,k,n)

2 + σ 2)

(2h+1 + 1)σ 2

)

≥ inf
(λ.,.)∈Rn

max

( ∑
j≤h,k

2

σ 2 exp
(
−(1 + γ )(λj,k,n + 1)2

2σ 2

)
,(4.13)

∑
j≤h,k((λj,k,n)

2 + σ 2)

(2h+1 + 1)σ 2

)
,

where the sums are over the λ∗
j,k,n and λj,k,n satisfying (4.9).

It is easy to see that the minimum on the right-hand side of (4.13) is achieved if
all the λj,k,n are the same and equal to the solution λ∗

n of

2

σ 2
exp

(
−(1 + γ )(λn + 1)2

2σ 2

)
= (λ2

n + σ 2)

(2h+1 + 1)σ 2
.

Now computations as in the proof of Theorem 2.7 show that λ∗
n behaves

asymptotically like √
2σ 2 log 2h+1

(1 + γ )
∼

√
2σ 2q logn

(1 + γ )
,

where the asymptotic ∼ holds by our choice of h = h(n). Hence (4.9) and (4.13)
lead to

�n ≥ (1 − α)2h+1((λ∗
n)

2 + σ 2)

(2h+1 + 1)σ 2
∼ 2(1 − α)q log n

1 + γ
.(4.14)
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Assuming (4.10), using (4.8), and for n ≥ n0(K(γ ) + 1), (4.12) becomes

�n ≥ 1

σ 2

∑
j≤h,k

P (|zj,k| ≥ K(γ ) + 1)

(4.15)

≥ α2h

2σ 2

(
1 − �

(
K(γ ) + 1)

σ

))
∼ C42h ≥ C4

nq

2
,

where the sum is over the indices such that λ∗
j,k,n satisfy (4.10), where C4 =

C4(α,σ,K(γ )) and since nq ≤ 2h+1 ≤ 2nq . Finally, assuming (4.11), (4.12)
becomes

�n ≥ ∑
j≤h,k

((λ∗
j,k,n)

2 + σ 2)

(2h+1 + 1)σ 2

(4.16)

≥ α2h

(2h+1 + 1)σ 2

(
ε(γ )σ 22(m−h)/2

C3M
+ σ 2

)2

∼ C52(m−h) ≥ C5n
1−q,

where the sum is over the λ∗
j,k,n satisfying (4.11) and for some appropriate

constant C5. Thus (4.14)–(4.16) show that the right-hand side of (4.4) grows as
least as fast as (1 − α)2q logn/(1 + γ ). Since α, q and γ are arbitrary, this gives

lim inf
n→+∞

�n

2 logn
≥ 1. �

5. Smooth compactly supported densities. In this section we show that soft
thresholding is optimal for a class of C2-noise with compactly supported positive
density. Under these conditions on the noise, no estimator can give a better rate
than soft thresholding. However, in the “function space setting” where signals
are assumed to belong to balls in function spaces, and without the “smoothness”
assumption, other types of estimators can outperform soft thresholding. Such an
improvement is presented, via a nonlinear filtering procedure, and for uniform
noise, in Section 4 of our companion paper [3]. Moreover, estimators which exploit
the special structure of the densities involved, for example a moving median
estimator (see Section 3 of [3]), can also outperform soft thresholding for other
types of noise, e.g., for noise with inverse polynomial tails.

THEOREM 5.1. Let the observations Xi = si + ei , i = 1, . . . , n = 2m, be
given, where the si are parameters of interest and the ei are zero mean i.i.d.
random variables with variance σ 2 and law µ. Let µ be absolutely continuous with
compactly supported (on [a, b]) density f . Let f be twice differentiable on [a, b]
and such that f > 0 on (a, b). Further, let f (a) = f (b) = f ′(a) = f ′(b) = 0,
let f ′′(a) 
= 0, f ′′(b) 
= 0 and let supa<x<b |√f

′′
(x)| < +∞. Apply a periodic

wavelet transform Wn to these observations, taking for every n the same compactly



DENOISING NON-GAUSSIAN NOISE 137

supported generating wavelet. Let Y = Wn(X) and let θ = Wn(s). Then

lim inf
n→∞ inf

θ̂
sup
θ∈Rn

E‖θ̂ − θ‖2

Bn(θ, σ 2)

1

logn
> 0,

where the infimum is taken over all the estimators of θ .

