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KERNEL DENSITY ESTIMATION FOR LINEAR PROCESSES

BY WEI BIAO WU1 AND JAN MIELNICZUK

University of Chicago and Polish Academy of Sciences

In this paper we provide a detailed characterization of the asymptotic
behavior of kernel density estimators for one-sided linear processes. The
conjecture that asymptotic normality for the kernel density estimator holds
under short-range dependence is proved under minimal assumptions on
bandwidths. We also depict the dichotomous and trichotomous phenomena
for various choices of bandwidths when the process is long-range dependent.

1. Introduction. The kernel method introduced by Rosenblatt (1956) has re-
ceived considerable attention in nonparametric estimation of probability densities.
Let {Xt }∞t=1 be a stationary sequence with a marginal density f . Then the kernel
density estimator of f is defined as

fn(x0) = 1

nbn

n∑
j=1

K

(
x0 −Xj

bn

)
, x0 ∈ R,(1)

where the kernel K is some not necessarily positive function such that∫
R
K(s) ds = 1, and the bandwidths {bn} satisfy natural conditions, bn → 0

and nbn → ∞. Many of the previous results concerning asymptotic properties
of fn are established under the assumption that the Xt are independent. See
Silverman (1986) and references therein. A classical result of Parzen (1962)
states that when Xi are i.i.d. and the bandwidths satisfy the natural conditions,
(nbn)

1/2[fn(x0) − Efn(x0)] converges in distribution to the normal law with zero
mean and variance f (x0)

∫
R
K2(s) ds. A natural problem is: What is the limiting

behavior of (1) when dependence between observations is allowed?
For weakly dependent observations Parzen’s result was generalized under

various mixing conditions; see, for example, Robinson (1983), Castellana and
Leadbetter (1986) and Bosq [(1996), Theorem 2.3]. It is proved that in such cases
asymptotic law of the centered density estimator standardized by (nbn)

1/2 is the
same as in the i.i.d. case. However, it turns out that this result does not hold
for strongly dependent sequences: the asymptotic law as well as standardization
might be completely different [see, e.g., Csörgő and Mielniczuk (1995)]. Here,
we say that a sequence is short-range dependent (SRD) if its covariances are
absolutely summable and long-range dependent (LRD) if they are not; see Beran

Received December 2000; revised November 2001.
1Supported in part by a U.S. Army Research Office grant.
AMS 2000 subject classifications. Primary 60F05, 60F17; secondary 60G35.
Key words and phrases. Long- and short-range dependence, kernel density estimators, linear

process, martingale central limit theorem.

1441



1442 W. B. WU AND J. MIELNICZUK

(1994) for an overview of the rapidly growing literature on statistical properties
of LRD sequences. Ho (1996) considered an instantaneous transformation of
long-range dependent Gaussian sequences and exhibited dichotomous behavior
of fn(x0) depending on the size of the bandwidths. For small bandwidths, LRD
notwithstanding, the asymptotic law of fn(x0) is the same as in the i.i.d. case. For
large bandwidths, LRD prevails, affecting standardization and the asymptotic law
of fn(x0).

We assume throughout the paper that Xn, n ∈ Z, is an infinite order moving-
average process given by

∑∞
i=0 aiεn−i , where {εi, i ∈ Z} are i.i.d. random

variables with zero mean and finite variance, and {ai}∞i=0 is a sequence of
real numbers such that

∑∞
i=0 a

2
i < ∞. This model was proposed by Woodroofe

(1970) in the context of studying the asymptotic normality of (1). The setting
is very general since many important time series models, such as ARMA and
fractional ARIMA, admit this form. Withers (1981) showed that one needs
restrictive conditions on the decay rate of an in order to get the strong mixing
property for the linear process; see Pham and Tran (1985), Gorodetskii (1977)
and Doukhan (1994) for more discussion about mixing properties of linear
processes. For SRD processes Xt , there has been a long-standing conjecture
stating that Parzen’s result holds under the natural conditions on {bn} specified
above. An important early contribution to the solution of this problem is Chanda
(1983). Using some modification of Chanda’s approach, Hallin and Tran (1996)
showed the asymptotic normality of (1) under conditions |an| = O[n−(4+δ)]
and nb

(13+2δ)/(2+2δ)
n / log logn → ∞ for some δ > 0. Under the same condition

on an, Coulon-Prieur and Doukhan (2000) improved Hallin and Tran’s results
by imposing only the natural conditions on bn. Honda (2000) obtained similar
results using developments for empirical processes based on moving averages due
to Giraitis, Koul and Surgailis (1996).

