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This paper considers a class of local likelihood methods introduced by
Eguchi and Copas. Unified asymptotic results are presented in the usual
smoothing context of the bandwidth, h, tending to zero as the sample size
tends to infinity. We present our results pointwise in the univariate case, but
then go on to extend them to global properties and to indicate how to cope
with the multivariate case. Specific members of the class due to Copas, and
Hjort and Jones are seen to be members of a subset of the whole class with
the same, and best, small h behavior. Further comparisons between members
of the class are alluded to based on the complementary large h asymptotic
results of Eguchi and Copas.

1. Introduction. Semiparametric density estimation attempts to combine
parametric and nonparametric approaches to density estimation in such a way
that the resulting method inherits the best properties of each, namely, efficient
estimation if the proposed parametric family includes a good model for the data
and the usual good behaviour of nonparametric density estimation if it does not.

In this paper, we are concerned only with one particular class of kernel-
based semiparametric methods, those which are local likelihood methods. Let
X1, . . . ,Xn be a univariate random sample from the distribution with (unknown)
density f (·) and let f (·, θ), with θ a p-dimensional parameter vector, be
a parametric model proposed for the data. Also, let K be a fixed symmetric kernel
function with

∫
K(y)dy = 1 and, for convenience, K(0) = 1 and let h be the

bandwidth. Then the formulation of kernel-based local likelihood estimation due
to Copas (1995) is to take f̂ (x)= f (x, θ̂) where θ̂ = θ̂ (x) is chosen to maximize

n∑
i=1

K

(
Xi − x

h

)
logf (Xi, θ)

+
n∑
i=1

{
1 −K

(
Xi − x

h

)}
log

{
1 −

∫
K

(
z− x

h

)
f (z, θ) dz

}
.
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An alternative formulation of kernel-based local likelihood estimation due to Hjort
and Jones (1996) and Loader (1996) is to take θ̂ to maximize

n∑
i=1

K

(
Xi − x

h

)
logf (Xi, θ)− n

∫
K

(
z− x

h

)
f (z, θ) dz.

Each formulation has as its first term the log-likelihood localized to x by means
of the kernel function which gives high weight to terms corresponding to Xi close
to x and less weight to terms with Xi far from x. Maximization of the first term
alone is inadequate as it leads to inconsistent estimation. A second, correction,
term is necessary but its precise details allow scope for variation. See Copas (1995)
and Hjort and Jones [(1996), Section 2] for arguments leading to the correction
terms above. A particularly useful choice is to take logf (x, θ) to be a polynomial
[Loader (1996)], although other simple standard forms for f (x, θ) have been
suggested too.

In a very interesting paper, Eguchi and Copas (1998) gave a unified formulation
of these two local likelihood approaches which also allows further variations on the
theme. Eguchi and Copas go on to determine the large h properties of their class
of estimators. This is very useful in describing how the semiparametric estimator
behaves when the parametric estimator actually is, or is almost, a good model for
the data and hence a large bandwidth, which results in at most small modifications
of the parametric model when fitted to data, is appropriate. Note that as h→ ∞
the local log likelihoods tend to the usual, global, log likelihood (plus perhaps
an irrelevant constant).

In this paper, we present the small h asymptotics of the same class of methods.
This is useful for describing how the semiparametric estimator behaves when
the parametric estimator is unsuitable for the data and the nonparametric aspect
of the estimator takes over. This work unifies and extends that of Hjort and
Jones (1996)—which gives small h results for their estimator and of Kim, Park
and Kim (2001)—which gives small h results for the Copas estimator.

In Section 2, we describe the Eguchi and Copas (1998) unified formulation and
make some initial remarks about choice of their general function ξ . The main
development of the small h pointwise theoretical properties of the Eguchi and
Copas class is contained in Section 3 with some proofs deferred to the Appendix.
In Section 4, we discuss various aspects of our results including extensions to
global properties and to the multivariate case, and make some discussion of the
bandwidth selection issue. Finally, and in combination with the large h results of
Eguchi and Copas (1998), we make some general comparison of estimators within
the class (including some not mentioned thus far).

2. A class of estimating equations. Define u(t, θ) = (∂/∂θ) log{f (t, θ)}.
Let ξ(·, ·) be an arbitrary function. Then the general form of local likelihood
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estimating equation introduced by Eguchi and Copas (1998) is to choose
θ̂n ≡ θ̂n(x) to satisfy �n(θ,h)= 0 where n�n(θ,h)≡ n�n(x, θ,h) equals

n∑
i=1

K

(
Xi − x

h

)
u(Xi, θ)

−
n∑
i=1

ξ

{
K

(
Xi − x

h

)
,EθK

(
X1 − x

h

)}
Eθ

{
K

(
X1 − x

h

)
u(X1, θ)

}
.

Here and below Eθ means expectation with respect to the parametric den-
sity f (·, θ) while E with no subscript means expectation with respect to the true
density f . The density estimator is, of course, f (x, θ̂n(x)).