The computations of the minimax bounds in the previous sections were based on
the a priori measure Fε,a and its Bayes risk, where ε and a were carefully chosen.
In that context we computed the Bayes estimator using likelihood ratios. Here
we wish to apply a similar method to coarse level wavelet coefficients. Again the
Bayes estimator relies on likelihood ratios, and below we compute an asymptotic
expansion for these likelihood ratios. To do so, we will use elements of Le Cam–
Hájek LAN theory as exposed in [37], for example.

PROOF OF THEOREM 5.1. Let m be the Lebesgue measure, let P0 = f m and
let Ph = P0 ∗δh, that is, Ph(dx) = f (x−h)m(dx) and let also g := −2

√
f

′
/
√

f =
−f ′/f on (a, b), g = 0 elsewhere. Finally, let tn,i , i = 1, . . . , n, be a triangular
array of numbers with tn := supi=1,...,n |tn,i | and tn/nc → 0, for any c > 0. Our
goal is to prove that

log

(
n∏

i=1

dPtn,i/
√

n

dP0
(xi)

)
= 1√

n

n∑
i=1

tn,ig(xi) − EP0|g|2
2n

n∑
i=1

t2
n,i + oPn

0
(1),(5.1)

where oPn
0
(1) denotes a sequence of random variables converging in probability

to 0, and where this stochastic convergence only depends on tn and n. For
simplicity and ease of notation we will assume that tn,i ≥ 0, as this spares us some
simple distinction of cases. For 2 ≤ p < 3, let EP0|g|p = ∫ b

a |f ′(x)|p/f (x)p−1 dx.
The restrictions on f imply that for x ∈ (a, b) close to a, f (x) = c(x − a)2 +
o((x − a)2) and f ′(x) = 2c(x − a) + o((x − a)), for some constant c 
= 0. Thus,
near a, |f ′(x)|p/f (x)p−1 = O((x − a)−(p−2)). A similar statement holds for
f close to b, and together these imply that EP0|g|p < ∞. Let us now turn to the
likelihood quotient, and define

hn,i := 2

(√
dPtn,i/

√
n

dP0
− 1

)
.

For 2 ≤ p < 3, then∫
R

|hn,i |p dP0 = 2p
∫ b

a

∣∣∣√f (x − tn,i/
√

n) −
√

f (x)
∣∣∣pf (x)1−p/2 dx < +∞.(5.2)

Indeed, the conditions on f imply that
√

f ∈ C1([a, b]), hence∣∣∣√f (x − tn,i/
√

n) −
√

f (x)
∣∣∣ = O(tn/

√
n),(5.3)
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uniformly in x. Moreover, since near a (resp. near b), f (x)1−p/2 = O((x −a)2−p)

[resp., f (x)1−p/2 = O((b − x)2−p)], it follows that
∫ b
a f (x)1−p/2 dx < ∞. Thus,

E|hn,i|p < ∞, 2 ≤ p < 3, and in fact

EP0|hn,i |p = O

((
tn√
n

)p)
.(5.4)

Next, we show that

EP0

∣∣∣∣hn,i − tn,i√
n
g

∣∣∣∣2 =
∫ ∞
−∞

(
hn,i(x) − tn,i√

n
g(x)

)2

f (x) dx = O

(
t3
n

n3/2

)
.(5.5)

The middle term in (5.5) is equal to

4
∫ b

a

(√
f (x − tn,i/

√
n)√

f (x)
− 1 − tn,i

2
√

n
g(x)

)2

f (x) dx

= 4
∫ b

a

(√
f (x − tn,i/

√
n) −

√
f (x) + tn,i√

n

√
f (x)

′)2

dx

= 4
∫ a+tn,i/

√
n

a

(√
f (x − tn,i/

√
n) −

√
f (x) + tn,i√

n

√
f (x)

′)2

dx

+ 4
∫ b

a+tn,i /
√

n

(√
f (x − tn,i/

√
n) −

√
f (x) + tn,i√

n

√
f (x)

′)2

dx

≤ 8
∫ a+tn,i/

√
n

a

((√
f (x − tn,i/

√
n) −

√
f (x)

)2 + t2
n,i

n

√
f (x)

′2)
dx

+ 4
∫ b

a+tn,i /
√

n

(
c1

tn,i√
n

)4

dx

(
since sup

a<x<b

|√f
′′
(x)| < +∞

)

≤ c2

((
tn√
n

)3

+
(

tn√
n

)3

+ t4
n

n2

)
,

for some constants c1 > 0, c2 > 0, by (5.3) and since
√

f ∈ C1([a, b]). This
proves (5.5).