In this paper, we shall give a detailed characterization of the limiting behavior
of (1) in accordance with different rates of bn → 0 and the coefficients {an}
of the linear process. In particular, we provide an affirmative answer to the
stated conjecture proving that, for SRD sequences, asymptotic normality of the
kernel density estimate is a rule rather than an exception. Namely, we show that
Parzen’s result holds under natural conditions on {bn} and

∑∞
i=1 |ai | < ∞. The

last condition roughly corresponds to the SRD case. In particular, it is satisfied
if ai = O(i−β) for some β > 1. A frequently assumed form an = n−βL(n) for
some slowly varying function L is not even required in those conditions. For
the LRD situation an = n−βL(n),1/2 < β < 1, we observe dichotomous and
trichotomous behavior under different conditions depending on the strength of the
dependence and the decay rate of the bandwidth sequence. Specifically, let the
bandwidth bn = nαL1(n), where −1 < α < 0 and L1(·) is a slowly varying func-
tion. Let r0 be the smallest j ≥ 1 such that the j th derivative f (j)(x0) �= 0 pro-
vided it exists. If r0 = 1, then fn(x0) − Efn(x0) is asymptotically normal with
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a form of norming sequence depending on whether α < 2β − 2 or α > 2β − 2. In
the case r0 ≥ 2, a richer structure exists. On the quadrangle {(β,α) ∈ (1/2,1) ×
(−1,0) :α(r0 −1/2)+1−β < 0, α+1−r0(2β−1) < 0} as well as on the triangle
{(β,α) ∈ (1/2,1)× (−1,0) :α(r0 − 1/2)+ 1 − β > 0, α + β − 1/2 > 0} (cf. Fig-
ure 1), fn(x0) − Efn(x0) is asymptotically normal but with different norming se-
quences. However, on the triangle {(β,α) ∈ (1/2,1)× (−1,0) :α + β − 1/2 < 0,
α + 1 − r0(2β − 1) > 0}, the suitably normalized sequence fn(x0)−Efn(x0) con-
verges to a multiple Wiener–Itô integral. A condition describing the borderline of
the dichotomy amounts to comparison of a variance of a sample mean of the long-
range dependent sequence and that of a kernel density estimate for an i.i.d. sample
with the same marginal density f . This coincides with Hall and Hart’s (1990) di-
chotomy condition for the mean integrated squared error of (1) in the LRD case.

In this paper we demonstrate that the martingale central limit theorem may be
successfully applied to answer the question about the asymptotic law of fn in the
case of SRD sequences and is vital for analogous analysis in the LRD case. In
the context of nonlinear functionals of linear processes, the martingale approach
was first cleverly employed by Ho and Hsing (1996, 1997). We believe that this is
also an effective method for other nonparametric functional estimation problems
involving dependent variables such as regression analysis. From the practical point
of view, the main message for statisticians is that, for a SRD sequence, the normal
approximation may be used to construct pointwise confidence intervals for f (x0)

which asymptotically attain a prescribed level of confidence.
The remainder of the paper is structured as follows. Preliminaries and heuristics

of the presented approach are given in Section 2. In Sections 3 and 4 we discuss
cases of SRD and LRD processes, respectively. Proofs are deferred to Section 5.
In Section 6 some unsolved problems are discussed.

2. Notation and preliminaries. Denote by f1(·) and f (·) the density
functions of εt and Xt , respectively. Before stating the main results, it might be
helpful to explain intuitively the discussed approach. Let

Efn(x0) = b−1
n

∫
R

K[b−1
n (x0 − u)]f (u) du =

∫
R

K(v)f (x0 − bnv) dv

be the mean of Efn(x0) and X̃t = (. . . , εt−1, εt ) be the shift process. Then we have
the following decomposition:

nbn[fn(x0) − Efn(x0)] = Mn +Nn,(2)

where

Mn =
n∑

j=1

{
K

(
x0 −Xj

bn

)
− E

[
K

(
x0 −Xj

bn

)∣∣∣X̃j−1

]}
,(3)

Nn =
n∑

j=1

{
E

[
K

(
x0 −Xj

bn

)∣∣∣X̃j−1

]
− bnEfn(x0)

}
.(4)
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Put σ 2(x0) = f (x0)
∫
R
K2(s) ds. The major thrust of the decomposition (2) is due

to the fact that the summands of the term Mn form a martingale difference se-
quence. Thus Mn/

√
nbn is always asymptotically normal N [0, σ 2(x0)], regardless

whether Xt is short- or long-range dependent (see Lemma 2 in Section 3). We as-
sume throughout that

∫
R
K2(s) ds < ∞ and a0 = 1. For the second part, Nn, we

have

Nn = bn

∫
R

K(v)Hn(−bnv) dv,

where

Hn(z) =
n∑

t=1

{f1(x0 −Rt + z)− f (x0 + z)}.(5)

Observing that Rt = Xt − εt is σ(X̃t−1)-measurable and a0 = 1, we have

E

[
K

(
x0 −Xt

bn

)∣∣∣X̃t−1

]
=

∫
R

K

(
x0 −Rt − u

bn

)
f1(u) du

= bn

∫
R

K(v)f1(x0 −Rt − bnv) dv

almost surely.
Intuitively speaking, if bn → 0 sufficiently fast, then the first term Mn in (2)

dominates. From this observation, convergence to a Gaussian limit with a norming
sequence

√
nbn follows. On the other hand, if bn → 0 at an appropriately slow

rate, then the second term in (2) may also count, which possibly results in a non-
Gaussian limit. This situation occurs for LRD sequences.