The function ξ is required to satisfy

Eθξ

{
K

(
X1 − x

h

)
,EθK

(
X1 − x

h

)}
= 1(2.1)

for the system of estimating equations to be unbiased when f (·) = f (·, θ) for
some θ . For small h asymptotics we need some additional desirable properties
of ξ(y, z). We assume that for each z, ξ(y, z) is linear in y. This is for simplicity
of presentation, yet the class of such functions is rich enough to include all three
versions discussed in Eguchi and Copas (1998). The theory in this paper indeed
goes through with ξ(y, z) being, for each z, a polynomial in y, but that includes
more involved expansions and formulas.

We may write

ξ(y, z)= ξ0(z)+ ξ1(z)y(2.2)

for some functions ξ0(z) and ξ1(z). The condition (2.1) then implies that, writing
ah = (1/h)EθK{(X1 − x)/h} which is O(1),

ξ0(hah)+ hahξ1(hah)= 1(2.3)

from which we deduce that ξ0(z) = O(1) = zξ1(z) as z → 0. It is convenient
to introduce the two functions β(z) = ξ0(z) and γ (z) = zξ1(z) so that we may
rewrite (2.2) as

ξ(y, z)= β(z)+ γ (z)(y/z).(2.4)

For small h asymptotic analysis, we require that β(z) and γ (z) should be
differentiable sufficiently many times in a neighborhood of z= 0. This assumption
will be made throughout the work below.

Let βk = β(k)(0)/k! and γk = γ (k)(0)/k! where, for a function g, g(k) denotes
its kth derivative. In terms of β and γ , (2.3) may be rewritten as

β(hah)+ γ (hah)= 1.(2.5)

In particular, by letting h→ 0 we get β0 + γ0 = 1. In the work in Section 3 we
exclude the case γ0 = 1, however. The reason is that a function γ with γ0 = 1
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may produce an estimator which does not converge to a proper limit. To be
specific, define g(θ,h) ≡ g(x, θ,h) = h−1E�n(x, θ,h) for h > 0, and g(θ,0) ≡
g(x, θ,0) = limh→0 g(x, θ,h). The solution of the equation �n(θ,h) = 0 may
converge to a limit only when there exists a unique solution of the equation
g(θ,h) = 0 in a neighborhood of h = 0. By the implicit function theorem [see,
e.g., Apostol (1975)], this happens when g(θ,0) has a continuous first derivative at
θ = θ0 with nonzero determinant where θ0 satisfies g(θ0,0)= 0. However, we note
that g(θ,0)= (1 − γ0)u(x, θ){f (x)− f (x, θ)} which implies that (∂/∂θ)g(θ,0)
is identically zero when γ0 = 1.

Eguchi and Copas considered three special cases of their formulation, which
they called the U -version [Hjort and Jones (1996), Loader (1996)], the C-version
[Copas (1995)] and the T -version (a truncation-based local likelihood method).
Note that for the U -version and C-version the condition (2.4) holds with β(z)≡ 1,
γ (z) ≡ 0 and β(z) = 1/(1 − z), γ (z) = −z/(1 − z), respectively. However, for
the T -version, β(z)≡ 0 and γ (z)≡ 1. Thus we can expect that the T -version has
undesirable small h asymptotic properties.

3. Theoretical properties.

3.1. Stochastic expansion. Suppose that, for each x, the solutions, denoted
by θh and θ0, respectively, of the equations g(θ,h)= 0 and g(θ,0)= 0 are unique.
Then, we may expect that under some additional regularity conditions θ̂n ≡ θ̂n(x),
a solution of the estimating equation �n(θ,h) = 0, gets closer to θh as n grows.
Specifically, assume that g(θ,h) converges to g(θ,0) uniformly on a compact
neighborhood of θ0, say D , that g(θ,0) is continuous on D , and that f (x, ·) is
bounded away from zero on D and u(z, θ) is bounded by a constant for z in
a neighborhood of x and for θ ∈ D . Furthermore, suppose that u(z, θ) is two times
differentiable with respect to θ for all z in a neighborhood of x and that there exists
a functionG which is continuous at x and satisfies for all z in a neighborhood of x,

sup
θ∈D

∣∣∣∣ ∂2

∂θ2u(z, θ)

∣∣∣∣≤G(z).(3.1)

Suppose also that ξ(y, z) is two times continuously differentiable with respect to z
in a neighborhood containing zero for all y in the range of the kernel function K .
Finally, assume that the kernel function K is bounded and compactly supported.
Call these conditions (S).

We describe stochastic expansions for θ̂n and f̂n(x)= f (x, θ̂n) in the following
theorem which may be proved under the conditions (S). To state the theorem,
we write �n(θ) for �n(θ,h), and define Rn ≡ Rn(x) = −(nh)1/2ḟ (x, θh)t ×
{E�̇n(θh)}−1�n(θh) where ḟ (x, θ) and �̇n(θ) denote the first derivatives with
respect to θ .
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THEOREM 1. Under the conditions (S), the estimator θ̂n admits the stochastic
expansion

θ̂n − θh = −{E�̇n(θh)}−1
�n(θh)+Op

(
(nh)−1)

as n→ ∞, h→ 0 and nh→ ∞. Thus, the local likelihood density estimator f̂n(x)
satisfies

f̂n(x)= f (x, θh)+ (nh)−1/2Rn +Op
(
(nh)−1).(3.2)

The asymptotic bias of f̂n(x) comes from the deterministic part f (x, θh) since
ERn = 0 by the definition of θh, and the asymptotic variance may be obtained
from the stochastic part Rn.