As in [37], page 379, a simple Taylor expansion gives

log

(
n∏

i=1

dPtn,i/
√

n

dP0
(xi)

)

=
n∑

i=1

2 log
(

1

2
hn,i(xi) + 1

)
(5.6)

=
n∑

i=1

hn,i(xi) − 1

4

n∑
i=1

hn,i(xi)
2 + 1

4

n∑
i=1

(
1 − r(hn,i(xi))

)
hn,i(xi)

2,
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where r(0) = 1 and where |r(x1) − r(x2)| ≤ C|x1 − x2|, for |x1| < 1, |x2| < 1 and
some constant C > 0. We now analyze (5.6), and first show that the last summand
there converges to zero in probability, the rate depending only on tn and n. First,

P n
0

(
n∑

i=1

(
1 − r(hn,i(xi))

)
hn,i(xi)

2 ≥ ε

)

≤ P n
0

(
sup

i

∣∣1 − r
(
hn,i(xi)

)∣∣ ≥ 1

t2
n log n

)
(5.7)

+ P n
0

(
1

t2
n logn

n∑
i=1

hn,i(xi)
2 ≥ ε

)
.

Next, by (5.4), EP0|hn,i|2 = O(t2
n/n), hence 1

t2
n logn

∑n
i=1 hn,i(xi)

2 converges to

zero in L1, and the rightmost term in (5.7) converges to zero in probability, the
rate depending only on n. Further for 2 < p < 3,

P n
0

(
t2
n logn sup

i

|1 − r(hn,i(xi))| ≥ 1
)

≤
n∑

i=1

P0

(
|1 − r(hn,i(xi))| ≥ 1

t2
n logn

)

≤
n∑

i=1

P0

(
|hn,i(xi)| ≥ 1

Ct2
n log n

)

≤
n∑

i=1

EP0|hn,i|pCpt2p
n (log n)p

= O

(
t
3p
n (log n)p

np/2−1

)
,

where the second inequality follows from properties of r and the last using (5.4).
Since p > 2, our choice of tn implies the uniform stochastic convergence of (5.7),
and thus

log

(
n∏

i=1

dPtn,i/
√

n

dP0
(xi)

)
=

n∑
i=1

hn,i(xi) − 1

4

n∑
i=1

hn,i(xi)
2 + oPn

0
(1).(5.8)

Next, we show that
∑n

i=1 h2
n,i and

∑n
i=1 EP0h

2
n,i are stochastically equivalent

with respect to P n
0 , that is, that

∑n
i=1 Xn,i → 0 in probability, where Xn,i =

h2
n,i − EP0h

2
n,i . For 2 < p < 3, (5.4) gives

EP0|Xn,i |p/2 ≤ EP0 |hn,i|p + (EP0h
2
n,i)

p/2 = O

(
t
p
n

np/2

)
,
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hence if X̃n,i := Xn,i1{|Xn,i |≤1}, then X̃2
n,i ≤ |Xn,i |p/2 and

n∑
i=1

EP0X̃
2
n,i ≤

n∑
i=1

EP0 |Xn,i |p/2 = O

(
t
p
n

np/2−1

)
.(5.9)

Since EP0Xn,i = 0,
n∑

i=1

∣∣EP0Xn,i1{|Xn,i |≤1}
∣∣ ≤

n∑
i=1

EP0|Xn,i |1{|Xn,i |>1}

≤
n∑

i=1

(
1P0(|Xn,i | ≥ 1) +

∫ ∞
1

EP0|Xn,i |p/2

xp/2
dx

)
(5.10)