3. SRD sequences. In the SRD case, we will show that Nn in (2) has
a negligible contribution under fairly weak conditions and hence the central limit
theorem holds. Therefore, the conjecture stated in the Introduction is true. More
precisely, we have the following Theorem 1 in which ⇒ denotes convergence
in distribution. We say that a function g is Lipschitz continuous if there exists
a constant L> 0 such that |g(x) − g(y)| ≤ L|x − y| holds for all x, y ∈ R.

THEOREM 1. Assume that f1 is Lipschitz continuous, f (x0) �= 0,∫
R
K2(s) ds < ∞ and

∑∞
i=1 |ai| < ∞. Let bn → 0 and nbn → ∞. Then we have

(nbn)
1/2[fn(x0) − Efn(x0)] ⇒ N

[
0, f (x0)

∫
R

K2(s) ds

]
.(6)

Concerning methodology, let us note that there is a fundamental difference be-
tween Theorem 1 and previous results such as Hallin and Tran (1996) and Rosen-
blatt (1970). The traditionally employed approach consists in using Bernstein’s
small-block–large-block method in conjunction with various mixing conditions.
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See also Robinson (1983) and Tran (1992). However, mixing conditions are usu-
ally unverifiable and might be too restrictive [see, e.g., Carbon and Tran (1996)
and Withers (1981)]. This drawback is partly due to an i.i.d. approximation which
is the essence of Bernstein’s method. That is why the martingale approximation,
which entails only very mild conditions on the sequence {ai}, seems to be supe-
rior to blocking techniques. Another method for proving asymptotic normality is
Rio’s (1995) central limit theorem. Rio’s method is applied by Coulon-Prieur and
Doukhan (2000).

A replacement of Efn(x0) by f (x0) in (6) is a routine problem in density
estimation theory. For example, if f has p − 1 absolutely continuous derivatives,
f (p) is bounded and K is of order p, then Efn(x) − f (x) = O(b

p
n ) for any x and

thus the centering Efn(x0) may be changed to f (x0) without affecting the above
result provided that nb2p+1

n → 0.
Using standard methods together with the proof of Theorem 1, it may be

shown that under the stated conditions the vector Vn = (nbn)
1/2[fn(x0) −

Efn(x0), . . . , fn(xk) − Efn(xk)] converges in distribution to a product of normal
laws N [0, f (xi)

∫
K2(s) ds] for i = 0, . . . , k at different points x0, x1, . . . , xk ∈ R.

This follows from the Cramér–Wold lemma, after noting that components
of Vn become asymptotically uncorrelated. Moreover, using similar reasoning,
an analogous result for derivatives of fn(·) may be proved.

4. LRD sequences. For LRD processes, we need to assume that an has the
form n−βL(n), where 1/2 < β < 1 and L(·) is a slowly varying function at ∞. In
this case, a closer investigation of (4) is necessary as Nn may also have a significant
contribution. Because of the local character of Nn its behavior is determined by the
behavior of Hn(·) and its derivatives at 0. It follows from the breakthrough work by
Ho and Hsing (1997) that the distributional limit of Hn(0) is related to the power
rank of G(s) := f1(x0 − s)− f (x0) with respect to the distribution of R1. See Ho
and Hsing (1997) for a definition of the power rank.

Assume that f1 is Lipschitz continuous. By Lemma 1, f (x) exists and is equal
to Ef1(x −R1). Let G∞(s) := E[G(s +R1)] = f (x0 − s)− f (x0). If there exists
an r0 = r(x0) ∈ N such that the r th derivative of f (·) at x0, f (r)(x0), is zero for all
r < r0 and is nonzero for r = r0, then it follows that the power rank of G(·) is r0.
If f1 is r0 times differentiable, then by Taylor’s expansion,

Hn(−bnv) =
r0−1∑
j=0

H(j)
n (0)

(−bnv)
j

j ! + (−bnv)
r0

(r0)! H(r0)
n (ξ)(7)

for some ξ ∈ R. Let G(r)(s) = f
(r)
1 (x0 − s) − f (r)(x0). Then G

(r)∞ (s) =
EG(r)(s +R1) = f (r)(x0 − s) − f (r)(x0). Hence the power rank for G(r) with
respect to R1 is r0 − r when 0 ≤ r ≤ r0 − 1. Then the result follows from Ho and
Hsing (1996, 1997), where the limiting behavior of H(r)

n (0) is studied. Let

σ 2
n,r = C(β, r)n2−r(2β−1)L2r (n)

[
E(ε2)

]r
,
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where

C(β, r) = {
r![1 − r

(
β − 1

2

)][1 − r(2β − 1)]}−1
[∫ ∞

0
(x + x2)−β dx

]r
.