3.2. Asymptotic variance. In our second theorem we give a formula
for var(Rn). To state the theorem, let µr = ∫

yrK(y) dy and κr = ∫
yrK2(y) dy.

Denote by M the p × p matrix which has, as its (r, s)th entry, mr,s = κr+s −
γ0κrµs − γ0µrκs + γ 2

0 κ0µrµs . Here and below the indices for vector or matrix
entries count from 0. For example, the first diagonal entry of M equals m00. De-
fine another p × p matrix N = (nr,s) with nr,s = µr+s − γ0µrµs . For Rn to have
a proper limit law the matrix N should be invertible. In fact, if N is singular then
var(Rn) diverges and consequently the stochastic part in (3.2) has a rate slower
than Op((nh)−1/2).

Now write N = N0 − γ0µµ
t where N0 is a p × p matrix which has µr+s as

its (r, s)th entry and µ= (µ0,µ1, . . . ,µp−1)
t . Also write er−1 for the unit vector

with 1 appearing at the r th place and zeroes elsewhere. Recall that adding to one
column of a matrix any multiple of another column does not affect the value of the
determinant. Therefore,

det(N)= det

(
N +

p−1∑
r=1

γ0µrµe
t
r

)
= det(N + γ0µµ

t − γ0µe
t
0)

= det(N0 − γ0µe
t
0)= (1 − γ0)det(N0)

since N0 − γ0µe
t
0 is the same as N0 except its first column which equals (1 − γ0)

times the first column of N0. Note that the matrix N0 is positive definite if K is
nonnegative and its support contains an interval with nonempty interior. Under
these conditions on the kernel, the matrix N is invertible if γ0 �= 1.

Suppose then that γ0 �= 1 and that we choose a kernel K so that the matrix N
is invertible. Assume that the point of interest x is in the interior of the sup-
port of f , that is, f (x) > 0, that f (·) and f (·, ·) have two bounded and con-
tinuous (partial) derivatives, and that each component of u0(·) = limh→0 u(·, θh)
has p continuous derivatives in a neighborhood of x. Assume further that
u0(x), u

(1)
0 (x), . . . , u

(p−1)
0 (x) are linearly independent. Call these conditions (V).
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THEOREM 2. Under the conditions (V), the variance of Rn equals f (x)et0
×N−1MN−1e0 + o(1) where et0 = (1,0, . . . ,0).

A proof is given in the Appendix. We will now show that this asymptotic
variance expression does not depend on γ0. Write M0 for the p × p matrix
with κr+s as its (r, s)th entry and κ = (κ0, κ1, . . . , κp−1)

t . Now,

N−1 =N−1
0 + γ0

1 − γ0µ
tN−1

0 µ
N−1

0 µµtN−1
0 =N−1

0 + γ0

1 − γ0
e0e

t
0.

The second equality follows from the fact that N−1
0 µ equals the first column of

N−1
0 N0 = I , namely e0. Plugging this expression into et0N

−1MN−1e0 and using
the additional facts that the first column of M equals (1 − γ0)κ − γ0κ0(1 − γ0)µ

and that the first diagonal element of M equals (1 − γ0)
2κ0, we obtain

et0N
−1MN−1e0 = et0N

−1
0 MN−1

0 e0 + 2γ0κ
tN−1

0 e0 − γ 2
0 κ0.

Plugging the expression M = M0 − γ0κµ
t − γ0µκ

t + γ 2
0 κ0µµ

t into the above
formula yields the following corollary.

COROLLARY 1. Under the conditions (V), the variance of Rn equals
f (x)et0N

−1
0 M0N

−1
0 e0 + o(1).

This corollary implies that the (first-order) asymptotic variance of a local
likelihood density estimator does not depend on the functions β and γ at all except
for the requirement that γ0 �= 1. The asymptotic variance of the various versions
of local likelihood density estimation with γ0 �= 1 are all identical, and what is
more, they are the same as the asymptotic variances of local polynomial regression
where the order of polynomial to be fitted takes the role of p−1 here. See Ruppert
and Wand (1994) or Fan and Gijbels (1996), for example. Specifically, for p = 1
or 2, the asymptotic variance is κ0, which also coincides with the usual asymptotic
variance of the ordinary kernel density estimator. For p = 3 or 4, the asymptotic
variance is (µ2