= O

(
t
p
n

np/2−1

)
,

by (5.9). Now, for ε > 0,

P n
0

(∣∣∣∣∣
n∑

i=1

Xn,i

∣∣∣∣∣ ≥ ε

)
≤

n∑
i=1

P0(|Xn,i | > 1) + P n
0

(∣∣∣∣∣
n∑

i=1

X̃n,i

∣∣∣∣∣ ≥ ε

)
and

n∑
i=1

P0(|Xn,i | ≥ 1) ≤
n∑

i=1

EP0|Xn,i |p/2 = O

(
t
p
n

np/2−1

)
,

while

P n
0

(∣∣∣∣∣
n∑

i=1

X̃n,i

∣∣∣∣∣ ≥ ε

)
≤ EPn

0
(
∑n

i=1 X̃n,i)
2

ε2

≤
∑n

i=1 EP0X̃
2
n,i + (

∑n
i=1 |EP0X̃n,i |)2

ε2

= O

(
t
p
n

np/2−1

)
,

by (5.9) and (5.10). It thus follows that
∑

n,i Xn,i converges to zero uniformly, that
is, the rate depends only on tn and n. Combining the above with (5.8) gives

log

(
n∏

i=1

dPtn,i/
√

n

dP0

)

=
n∑

i=1

hn,i − 1

4

n∑
i=1

h2
n,i + oPn

0
(1)(5.11)

=
n∑

i=1

(hn,i − EP0hn,i) − 1

4

n∑
i=1

EP0h
2
n,i +

n∑
i=1

EP0hn,i + oPn
0
(1).
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Still proceeding as in [37], page 381 top,

EP0hn,i = −1
4EP0h

2
n,i − Ptn,i/

√
n(Nn,i),

where Nn,i = {dP0/dPtn,i/
√

n = 0}. Hence (5.11) becomes

log

(
n∏

i=1

dPtn,i/
√

n

dP0
(xi)

)
(5.12)

=
n∑

i=1

(hn,i − EP0hn,i) − 1

2

n∑
i=1

EP0h
2
n,i −

n∑
i=1

Ptn,i /
√

n(Nn,i) + oPn
0
(1).

Next,

n∑
i=1

∣∣∣∣EP0

(
tn,i√

n
g

)2

− EP0(hn,i)
2
∣∣∣∣

=
n∑

i=1

∣∣∣∣EP0

(
tn,i√

n
g − hn,i

)(
tn,i√

n
g + hn,i

)∣∣∣∣
(5.13)

≤
n∑

i=1

√√√√
EP0

(
tn,i√

n
g − hn,i

)2

EP0

(
tn,i√

n
g + hn,i

)2

= O

(
n

√(
t3
n

n3/2

)(
t2
n

n

))
= O

(
t
5/2
n

4
√

n

)
,

by (5.4) and (5.5). Moreover, since EP0g = 0,

EPn
0

(
n∑

i=1

(hn,i − EP0hn,i) − tn,i√
n

g

)2

=
n∑

i=1

EPn
0

(
hn,i − tn,i√

n
g − EP0hn,i

)2

(5.14)

≤
n∑

i=1

EPn
0

(
hn,i − tn,i√

n
g

)2

= O

(
t3
n√
n

)
,

by (5.5). Hence with (5.13) and (5.14), (5.12) becomes

log

(
n∏

i=1

dPtn,i/
√

n

dP0
(xi)

)

=
n∑

i=1

tn,i√
n
g(xi) − 1

2

n∑
i=1

(
tn,i√

n

)2

EP0g
2 −

n∑
i=1

Ptn,i/
√

n(Nn,i) + oPn
0
(1),
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where again the stochastic convergence depends only on tn and n. Finally, since

Ptn,i/
√

n(Nn,i) =
∫ b+tn,i /

√
n

b
f

(
x − tn,i√

n

)
dx

=
∫ tn,i /

√
n

0
f (b − x) dx = O

(
t3
n

n3/2

)
,

by the conditions imposed on f , it follows that

log
n∏

i=1

dPtn,i/
√

n

dP0
(xi) = 1√

n

n∑
i=1

tn,ig(xi) − EP0g
2

2n

n∑
i=1

t2
n,i + oPn

0
(1),

where once more the stochastic convergence of oPn
0
(1) to 0 depends only on n

and tn. As announced in (5.11), we obtained an asymptotic expansion for the
likelihood ratios which we are going to use to compute Bayes risks.