Roughly speaking, H(r)
n (0) is of order σn,r0−r if (r0 − r)(2β − 1) < 1 and

√
n

otherwise. From (2) and (7), we see that among terms Mn, H(r)
n (0)br+1

n , 0 ≤ r ≤
r0 − 1, only the ones with their order reaching max[√nbn, b

r+1
n max(σr0−r ,

√
n)]

have a major contribution.

4.1. Dichotomy. Denote by b the bandwidth sequence {bn}. For r0 = 1 and
c ∈ [0,∞], we define

Dc =
{(

b, β,L(·)) : lim
n→∞

bnσn,1√
nbn

= c

}
.

Hence D0 and D∞ correspond to (b, β,L(·)) such that bnσn,1 = o(
√
nbn) and√

nbn = o(bnσn,1), respectively. Recall that r0 = 1 is equivalent to f (1)(x0) �= 0.

THEOREM 2. Assume that (a) E(ε4
1) < ∞ and f1 is three times differentiable

with bounded, continuous and integrable derivatives, (b) f (x0) �= 0, f (1)(x0) �= 0
and (c)

∫
R

|vK(v)|dv < ∞.

(i) If (b, β,L(·)) ∈ D0, then√
nbn[fn(x0) − Efn(x0)] ⇒ N

[
0, f (x0)

∫
R

K2(s) ds

]
.(8)

(ii) If (b, β,L(·)) ∈ D∞, then

n

σn,1
[fn(x0) − Efn(x0)] ⇒ N

[
0,

∣∣f (1)(x0)
∣∣2]

.(9)

It follows from the proof of Theorem 2 (see Section 5) and Theorem 1(i) in
Giraitis and Surgailis (1999) that the assumption Eε4

1 < ∞ may be reduced to
E|ε1|2+η < ∞ for some η > 0 provided that |Eeiuε1 | is bounded by C/(1 + |u|)δ ,
u ∈ R, for some δ > 0 and a finite constant C.

The following Corollary 1 is an immediate consequence of Theorem 2, where
bn is assumed to have the special form bn = nαL1(n) where L1(·) is some
slowly varying function and −1 < α < 0. The boundary line with equation
α − 2β + 2 = 0 divides the rectangle (1/2,1) × (−1,0) into two triangles per-
taining to different norming sequences. On both triangles the limit of (1) is nor-
mal. Triangle D0 corresponds to

√
nbn norming, while triangle D∞ corresponds

to n/σn,1 norming. Thus, for any 1/2 < β < 1 corresponding to the LRD case,
by choosing sufficiently small bandwidths bn = nαL1(n) with −1 < α < 2β − 2
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we obtain white noise as a limit of the process (nbn)
1/2(fn(·) − Efn(·)). In con-

trast, for large bandwidths corresponding to 0 > α > 2β − 2 the effect of long-
range dependence prevails. We conjecture that in this case under assumptions of
Theorem 2 the process (n/σn,1)[fn(·) − Efn(·)] converges in C[−∞,+∞] to
a degenerate process f (1)(·)Z, where Z is a standard normal random variable
[see, e.g., Proposition 1 in Csörgő and Mielniczuk (1995) and Ho and Hsing
(1996)]. The behavior on the boundary Dc, which roughly corresponds to bn ≈
n2β−2, is handled in Theorem 4(a). The limiting distribution is the convolution of
distributions in (8) and (9).

COROLLARY 1. Assume that bn = nαL1(n), where L1(·) is a slowly varying
function and −1 < α < 0. Then under the conditions of Theorem 2 convergence
in (8) holds for α < 2β − 2, whereas for α > 2β − 2 convergence in (9) holds.

4.2. Trichotomy. For r0 ≥ 2 we define

T1c =
{(

b, β,L(·)) : lim
n→∞

nbn

σn,1
= c

}
,(10)

T2c =
{(

b, β,L(·)) : lim
n→∞

b
r0
n σn,1√
nbn

= c

}
(11)

and

T3c =
{(

b, β,L(·)) : lim
n→∞

bnσn,r0√
nbn

= c

}
.(12)

It can be easily verified that

bnσn,r0√
nbn

×
[
nbn

σn,1

]r0−1

×
[
b
r0
n σn,1√
nbn

]−1

= C(β, r0)

[C(β,1)]r0
,(13)

which explains the interplay between conditions appearing in (10)–(12).
Recall that when r(2β −1) < 1, the multiple Wiener–Itô integral (MWI) Zr,β is

defined as

Zr,β = C(β, r)−1/2
∫
S

{∫ 1

0

r∏
i=1

[max(v − uj ,0)]−β dv

}
dB(u1) · · ·dB(ur),(14)

where {B(u), u ∈ R} is a standard two-sided Brownian motion,

S = {
(u1, . . . , ur) ∈ R

r :−∞ < u1 < · · · < ur < 1
}

and the norming constant C(β, r)−1/2 [defined below (7)] ensures that
E(Z2

r,β) = 1. The MWI Zr,β is Gaussian for r = 1 and non-Gaussian for r > 1

[see, e.g., Taqqu (1979)]. Let κj = ∫
R
K(v)vj dv/j ! provided it exists.
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THEOREM 3. Assume that (a) E[εmax(4,2r0)
1 ] < ∞, f1 is r0 + 2 times

differentiable with bounded, continuous and integrable derivatives; (b) f (x0) �= 0,
f (r0)(x0) �= 0 while f (r)(x0) = 0 for 1 ≤ r < r0; and (c)

∫
R

|vr0K(v)|dv < ∞.