4κ0 − 2µ2µ4κ2 +µ2
2κ4)/(µ4 −µ2

2)
2. The corollary reveals another

interesting fact about how the asymptotic variance of f̂n(x) changes as p increases.
Note that the rate which is (nh)−1 does not depend on p. Moreover, if p is
odd, then there is no inflation even in the constant factor when one increases the
number of parameters from p to p + 1. This property of variance is due to the
special structure of the matrices M and N : the entries mr,s and nr,s equal zero
for (r, s) with r + s odd, and when one increases the number of parameters the
new matrices M and N are formed by adding a new column and a new row to
the old ones. Formally, we give the following proposition which is not difficult to
show.
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PROPOSITION 1. Let A and B be k × k matrices. Denote by Ã and B̃ the
(k+1)×(k+1)matrices such that Ãr,s =Ar,s and B̃r,s = Br,s for 0 ≤ r, s ≤ k−1.
Suppose that Ãr,s = B̃r,s = 0 for (r, s) with r + s odd (and so also for A and B).
Suppose in addition that the matrices obtained by deleting all the odd-numbered
columns and rows from A, Ã, and those obtained by deleting all the even-
numbered columns and rows are invertible. Then (Ã−1B̃Ã−1)r,r = (A−1BA−1)r,r
when k− r is odd.

3.3. Asymptotic bias. Next, we investigate the asymptotic bias f (x, θh) −
f (x). Recall that θh satisfies E{�n(θh)} = 0; this is the equation govern-
ing the asymptotic bias. Write ν(y, θ) = f (y, θ) − f (y). Define ζ1(x, θ, h) =∫
K(y)ν(x + hy, θ) dy, and likewise define ζ2(x, θ, h), ζ3(x, θ, h) by replac-

ing ν(·, θ) with u(·, θ)f,u(·, θ)ν(·, θ), respectively. From (2.5) it follows that,
writing ah = a(x, θ,h) for ah defined in Section 2,

Eξ

{
K

(
X1 − x

h

)
,EθK

(
X1 − x

h

)}
= 1 − γ

(
ha(x, θ,h)

){ζ1(x, θ, h)

a(x, θ, h)

}
.

Plugging this expression into the governing equation and writing ζ4(x, θ, h) =
γ (ha(x, θ, h)), we get F(x, θh,h)= 0 where

F(x, θ,h)= ζ3(x, θ, h)a(x, θ, h)

− ζ1(x, θ, h)ζ4(x, θ, h)
{
ζ2(x, θ, h)+ ζ3(x, θ, h)

}
.

(3.3)

As a function of h, F(x, θ,h) admits a Taylor expansion if f (y) and f (y, θ)
are sufficiently smooth. Thus θh, being the unique solution to F(x, θ,h) = 0,
admits a Taylor expansion by the implicit function theorem. We can expand then
u(·, θh), ν(·, θh) and F(x, θh,h) as functions of h. Let ur(·), νr(·) and cr(x) be
the coefficients of hr in the Taylor expansions of u(·, θh), ν(·, θh) and F(x, θh,h),
respectively. We are interested in the bias ν(x, θh) = f (x, θh) − f (x), and thus
in νr(x). These coefficients can be obtained by equating cr(x) to zero. Direct
calculation of the coefficients cr(x) from (3.3) is extremely lengthy and complex.
Our next theorem presents a simple easy-to-use formula for computing cr(x) in
terms of ur , νr and f .

To state the theorem, assume that f (y), f (y, θ) and u(y, θ) are functions with
r bounded and continuous (partial) derivatives. Let s and l be nonnegative integers.
Define

ζ1,s(x)=
s∑
k=0

{(s − k)!}−1ν
(s−k)
k (x)µs−k,

ζ3,s(x)=
s∑
k=0

{(s − k)!}−1(u× ν)
(s−k)
k (x)µs−k,

As,l(x)=
s−l∑
k=0

{(s − k)!}−1

(
s − k

l

)
ν
(s−l−k)
k (x)µs−k.
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We use the convention (u× v)r to denote
∑r
k=0 ukvr−k . One should observe that

ζ1,r (x)=Ar,0(x) for all r . It is convenient to introduce a notation for the condition
of our theorem. Let r ≥ 1 be an integer. We call the following condition Cr :
ζ1,s(x)= 0 for all 0 ≤ s ≤ r − 1 and As,l(x)= 0 for all 0 ≤ l ≤ s, 0 ≤ s ≤ r − 1.
Note that the conditions Cr ’s are nested, that is, Cr is implied by Cr+1.

THEOREM 3. Let r ≥ 1 be an integer. Suppose that the condition Cr holds.
Then,

cr(x)=
{
(1 − γ0)ζ1,r (x)u0(x)+

r∑
l=1

Ar,l(x)u
(l)
0 (x)

}
f (x).(3.4)

A proof is given in the Appendix. Define f0(y) = limh→0 f (y, θh). Assume
that f0(x), which equals f (x) + ν0(x), is strictly positive. The condition Cr is
then satisfied for all 1 ≤ r ≤ p+1 if u0(x), . . . , u

(p−1)
0 (x) are linearly independent

where p is the number of parameters in the local likelihood estimating equation.
To see this, first we note that c0(x) = (1 − γ0)u0(x)ν0(x){f (x) + ν0(x)}. From
the equation c0(x) = 0 we get ν0(x) = 0 since f (x) > 0. (One should note that
this does not mean the function ν is identically zero, but just that the function is
zero at the point x.) This implies that Ar,r(x) = (r!)−1ν0(x)µr = 0 for all r ≥ 0.
Thus, cr(x) in (3.4) is a linear combination of u0(x), . . . , u

(r−1)
0 (x) which are

linearly independent when p ≥ r . Hence, whenever the equation (3.4) is true for
r ≤ p, we have ζ1,r (x) = 0 and Ar,l(x) = 0 for all 1 ≤ l ≤ r . Now we consider
the condition C1. We observe that ζ1,0(x) = A0,0(x) = ν0(x) = 0. Thus, the
condition C1 is satisfied. This implies that the identity (3.4) holds for r = 1 so
that ζ1,1(x) = 0. The condition C2 is then satisfied, and we repeat this argument
until we conclude that the identity (3.4) holds for r = p. We obtain the following
corollary.