Let us now come to the second part of the proof. Again, we only consider the
wavelet coefficients at the level l = (log2 n)/2, the coefficients in the middle of
the wavelet coefficients pyramid. The Bayes measure for each θj,k, j 
= l, is δ0,
while for j = l it is Fεn,an , with εn → 0 and an → ∞; the exact sequences will be
specified later. The overall Bayes measure is the product measure of the individual
Bayes measures. First let us compute the Bayes risk for a single coefficient θl,k .
Let z = W(e), and let θ̃j,k be random variables which are distributed according to
the Bayes measure, and which are independent of the initial noise (ei). The Bayes
estimator for the coefficient with index (l, h) is

E
(
θ̃l,h|zj,k + θ̃j,k, j = 0, . . . ,m − 1; k = 1, . . . ,2j

)
,

and the Bayes risk of estimation is (the expectation is for the noise and the Bayes
measure simultaneously)

E
(
E

(
θ̃l,h|zj,k + θ̃j,k, j = 0, . . . ,m − 1; k = 1, . . . ,2j ) − θ̃l,h

)2

≥ E
(
E

(
θ̃l,h|zj,k + θ̃j,k, j = 0, . . . ,m − 1; k = 1, . . . ,2j ;
θ̃j,k, (j, k) 
= (l, h), j = 0, . . . ,m − 1; k = 1, . . . ,2j

) − θ̃l,h

)2

= E
(
E

(
θ̃l,h|zl,h + θ̃l,h, zj,k, (j, k) 
= (l, h),

j = 0, . . . ,m − 1; k = 1, . . . ,2j
) − θ̃l,h

)2

≥ E
(
E(θ̃l,h|ei + θ̃l,hcl,h,i , i = 1, . . . , n

) − θ̃l,h

)2
,

where the last inequality holds since
∑

i (ei + θ̃l,hcl,h,i)cl,h,i = zl,h + θ̃l,h and for
(j, k) 
= (l, h),

∑
i (ei + θ̃l,hcl,h,i)cj,k,i = zj,k , where (cj,k,i) are the coefficients

of the wavelet transform (recall that the wavelet transform is orthonormal). Now,
simple computations yield that

E(θ̃l,h|e· + θ̃l,hcl,h,·) = an

εn dPan

εn dPan + (1 − εn) dP0
,
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where P0 is the law of e· and dPan the law of e· + an(cl,h,·). With the background
of the proofs of Theorems 3.1 and 3.4 it is easy to see that when choosing
εn = log(

√
n)/

√
n, the Bayes risk for this coefficient is larger than

(1 − εn)
2εna

2
n

∫
Rn

(
dP0

(1 − εn) dP0 + εn dPan

)2

dPan.

Let p1,C1 be constants between 0 and 1. If the above integrand is larger than C1
with probability p1 then the Bayes risk is larger than (1 − εn)

2εna
2
nC1p1. Now,

since

Pan

((
dP0

(1 − εn) dP0 + εn dPan

)2

≥ C1

)

= P0

((
dP−an

(1 − εn) dP−an + εn dP0

)2

≥ C1

)
(5.15)

= P0

((
1 − εn + εn dP0

dP−an

)2

≤ 1/C1

)

≥ P0

(
dP−an

dP0
≥ C2εn

)
,

where C2 = 1/(1/
√

C1 − 1) and since clearly the asymptotic properties of
dP−an/dP0 and dPan/dP0 are the same. Let us investigate when P0(dPan/dP0 >

C2εn) > p1. We have Yl,h = ∑n
i=1 cl,h,iXi . Since l = (log2 n)/2, and thanks to

the dilation equation, only about r = O(
√

n) of the cn
l,h,i are nonzero (see [8],

Chapters 6–8]). Thus, if ci is short for the nonzero coefficients cl,h,i , and re-
indexing Xi as Zi , we get Yl,h = ∑r

i=1 ciZi , with supi c
2
i ≤ C3/r , where C3 is

some global constant, as we already know from the proof of Theorem 4.1. Next,
changing the mean of the Yl,h by a is equivalent to changing the mean of each Zi

by aci . [It follows from the orthonormality of the wavelet transform that the inverse
wavelet transform of (wj,k) where wl,h = a and wj,k = 0 for (j, k) 
= (l, h) is
(al,h,i)i .] It thus follows from (5.1) (with tn,i = anci

√
r) that

dPan

dP0
= exp

(
anUn − a2

n

2
γ 2 + oP0(1)

)
,(5.16)

where Un = 1√
r

∑r
i=1(ci

√
r)g and γ 2 = EP0g

2. Note that
∑r

i=1(
√

rci)
2 = r . By

the central limit theorem, Un converges in distribution to a N(0, γ 2) random
variable, that is, Un = Vn + Rn, where Vn is a N(0, γ 2) random variable
and Rn converges to 0 in probability. Since E|g(Xi)|p,2 < p < 3, the uniform
convergence in the central limit theorem ensures that this convergence only
depends on tn := supi |tn,i | and n (e.g., see Theorem 5.8 in [34]). Thus from (5.15)
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and (5.16), we wish to investigate when

P0

(
Vn + oP0(1) ≥ log(εnC2)

an

+ anγ
2

2

)
> p1.