(i) If (b, β,L(·)) ∈ T20 ∩ T30 then√
nbn[fn(x0) − Efn(x0)] ⇒ N

[
0, f (x0)

∫
R

K2(s) ds

]
.(15)

(ii) If (b, β,L(·)) ∈ T2∞ ∩ T1∞ and κr0−1 �= 0, then

nbn

b
r0
n σn,1

[fn(x0) − Efn(x0)] ⇒ N
[
0,

∣∣f (r0)(x0)κr0−1
∣∣2]

.(16)

(iii) If (b, β,L(·)) ∈ T10 ∩ T3∞, then

n

σn,r0

[fn(x0) − Efn(x0)] ⇒ (−1)r0f (r0)(x0)Zr0,β .(17)

In order to better understand the conditions assumed in the last result it is
helpful to note that (b, β,L(·)) ∈ T10 is equivalent to b

r0
n σn,1/(bnσn,r0) → 0,

whereas the condition (b, β,L(·)) ∈ T1∞ coincides with b
r0
n σn,1/(bnσn,r0) → ∞.

The former condition implies that for 1 ≤ j ≤ r0 − 1, bj+1
n σn,r0−j = o(bnσn,r0),

whereas the latter implies that for 0 ≤ j ≤ r0 − 2, bj+1
n σn,r0−j = o(b

r0
n σn,1). The

convergence (15) occurs in the situation when Mn dominates Nn. The situation
when Nn dominates Mn splits into two cases depending on whether the first or
the last term in the expansion (7) dominates (we disregard for the time being
the case when they are of the same order). In the former case we still have the
normal limit (16) but with different standardization, whereas in the latter both
the standardization and the limit change. Theorem 3 readily entails the following
corollary.

COROLLARY 2. Assume that r0 ≥ 2 and conditions (a) and (b) in Theorem 3
hold. Let bn = nαL1(n), where L1(·) is a slowly varying function and −1 < α < 0.
Then (15), (16) or (17) holds, respectively, if

α(r0 − 1/2)+ 1 − β < 0, α + 1 − r0(2β − 1) < 0;
α(r0 − 1/2)+ 1 − β > 0, α + β − 1/2 > 0;

or

α + β − 1/2 < 0, α + 1 − r0(2β − 1) > 0.

Figure 1 contains a graphic representation of the corollary. Three lines,
T1, T2, T3, in the graph are described by equations α+β −1/2 = 0, α(r0 −1/2)+
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FIG. 1. Graphic representation of Corollary 2.

1 − β = 0 and α + 1 − r0(2β − 1) = 0, respectively. Interestingly enough, they
have a common joint point T = (

3+2r0
2+4r0

, −1
1+2r0

). This observation is a consequence

of (13). Lines T1, T2, T3 emanating from T divide the rectangle (1/2,1)× (−1,0)
into three regions corresponding to a different limiting distribution for each region.
On the quadrangle T20 ∩ T30, the use of the norming sequence

√
nbn yields

a Gaussian limit. On the triangle T2∞ ∩ T1∞, we have also a Gaussian limit but
with different norming sequence nbn/(b

r0
n σn,1). A non-Gaussian limit is obtained

on the triangle T10 ∩ T3∞ with norming sequence n/σn,r0 . This is the reason for
the term trichotomy.

4.3. Boundary cases. Theorem 4 discusses boundary cases. It is shown that
the asymptotic variances are different from those obtained in the previous limit
theorems. The result is not complete. It covers the case when the martingale
term Mn is of the same order as the last term in the expansion (7) which in turn
dominates all other summands of the expansion. Moreover, in part (c) we study
the case when all summands in (7) for j = 0,1, . . . , r0 − 1 are of the same order
and they dominate Mn. The asymptotic distribution of fn(x0) − Efn(x0) can be
interpreted as the convolution of independent components appearing as limits in
Theorem 3.
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THEOREM 4. Assume that conditions (a)–(c) in Theorem 3 hold. Let r0 =
r(x0) ≥ 1 be the power rank of f (·) at x0 and assume κr0−1 �= 0. If (a) r0 = 1 and
(b, β,L(·)) ∈ Dc or (b) r0 ≥ 2 and (b, β,L(·)) ∈ T2c ∩ T1∞ for some 0 < c < ∞,
then √

nbn[fn(x0) − Efn(x0)] ⇒ N [0, σ 2(x0, c)],(18)

where

σ 2(x0, c) = f (x0)

∫
R

K2(s) ds + c2∣∣f (r0)(x0)κr0−1
∣∣2.