COROLLARY 2. Let p be the number of parameters in the local likelihood
estimating equation �n(θ,h) = 0. Then, ζ1,r (x) = 0 for all 0 ≤ r ≤ p, and
Ar,l(x) = 0 for all 0 ≤ l ≤ r , 0 ≤ r ≤ p so that for all 1 ≤ r ≤ p + 1 the
equation (3.4) holds.

Theorem 3 and Corollary 2 can be used to obtain each term in an expansion of
the bias. We illustrate this in the cases p = 1,2,3,4. Below, we often omit “x,”
the point of interest, in the notation. For example, we write cr for cr(x) and ν(j)k
for ν(j)k (x). First, we consider the case p = 1. By Corollary 2, we get ζ1,1 = ν1 = 0.
Since ν0 = 0, this means that the leading bias term is O(h2). The coefficient of h2

can be obtained by the equation c2 = 0. We find that ζ1,2 = ν
(2)
0 µ2/2 + ν2 and

A2,1 = ν
(1)
0 µ2. By Corollary 2, we get

c2/f = (1 − γ0)
{
ν
(2)
0 µ2/2 + ν2

}
u0 + ν

(1)
0 u

(1)
0 µ2.
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Since ν0(y)= f0(y)− f (y), this implies that when p = 1,

f (x, θh)− f (x)

=
{

1

2
(f − f0)

(2)(x)+ 1

1 − γ0

u
(1)
0 (x)

u0(x)
(f − f0)

(1)(x)

}
µ2h

2 + o(h2).

For p = 2 the constant factor of the leading bias is simplified. By Corollary 2,
A2,1 = 0 so that ν(1)0 = 0. Hence, ν2 = −ν(2)0 µ2/2 and we obtain for p = 2,

f (x, θh)− f (x)= 1
2(f − f0)

(2)(x)µ2h
2 + o(h2).

The rate in terms of h is the same as that of the ordinary kernel density estimator
in both cases. It is unclear, however, whether in any particular case (and for any
particular x) f (2)(x) or (f − f0)

(2)(x) results in smaller squared bias.
Next, we consider the cases p = 3,4. We first show that in these cases

ν2 = ν3 = 0 so that the leading bias is O(h4). Applying Corollary 2, in particular
ζ1,3 = 0 and A3,1 = 0, we obtain

ν
(2)
1 µ2/2 + ν3 = 0, ν

(1)
1 = 0.(3.5)

Consider now c4. For this we note that A4,3 = ν
(1)
0 µ4/6 = 0 since ν(1)0 = 0. Thus

from Corollary 2, c4 is a linear combination of u0, u
(1)
0 and u(2)0 only, so that all

the coefficients of u0, u
(1)
0 and u(2)0 are zero. We obtain

ζ1,4 = 1
24ν

(4)
0 µ4 + 1

2ν
(2)
2 µ2 + ν4 = 0,(3.6)

A4,1 = 1
6ν
(3)
0 µ4 + ν

(1)
2 µ2 = 0,(3.7)

A4,2 = 1
4ν
(2)
0 µ4 + 1

2ν2µ2 = 0.(3.8)

Combining (3.8) and the fact that ν2 = −ν(2)0 µ2/2, we conclude that ν2 = ν
(2)
0 = 0.

Next, we consider c5. Here we apply Theorem 3. Condition C5 is satisfied. Note
that A5,3 = ν

(1)
1 µ4/6 = 0 by (3.5) and A5,4 = ν1µ4/24 = 0 so that c5 includes

only u0, u
(1)
0 and u(2)0 . Therefore all their coefficients are zero. In particular,

A5,1 = 1
6ν
(3)
1 µ4 + ν

(1)
3 µ2 = 0,(3.9)

A5,2 = 1
4ν
(2)
1 µ4 + 1

2ν3µ2 = 0.(3.10)

Now combining (3.5) and (3.10), we obtain ν3 = ν
(2)
1 = 0.

An explicit expression for the constant factor ν4 of the h4 term may now be
obtained. When p = 3, we obtain from (3.6) that

f (x, θh)− f (x)=
{

1
24(f − f0)

(4)(x)µ4 − 1
2ν
(2)
2 (x)µ2

}
h4 + o(h4).

The constant factor is further simplified when p = 4. For this, consider c6 and
apply Theorem 3 with r = 6 since condition C6 is satisfied. We can find in this
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case A6,4 = A6,5 = 0 so that c6 is a linear combination of u0, u
(1)
0 , u

(2)
0 and u(3)0 .