Let εn := (log
√

n)/
√

n, and let an be the solution (which exists as shown below)
of

log(εnC2)

an

+ anγ
2

2
+ γ = γ�−1

(
1 − p1

2

)
,(5.17)

where � is the standard normal distribution function. Now for some n0 and all
n ≥ n0,

P0

(
Vn + oP0(1) ≥ log(εnC2)

an

+ anγ
2

2

)

≥ P0

(
Vn ≥ log(εnC2)

an

+ anγ
2

2
+ γ

)
− 1 − p1

2

= 1 − �

(
log(εnC2)

γ an

+ anγ

2
+ 1

)
− 1 − p1

2
= p1,

by (5.17). Next, let us provide a closed form expression for an and find its
asymptotics. Simple computations yield that the solution of (5.17) is

an =
√√√√(

1 − �−1((1 − p1)/2)

γ

)2

− 2 log(εnC2)

γ 2 − 1 − �−1((1 − p1)/2)

γ

=
√√√√ logn

γ 2
− 2

logC2 + log log
√

n

γ 2
+

(
1 − �−1((1 − p1)/2)

γ

)2

− 1 − �−1((1 − p1)/2)

γ

∼
√

log n

γ
.

These choices of εn and an provide lower bounds on the Bayes risks and applying
the machinery of the proofs of Theorems 3.1 and 3.4 gives

lim inf
n→∞ inf

θ̂
sup
θ

E‖θ − θ̂‖2

σ 2 + ∑n
i=1 min(θ2

i , σ 2)

γ 2

log n
> 0. �

6. Concluding remarks. Variations of many of our results, such as Theo-
rems 2.1 and 2.7 and Proposition 2.5 also hold for related types of estimators,
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for example, hard thresholding or the estimator T M
λ (x) := x1{|x|≥λ} + 2(|x| −

λ/2)+ sgn(x)1{|x|<λ}, which belongs to the semisoft class of [6]. In each case,
the size of the threshold parameter and the performance of the estimator are gov-
erned by the tail behavior of the noise distribution. The asymptotic performance
is the same as for soft thresholding, as long as the density satisfies the conditions
of Theorem 2.7, that is, it decays like exp(−h(x)), where h grows at least as fast
as xε, ε > 0.

If applied levelwise, the ideal estimator method is no longer minimax. The
thresholds are a little bit too small, the sum of the risks at 0 of the coefficients
is of size ∼ C log2 n, for some constant C. In practice the coarser levels are
not thresholded, and this does not change the asymptotic performance of the
method since only a smaller and smaller fraction of the wavelet coefficients is not
thresholded. Another method, where the threshold for the kth coefficient is always
the same (no matter what the length of the input vector is) is briefly introduced
now in the normal case. The result below can be transfered to other exponentially
decaying densities as in Theorem 2.7; the main point is to choose λ̃i such that∑n

i=1 p(̃λi,0) ≈ �nσ
2.

THEOREM 6.1. Let Yi = θi + zi , i = 1, . . . , n, where the zi are i.i.d. normal
random variables with mean zero and variance σ 2, and let �n and p(·, ·) have
their usual meaning (as in Theorem 2.1). Let λ̃i be such that p(̃λi,0) = 2σ 2/i,
and let

�̃n := sup
θ∈Rn

E
∑n

i=1 |T S
λ̃i

(Yi) − θi |2
Bn(θ, σ 2)

.

Then limn→∞ �n/�̃n = 1.