(c) If (b, β,L(·)) ∈ T1c ∩ T2∞, then

nbn

b
r0
n σn,1

[fn(x0) − Efn(x0)]

⇒ f (r0)(x0)

r0−1∑
j=0

[
C(β, r0 − j)

Cr0−j−1(β,1)

]1/2
κj

cr0−j−1
Zr0−j,β .

(19)

5. Proofs. In Lemma 1 the existence and continuity of marginal density
functions is studied. Its variant was proved in Lemma 1(i) of Giraitis, Koul and
Surgailis (1996) under an assumption on the tail behavior of the characteristic
function of ε1.

LEMMA 1. (a) If the density function f1 of εt is Lipschitz continuous, then the
density function f of Xt exists and is also Lipschitz continuous.

(b) If f1 is bounded and a0 �= 0,#{i :ai �= 0} > 1, then f̃1, the density function
of Rt = Xt − a0εt , is also bounded.

(c) If f1 is p times differentiable with bounded, continuous derivatives, then
f also satisfies the same properties.

PROOF. (a) Let C > 0 be the Lipschitz constant of f1. Then E|f1(x − Rt) −
f1(x)| ≤ E(C|Rt |) ≤ C[E(R2

t )]1/2 < ∞. Hence E[f1(x −Rt)] is finite. Let F,F1

and F̃1 be the distribution functions of Xt, εt and Rt , respectively. Recall that
a0 = 1. Since F(x) = ∫

R
F1(x − y)F̃1(dy), by the mean value theorem

|F(x + δ) − F(x) − δE[f1(x −Rt)]|
≤

∫
R

|F1(x − y + δ) − F1(x − y)− δf1(x − y)|F̃1(dy)

=
∫

R

|δf1(x − y + δτ )− δf1(x − y)|F̃1(dy) ≤ Cδ2,

where 0 ≤ τ = τ (δ) ≤ 1. Hence by letting δ → 0, we conclude that the
derivative f (x) = dF/dx = E[f1(x − Rt)] exists. In addition, |f (x) − f (y)| ≤
E|f1(x −Rt) − f1(y − Rt)| ≤ C|x − y|, which proves the Lipschitz continuity
of f . Parts (b) and (c) can be similarly obtained by elementary methods. �
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LEMMA 2. Let bn → 0, nbn → ∞ and K be such that
∫
R
K2(v) dv < ∞. For

Xn = ∑∞
i=0 aiεn−i such that the density function f1 of ε1 is Lipschitz continuous

and bounded, we always have

(nbn)
−1/2Mn ⇒ N [0, σ 2(x0)], σ 2(x0) = f (x0)

∫
R

K2(s) ds.

PROOF. Let

ζn,t = (nbn)
−1/2K

(
b−1
n (x0 −Xt)

)
and ξn,t = ζn,t − E[ζn,t | X̃t−1].

By the martingale central limit theorem, it suffices to show that
∑n

t=1 E[ξ2
n,t |

X̃t−1] P→ σ 2(x0) and the Lindeberg condition nE[ξ2
n,t1[|ξn,t |>ε]] = o(1) holds for

any ε > 0. In order to prove the first statement, observe that since f1 is bounded
|E[ζn,t |X̃t−1]| ≤ (nbn)

−1/2bnC, where C = supf1(u)
∫
R

|K(u)|du< ∞. Thus we
have ∣∣∣∣∣

n∑
t=1

E[ζ 2
n,t | X̃t−1] −

n∑
t=1

E[ξ2
n,t | X̃t−1]

∣∣∣∣∣
≤

n∑
t=1

(E[ζn,t | X̃t−1])2 ≤ C2
n∑

i=1

b2
n

nbn
= O(bn).

Hence we only need to show that
∑n

t=1 E[ζ 2
n,t | X̃t−1] P→ σ 2(x0). Note that

E[ζ 2
n,t | X̃t−1] = n−1 ∫

R
K2(z)f1(x0−Rt −bnz) dz and

∫
R
K2(z)f (x0−bnz) dz→

σ 2(x0) in view of the continuity of f . Thus the required convergence follows from

n−1
∫

R

K2(v)Hn(−bnv) dv = oP (1).

In order to prove it, observe that the linear process Rt is ergodic as a “moving
function” of the ergodic stationary sequence εi and whence f1(x0 − Rt) is
ergodic. Thus from the ergodic theorem we obtain E|Hn(0)| = o(n) and the
last displayed formula follows from

∫
R
K2(v)|Hn(−bnv) − Hn(0)|dv = o(n).