Equating A6,2 to zero in particular we obtain

A6,2 = 1
48ν

(4)
0 µ6 + 1

4ν
(2)
2 µ4 + 1

2ν4µ2 = 0.(3.11)

Solving the system of equations (3.6) and (3.11) yields that for p = 4,

f (x, θh)− f (x)= − 1

24

µ2µ6 −µ2
4

µ4 −µ2
2

(f − f0)
(4)(x)h4 + o(h4).

4. Extensions and discussion.

4.1. Global properties. The results in Section 3 are given in pointwise form.
They may be extended to some global results. First, the stochastic expansion (3.2)
can be strengthened as

sup
x∈I

∣∣f̂n(x)− f (x, θh)− (nh)−1/2Rn(x)
∣∣=Op

{
(nh)−1 logn

}
(4.1)

for a compact interval I where we write Rn(x) instead of Rn to stress its depen-
dence on x. Property (4.1) may be shown to be valid with slight modifications of
the conditions (S) stated in Section 3.1, as follows: add uniformity and continuity
over x ∈ I to the conditions on g, require f (x, θ) to be bounded away from zero
for θ ∈ D and x ∈ I, u(z, θ) to be bounded for θ ∈ D and z in an interval con-
taining I, say, Iε, the inequality (3.1) to hold for all z in Iε for a function G which
is continuous on I, ξ(y, z) to be twice partially continuously differentiable with
respect to y and z, K to be twice differentiable as well, and h to be asymptotic
to n−(1/3)+δ for some 0< δ < 1/3.

Furthermore, the variance expansion given at Theorem 2 may be shown to hold
uniformly on x ∈ I if we require, in addition to the conditions (V) in Section 3.2,
that infx∈I f (x) > 0, that u0(·) has p bounded and continuous (partial) derivatives
on Iε , and that its derivatives up to (p− 1)th order are linearly independent for all
x ∈ I. Also, all the expansions in the bias approximation are valid uniformly on I

if the corresponding functions involved in the expansions are continuous on I.

4.2. Bandwidth selection. Asymptotic results such as those in this paper can
be utilized in a variety of ways to produce useful bandwidth selectors [e.g., Jones,
Marron and Sheather (1996)]. For example, in the case of fitting two parameters
locally, the asymptotic mean squared error is minimised by

h0 =
[

κ0∫ {(f − f0)
(2)(x)}2 dx µ2

2 n

]1/5

.

It is not immediately clear how to specify f as well as f0 to provide a rule-of-
thumb based on this expression, but plug-in methods are feasible. In particular, the
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bias term requires estimates of f ′′, which might be provided by ordinary kernel
density estimation or by the appropriate coefficient(s) in a three or more parameter
local likelihood fit, in each case using an appropriate larger bandwidth, and f ′′

0 ,
which is easy.

Local likelihood density estimation throws up even more opportunities for
bandwidth selection methods based on asymptotics than does ordinary kernel
estimation because of the existence of both small h and large h asymptotics for
their performance. Eguchi and Copas (1998) provide a simple rule-of-thumb based
on their large h asymptotics. It is an interesting and as yet unexplored question
as to which type of asymptotics yields the most useful formulas for practice. In
addition, there remain methods such as least squares cross-validation which are
not so tied to asymptotics and which are readily applicable to local likelihood
density estimation. The bandwidth selection issue is a topic ripe for extensive
methodological development and practical testing. Also, it should be noted that
the asymptotics presented in this paper are for fixed h. Exploring the sampling
properties for stochastic h is very important and is a challenging problem for future
research.

4.3. Multidimensional data. Extension of the local likelihood method to the
case of d-dimensional data is straightforward. Let K now be a d-variate ker-
nel and H a symmetric positive definite bandwidth matrix. Then, the definition
of �n(θ) and θ̂n given in the first paragraph of Section 2 is generalized immedi-
ately by substituting K(H−1(Xi − x)) for K(h−1(Xi − x)) there. Development
of relevant theory for the density estimator f̂n(x) = f (x, θ̂n(x)) is possible, too.
First, one may obtain the following analogue of (3.2):

f̂n(x)= f (x, θH )+ (n|H |)−1/2Rn +Op
{
(n|H |)−1},

where Rn ≡ Rn(x) = −(n|H |)1/2ḟ (x, θH )t {E�̇n(θH )}−1�n(θH ) with θH being
the solution of the equation E{�n(θ,H)} = 0, and |H | denoting the determinant
of H . Treatment of a general number of parameters in the multidimensional case
to have simple expressions for the variance and bias requires very careful notation.
Below, we focus on the special case of a (d + 1)-dimensional parameter, analogue
of local linear fitting in d dimensions.