PROOF. First, let us provide asymptotics for λ̃n. To do so, recall (e.g., see [35],
page 850) that as λ → +∞,

1√
2πσ 2

∫ ∞
λ

e−x2/(2σ 2) dx ∼ 1√
2π

σ

λ
exp

(
− λ2

2σ 2

)
.(6.1)

Let

s(λ) := p(λ,0) = 2√
2πσ 2

∫ ∞
λ

(x − λ)2e−x2/(2σ 2) dx;

clearly s is continuous, increasing and let s−1 denote its inverse. From (6.1), it

is easily seen that limx→0 s−1(x)/

√
2σ 2 log(1/x) = 1. Our choice of thresholds

[p(̃λi,0) = 2σ 2/i] implies that

lim
n→∞

λ̃n√
2σ 2 logn

= 1.(6.2)
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Taking in the defining property of �̃n, θi = 0 for all i, we get �̃n ≥
(
∑n

i=1 p(̃λi,0))/σ 2 = ∑n
i=1 2/i. Since �n ∼ 2 logn, it follows that

lim supn→+∞ �n/�̃n ≤ 1. In particular, �̃n ≥ 1. Let θ ∈ R
n, if |θj | ≥ σ . Then

since p(̃λj , θj ) ≤ p(̃λj ,∞) (see the proof of Theorem 2.1),∑n
i=1 p(̃λi, θi)

Bn(θ, σ 2)
≤ p(̃λj ,∞) + ∑n

i=1,i 
=j p(̃λi, θi)

Bn(θ, σ 2)
.(6.3)

If |θj | ≤ σ and if, moreover,
∑n

i=1 p(̃λi, θi)/Bn(θ, σ 2) ≥ 1, then by (2.8),∑n
i=1 p(̃λi, θi)

Bn(θ, σ 2)
≤ p(̃λj ,0) + θ2

j + ∑n
i=1,i 
=j p(̃λi, θi)

σ 2 + θ2
j + ∑n

i=1,i 
=j min(θ2
i , σ 2)

(6.4)

≤ p(̃λj ,0) + ∑n
i=1,i 
=j p(̃λi, θi)

σ 2 + ∑n
i=1,i 
=j min(θ2

i , σ 2)
.

Since supθ∈Rn

∑n
i=1 p(̃λi,θi)

Bn(θ,σ 2)
≥ 1, repeated use (n times) of (6.3) and (6.4) leads to

sup
θ∈Rn

∑n
i=1 p(̃λi, θi)

Bn(θ, σ 2)
≤ sup

θ∈{0,∞}n

∑n
i=1 p(̃λi, θi)

Bn(θ, σ 2)

= sup
J⊂{1,...,n}

∑
i∈J p(̃λi,0) + ∑

i∈J c (̃λ2
i + σ 2)

σ 2(1 + |J c|)

≤ sup
J⊂{1,...,n}

(2 + 2 logn)σ 2 + |J c|(̃λ2
n + σ 2)

σ 2(1 + |J c|) ∼ �n,

since
∑n

i=1 1/i ≤ 1 + logn, since λ̃i is increasing with i and since from (6.2),
(̃λ2

n + σ 2)/σ 2 ∼ �n ∼ 2 logn. Hence, lim infn→+∞ �n/�̃n ≥ 1, and the proof is
complete. �

It is known that the ideal estimator is not always the optimal one. Indeed let
X be a zero mean random variable with variance 1 and let x → αx, α ∈ (0,1) be a
linear shrinker. Then E(α(X + θ)− θ)2 = α2 + (1 −α)2θ2. If |θ | = 1 and α = 1/2
then ((1 − α)2θ2 + α2)/(min(θ2,1)) = 1/2. This pathology is because we are
estimating a single coefficient whose square is the variance of the noise. However,
in general, linear shrinkers applied to wavelet coefficients do not always perform
that well. Indeed, a result of Donoho and Johnstone ([14], Theorem 5) asserts that
for X1, . . . ,Xn, i.i.d. centered normal random variables with variance σ 2,

inf
α

E‖α(X + θ) − θ‖2 ≥ E‖TJS(X + θ) − θ‖2 − 2σ 2,

for all θ ∈ R
n, where

TJS(x1, . . . , xn) := (x1, . . . , xn)
(‖x‖2 − σ 2(n + 2))+

‖x‖2



DENOISING NON-GAUSSIAN NOISE 147

FIG. 4. The four signals.

is the James–Stein estimator. With this result, assume we are given a signal of
length n which is contaminated by i.i.d. standard normal noise. Then the risk of any
estimator which shrinks linearly each level of the wavelet transform of the data by a
fixed amount is larger than the risk of the James–Stein estimator applied levelwise
minus 2 log2 n (we have log2 n levels). Note that this property is independent of
the signal itself. The situation might change if the linear shrinkage coefficients are
chosen to depend on the noisy wavelet transform; this is what TJS does.