However, n−1|Hn(−bnv)−Hn(0)| = O[min(1, |bnv|)] by the Lipschitz continuity
of f1 and f and we obtain

∫
R
K2(v)|Hn(−bnv)−Hn(0)| = o(n) by the Lebesgue

dominated convergence theorem, ensuring that
∫
R
K2(v)min(1, |bnv|) dv → 0.

The Lindeberg condition results from Corollary 9.5.2 in Chow and Teicher
(1988) which implies that

nE
[
ξ2
n,t1[|ξn,t |>ε]

] ≤ 4nE
[
ζ 2
n,t1[|ζn,t |>ε/2]

] = O(1)
∫
[|K(v)|>√

nbnε/2]
K2(v) dv.

The right-hand side is o(1) since nbn → ∞. �

Before proving Theorem 1, we establish Lemma 3, which implies that Nn in (2)
is negligible. Then the major term becomes Mn, which is asymptotically normal.
For a random variable Y , we write ‖Y‖ = [E(Y 2)]1/2.
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LEMMA 3. Under the conditions of Theorem 1, we have

sup
x∈R

‖Hn(x)‖ = O(
√
n).(20)

PROOF. Let ε′
t , t ∈ Z, be i.i.d. copies of εt , t ∈ Z. Then R∗

t+1 := (Rt+1 −
atε1) + atε

′
1 is a coupled version of Rt+1. Observe that for 1 ≤ t ≤ n,

E[f1(x −Rt+1) | X̃1] − E[f1(x −Rt+1) | X̃0]
= E[f1(x −Rt+1) − f1(x −R∗

t+1) | X̃1].
Let H �

n (x) = ∑n
t=1 f1(x − Rt+1) − nf (x). Then H �

n (x) and Hn(x − x0) are
identically distributed. Let i+ = max(0, i). Since f1 is Lipschitz continuous, we
have ∥∥E[H �

n (x) | X̃i+1] − E[H �
n (x) | X̃i ]

∥∥
≤

n∑
j=i++1

∥∥E[f1(x −Rj+1) | X̃i+1] − E[f1(x −Rj+1) | X̃i]
∥∥

=
n∑

j=i++1

∥∥E[f1(x −Rj−i) | X̃1] − E[f1(x −Rj−i) | X̃0]
∥∥

=
n∑

j=i++1

∥∥E[f1(x −Rj−i) − f1(x −R∗
j−i ) | X̃1]

∥∥
≤

n∑
j=i++1

‖f1(x −Rj−i )− f1(x −R∗
j−i)‖

=
n∑

j=i++1

O(|aj−i−1|)

for all i ≤ n − 1. Note that E[H �
n (x) | X̃i+1] − E[H �

n (x) | X̃i] = 0 almost surely
for i ≥ n. Then by the conditions of Theorem 1,

‖Hn(x − x0)‖ = ‖H �
n (x)‖2

=
n−1∑

i=−∞

∥∥E[H �
n (x) | X̃i+1] − E[H �

n (x) | X̃i]
∥∥2

≤
[ −1∑
i=−∞

+
n−1∑
i=0

][
n∑

j=1+i+
|aj−i−1|

]2

=
[ 0∑
i=−(n−1)

+
∞∑
i=1

][
n∑

j=1+(−i)+
|aj+i−1|

]2
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= O(n)+
∞∑
i=0

n∑
j1,j2=1

|aj1+i||aj2+i |

= O(n)+
n∑

j1=1

∞∑
i=0

n∑
j2=1

|aj1+i ||aj2+i |

≤ O(n)+ O(n)

[ ∞∑
i=0

|ai|
]2

= O(n).
�

PROOF OF THEOREM 1. By Lemma 3, we have

E

∣∣∣∣∫
R

K(v)Hn(−bnv) dv

∣∣∣∣ ≤
∫

R

|K(v)| × E|Hn(−bnv)|dv

≤
∫

R

|K(v)| × ‖Hn(−bnv)‖dv
= O(

√
n),

which yields (6) via Lemma 2 in conjunction with (2) and bn → 0. �

For a LRD process, we need the following Lemma 4 to describe the asymptotic
expansions of Hn in (5) and (7). Ho and Hsing (1996) introduced a powerful
asymptotic expansion for empirical processes of linear sequences. Let

Yn,r =
n∑

t=1

∑
0≤j1<···<jr

r∏
s=1

ajs εt−js , r ≥ 1, Yn,0 = n.(21)

If r(2β − 1) < 1 and E(ε2r) < ∞, then E(Y 2
n,r) ∼ σ 2

n,r , where an ∼ bn means
an/bn → 0 when n → ∞, and

Yn,r

σn,r

⇒ Zr,β,(22)

where Zr,β is the multiple Wiener–Itô integral defined in (14). See Avram and
Taqqu (1987) and Surgailis (1982) for a proof of (22).