Define µr,s = ∫
yrysK(y) dy for r, s = 1, . . . , d , µ0,s = ∫

ysK(y) dy for
s = 1, . . . , d and µ0,0 = ∫

K(y) dy = 1. Likewise, define κr,s for r, s = 1, . . . , d ,
κ0,s for s = 1, . . . , d and κ0,0 withK2 in place ofK . Let M̃ be the (d+1)× (d+1)
matrix which has, as its (r, s)th entry, m̃r,s = κr,s − γ0κ0,rµ0,s − γ0µ0,rκ0,s +
γ0κ0,0µ0,rµ0,s . Write Ñ = (ñr,s) with ñr,s = µr,s − γ0µ0,rµ0,s . The variance
of Rn has exactly the same expression as in Theorem 2 except that M and N
are replaced by M̃ and Ñ , respectively. In particular, if all the odd-order moments
of K vanish, then the expression for the variance of Rn reduces to κ0,0f (x)+ o(1)
so that the asymptotic variance of f̂n(x) equals n−1|H |−1f (x)

∫
K2(y) dy. If we
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add the additional condition on K that
∫

yy tK(y) dy =µ1,1I with µ1,1 �= 0, then
it may be shown that the asymptotic bias of f̂n(x) equals 1

2µ1,1 tr{H 2Hf−f0(x)}
where Hf−f0(x) is the d × d Hessian matrix of the function f − f0 at x and f0
is the limit of f (·, θH ) when all the entries of H tend to zero. These results
are valid under the obvious multivariate version of the conditions imposed on f
and f (·, θ). We only point out that linear independence is now required for
u0(x), (∂/∂x1)u0(x), . . . , (∂/∂xd)u0(x) where u0 is the limit of u(·, θH ) when all
the entries of H tend to zero.

4.4. Effect of number of parameters. Because asymptotic bias and variance
depend on ξ when of the linear form (2.2) only through the value of γ0, the small h
asymptotic performance of the Copas (1995) and Hjort and Jones (1996) local
likelihood density estimators is identical [and, setting γ0 = 0, reduce to results
given in Kim, Park and Kim (2001) and Hjort and Jones (1996), respectively].
For any γ0 �= 1, the behavior of the bias mimics that of local polynomial fitting
[Ruppert and Wand (1994), Fan and Gijbels (1996)] in being ofO(h2) for p = 1,2
and O(h4) for p = 3,4, with the even number of parameters resulting in simpler
bias relative to its odd number companion. In addition, provided γ0 �= 1, the
asymptotic variance reduces to that of the appropriate “equivalent kernel” of local
polynomial fitting. In the current density estimation context, it might be just as
useful to note the mimicking of the asymptotic bias and variance behavior of
Loader’s (1996) local polynomial fitting to logf , except that that approach yields
a particular choice of f0 in the bias.

4.5. Choice of ξ . The C- and U -versions, by virtue of having γ0 �= 1, are,
therefore, particularly attractive in small h terms, and as mentioned in Section 2,
the T -version is not. [The latter concurs with Eguchi and Copas (1998), page 721.]
It also seems aesthetically attractive that γ0 = 0 for each of C- and U -versions, but
only to decrease the effect of “additional” bias terms in the case of an odd number
of parameters (and the additional bias may, at least for some x, be beneficial!).

A more complete comparison of choices of ξ comes from combining the small h
results here with the large h results of Eguchi and Copas (1998). We believe that
good choices should perform well both when the situation is “near-parametric” and
when it is not. We therefore discount the T -version even though Eguchi and Copas
show it has good large h properties. U - and C- (and T -) versions have equivalent
large h performance to O(h−2) as h→ ∞ but not, it seems, to O(h−4).

We finish on a speculative note. We suspect, from page 720 of Eguchi and
Copas (1998), that improved large h performance relative to the respectable
large h performance of the U -version of Hjort and Jones (1996) may require
γ (z) > 0 for z > 0 (unlike the C-version). Combined with the possible small h
preference for γ (0) = 0, we tentatively suggest the L-version (L for linear) in
which β(z) = 1 − z, γ (z) = z and ξ(y, z) therefore has the attractively simple
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form 1 − z + y. It follows that the L-version behaves as well as the U - and C-
versions when h is small. And since the comparison of Eguchi and Copas [(1998),
page 720] which suggests some superiority of the T -version over the U -version
when h is large depends on a function η(t) which is, for large h, the same for
a comparison of the L-version with the U -version, the L-version seems as good
as the T -version when h is large. It is beyond the scope of this paper to investigate
the practical behavior of this theoretically promising method.

APPENDIX

PROOF OF THEOREM 2. First, define two vector-valued functions ψin(t, x, θ)
for i = 1,2 by

ψ1n(t, x, θ)= h−1/2K

(
t − x

h

)
u(t, θ),

ψ2n(t, x, θ)= h−1/2ξ

{
K

(
t − x

h

)
,EθK

(
X1 − x

h

)}
Eθ

{
K

(
X1 − x

h

)
u(X1, θ)

}
.