A comparison of the performance of the different thresholds and of the
performance of soft thresholding for non-Gaussian noise is of interest. To do
this, a small Monte Carlo study was performed. The target signals are depicted
in Figure 4; they were introduced by Donoho and Johnstone [13].

The simulation was performed with S+ from StatSci and the software package
wavethresh for S+ from Guy Nason. As wavelet basis, the least asymmetric
wavelets of Daubechies, with a filter length of 16, were chosen (see [8]). The
lengths of the signal are 512 and 8192, while the noise is, respectively, normal
and Student with four degrees of freedom, scaled to have variance 1. The density
of this Student distribution decays like 1/|x|5, so its tails are quite heavy. The
thresholds used are the optimal thresholds of Theorem 2.1 for normal noise
and n = 512 and n = 8192, respectively (thresholding is done in the wavelet
domain and so for Student noise, the central limit theorem dictates our choice
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TABLE 1
Optimal Gaussian thresholds∗

Signal length = 512 Signal length = 8192

Gaussian noise Student noise Gaussian noise Student noise

Signal 0 3 5 0 3 5 0 3 5 0 3 5

Doppler 0.45 0.40 0.35 0.51 0.49 0.39 0.074 0.07 0.06 0.099 0.095 0.094
Blocks 0.98 0.93 0.77 0.97 1.03 0.80 0.22 0.22 0.20 0.24 0.24 0.24
Bumps 1.11 1.12 1.02 1.17 1.17 1.07 0.21 0.21 0.19 0.24 0.23 0.23
Heavisine 0.24 0.18 0.15 0.34 0.22 0.21 0.046 0.043 0.034 0.074 0.064 0.068

∗Average square errors for 100 runs.

of normal threshold). For each combination of noise, signal and signal length,
different thresholding methods were applied: all levels are thresholded; the three
coarsest levels are not thresholded and the five coarsest levels are not thresholded,
denoted, respectively, by 0, 3 and 5 in Table 1. The numbers in the table are the
averages of the square errors for 100 runs, divided by the length of the signal,
that is, 1

100
∑100

k=1 ‖θ̂ (θ + ek) − θ‖2
2,n, where θ̂ is the estimator (soft thresholding,

James–Stein, . . . ) and ‖ · ‖2,n the corresponding normalized (by n) Euclidean
norm of θ = (θ1 . . . , θn). Clearly, for a small sample size the levels which are
not thresholded influence the performance of the estimator (as pointed out by a
referee, this is much less an issue with hard thresholding).

Additionally, the estimator of Theorem 6.1 was used, but the coefficients of
one level were thresholded with the largest threshold for that level of the original
estimator; that is, the level j was thresholded with λ̃2j+1 of Theorem 6.1.

For comparison the James–Stein estimator was applied levelwise to the wavelet
coefficients, the five coarsest levels being treated as one level. This estimator tries
to shrink the values with an estimate of the best linear shrinkage coefficient.

The main conclusion of this small study is that the performances of the
estimator which does not threshold the five coarsest levels and of the estimator of

TABLE 2
Thresholds of Theorem 6.1∗

Gaussian noise Student noise

Signal 512 8192 512 8192

Doppler 0.39 0.046 0.49 0.095
Blocks 0.91 0.18 1.07 0.26
Bumps 1.16 0.16 1.20 0.25
Heavisine 0.17 0.028 0.23 0.070

∗Average square errors for 100 runs.
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TABLE 3
James–Stein estimator∗

Gaussian noise Student noise

Signal 512 8192 512 8192

Doppler 0.55 0.077 0.58 0.078
Blocks 0.75 0.26 0.74 0.26
Bumps 0.91 0.14 0.92 0.14
Heavisine 0.18 0.040 0.19 0.043

∗Average square errors for 100 runs.

Theorem 6.1 are comparable. Surprisingly good is the performance of the James–
Stein estimator; it is also more robust if the noise is not normal.

To finish this study, the reader is referred to www.math.gatech.edu/∼houdre/
where an extensive set of simulations is presented. For various classes of noise,
the visual appearance of the denoising method can also be evaluated there.
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