Write ψi(t) ≡ ψin(t, x, θh). Then we may write (n/h)1/2�n(θh) = n−1/2

×∑n
i=1{ψ1(Xi)−ψ2(Xi)}. SinceE{ψ1(X1)−ψ2(X1)} = 0 by the definition of θh

we have

(n/h)var{�n(θh)} =E{ψ1(X1)−ψ2(X1)}{ψ1(X1)−ψ2(X1)}t .(A.1)

We use the facts that f (x, θh) = f (x) + O(h2) and that f (t, θh) =
f (x, θh) + O(h) and u(t, θh) = u0(t) + O(h) where O(h) is uniform over
t : |t − x| ≤ Ch for any constant C > 0. Define a p × p matrix U and a vector-
valued function zh(·) by

U = (
u0, u

(1)
0 , . . . , u

(p−1)
0 /(p− 1)!)

zh(y)
t = (

1, hy, . . . , (hy)p−1),
where u(k)0 ≡ u

(k)
0 (x) is the kth derivative of u0 evaluated at x, the point of interest,

which is fixed. Below we often omit “x” if a function is evaluated at x. With these
notations and conventions we may write u0(x+hy)=Uzh(y)+O(hp). It is easy
to see then that

Eψ1(X1)ψ1(X1)
t = fU

{∫
zh(y)zh(y)

tK2(y) dy

}
Ut {1 +O(h)}.(A.2)

Furthermore from the condition (2.4) we obtain

Eψ1(X1)ψ2(X1)
t = γ0fU

{∫
zh(y)K

2(y) dy

∫
zh(y)

tK(y) dy

}
Ut {1 +O(h)}

+hβ0f
2U

{∫
zh(y)K(y) dy(A.3)

×
∫
zh(y)

tK(y) dy

}
Ut {1 +O(h)},
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Eψ2(X1)ψ2(X1)
t

= {
γ 2

0 κ0f + h(β2
0 + 2β0γ0)f

2}
×U

{∫
zh(y)K(y) dy

∫
zh(y)

tK(y) dy

}
Ut {1 +O(h)}.

(A.4)

Let Dh be a p × p diagonal matrix having hr as its r th diagonal entry. Then,
combining (A.2), (A.3) and (A.4) we get

(n/h)var{�n(θh)} = fUDh{M +O(h)}DhUt{1 +O(h)}.(A.5)

It may be proved in a similar fashion that

−Eh−1�̇n(θh)= fUDh{N +O(h)}DhUt {1 +O(h)}.(A.6)

For (A.6) one needs to use the fact that ξ̇ (y, z) = β ′(z) + γ ′(z)(y/z) −
γ (z)(y/z2) where ξ̇ (y, z) = (∂/∂z)ξ(y, z). The matrix U is invertible since
u0, u

(1)
0 , . . . , u

(p−1)
0 are linearly independent. Theorem 2 follows from (A.5)

and (A.6) and the fact that ḟ (x, θh)t = f (x, θh)u(x, θh)
t = f (x)et0U

t + O(h).
�

PROOF OF THEOREM 3. For a nonnegative integer s, define

as = (s!)−1f (s)µs +
s∑
k=0

{(s − k)!}−1ν
(s−k)
k µs−k.

As in the text, we use (v × w)s to denote
∑s
k=0 vkws−k for any sequences {vk}

and {wk}. Likewise, we write (v×w× z)s for the sum of vk wl zm over the triples
(k, l,m) with k + l +m= s, and so on. Furthermore we write (v2)s for (v × v)s ,
and (vi)s for its obvious extension. Define

ζ2,s =
s∑
k=0

{(s − k)!}−1(ukf )
(s−k)µs−k

and ζ4,s =∑s
k=0 γk(k!)−1(ak)s−k . Then we can write

cr = (ζ3 × a)r − (
ζ1 × ζ4 × (ζ2 + ζ3)

)
r .

The theorem follows if we show that

ζ3,k = ζ1,ku0 +
k∑
l=1

Ak,lu
(l)
0(A.7)

under condition Ck . For, if we assume Cr , then (A.7) and Ck hold for all k ≤ r and
consequently ζ3,s = 0 for all s ≤ r − 1, from which we can write

cr = ζ3,rf − γ0ζ1,ru0f.



1494 B. U. PARK, W. C. KIM AND M. C. JONES

The theorem then follows if we plug the expression for ζ3,r , as given by (A.7) with
k = r , into the above identity.

We now prove (A.7). Define

ζ3,k,0 =
k∑
j=0

{(k − j)!}−1(u0νj )
(k−j)µk−j ,

ζ3,k,1 =
k∑
j=1

{(k − j)!}−1

( j∑
s=1

usνj−s
)(k−j)

µk−j .

We can write ζ3,k = ζ3,k,0 + ζ3,k,1. Using the relation (u0νj )
(k−j) = ∑k−j

l=0

(k−j
l

)
× u

(l)
0 ν

(k−j−l)
j and interchanging the order of summations, we find that

ζ3,k,0 = ζ1,ku0 +
k∑
l=1

Ak,lu
(l)
0 .(A.8)

Thus (A.7) follows if we show ζ3,k,1 = 0. By an argument similar to that leading
to (A.8) we can show

ζ3,k,1 =
k∑
s=1

ζ1,k−sus +
k−1∑
s=1

k−s∑
l=1

Ak−s,lu(l)s .(A.9)

The first term on the right-hand side of (A.9) is zero by condition Ck , and the
second term can be written as

∑k−1
s=1

∑s
l=1As,lu

(l)
k−s which is zero, too, by Ck . �
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