LEMMA 4. Assume conditions (a) and (b) of Theorem 3 with the moment
condition for ε1 weakened to E(ε4

1) < ∞. Then

H(j)
n (0) = (−1)r0−j f (r0)(x0)Yn,r0−j + oP (σn,r0−j )

for any nonnegative integer j such that 1 ≤ r0 − j < (2β − 1)−1 and

sup
x∈R

|H(r0)
n (x)| = OP (σn,1).
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PROOF. Let F̃n,1(·) be the empirical distribution function of Rt , 1 ≤ t ≤ n

and F̃1 be the distribution function of Rt . We first consider the case j ≤ r0 − 1.
Since f1 is r0 + 1 times differentiable and f (j)(x0) = ∫

R
f

(j)
1 (x0 − u)dF̃1(u) =∫

R
F̃1(u)f

(j+1)
1 (x0 − u)du, we have

H(j)
n (0) =

n∑
t=1

f
(j)
1 (x0 −Rt) − nf (j)(x0)

= n

∫
R

f
(j)
1 (x0 − u)dF̃n,1(u) − nf (j)(x0)

= n

∫
R

[F̃n,1(u)− F̃1(u)]f (j+1)
1 (x0 − u)du.

By Theorem 2.1 in Ho and Hsing (1996) and the assumed moment condition on ε1,

n
[
F̃n,1(u) − F̃1(u)] =

r0−j∑
r=1

(−1)r F̃ (r)
1 (u)Yn,r + Sn,r0−j (u),

where supu∈R |Sn,r0−j (u)| = oP (σn,r0−j ). Then the first statement of the lemma

follows readily since
∫
R
F̃

(r)
1 (u)f

(j+1)
1 (x0 − u)du = f (r+j)(x0) for r ≤ r0 − j

which is equal f (r0)(x0) when r = r0 − j , and 0 when r < r0 − j . As of the

case j = r0, we have similarly that n[F̃n,1(u)− F̃1(u)] = Sn,1(u)− f̃1(u)Yn,1 and
supu∈R |Sn,1(u)| = oP (σn,1), which ensures the second half of the lemma since∫
R

|f (r0+1)
1 (u)|du< ∞ and Yn,1 = OP (σn,1). �

PROOF OF THEOREM 2. Applying Taylor’s expansion and Lemma 4 with
r0 = 1, we have

Hn(−bnv) = Hn(0)− bnvH
′
n(ξ)

= Hn(0)− bnvσn,1OP (1).

Then by the decomposition (2),

nbn[fn(x0) − Efn(x0)] = Mn + bn

∫
R

K(v)Hn(−bnv) dv

= Mn + bnHn(0)+ b2
nσn,1OP (1).

Hence by Lemma 2, (8) follows from the assumption in (i) via

nbn√
nbn

[fn(x0) − Efn(x0)] = Mn√
nbn

+ oP (1).

On the other hand, (ii) implies (9) via Hn(0) = −f (1)(x0)Yn,1 + σn,1OP (1),
an application of Lemma 4 with r0 = 1, j = 0 and (22). �
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PROOF OF THEOREM 3. (i) We consider the cases r0 < (2β − 1)−1 and
r0 ≥ (2β − 1)−1 separately and show that in both cases Nn = oP (

√
nbn), which

yields (15) by Lemma 2 and (2). For the first case, by the conditions in (i) we have
max(bj+1

n σn,r0−j ,0 ≤ j ≤ r0 − 1) = o(
√
nbn), which implies by (7) and Lemma 4

that

Nn = bn

∫
R

K(v)Hn(−bnv) dv = oP (
√
nbn).

For the second case r0 ≥ (2β −1)−1, let j0 be the largest integer that is less than
r0 + 1 − (2β − 1)−1. Again by Taylor’s expansion (7) and Lemma 4, we can write

Hn(−bnv) =
j0∑

j=0

+
r0−1∑

j=j0+1

+br0
n OP (σn,1)v

r0 .

For the first summand, we know that j ≤ j0 implies r0 − j + 1 > (2β − 1)−1.
Then by the proof of Theorem 3.2 in Ho and Hsing (1997) and the proof of
Lemma 4 under assumed conditions we have H

(j)
n (0) = OP (

√
n). As to the second

summand, clearly, j ≥ j0 + 1 ≥ r0 + 1 − (2β − 1)−1 entails r0 − j < (2β − 1)−1.
Hence by Lemma 4,

Nn = bn

j0∑
j=0

bjnOP (
√
n) + bn

r0−1∑
j=j0+1

bjnOP (σn,r0−j ) + br0
n OP (σn,1) = oP (

√
nbn),

which is actually similar to the former case r0 < (2β − 1)−1.
(ii) We proceed similarly by considering r0 < (2β − 1)−1 and r0 ≥ (2β − 1)−1

separately. For the former case by the conditions imposed in (ii), we have

max
0≤j≤r0−2

bj+1
n σn,r0−j = o(br0

n σn,1) and
√
nbn = o(br0

n σn,1).

By (2) and (7), conclusion (16) follows from

nbn

b
r0
n σn,1

[fn(x0) − Efn(x0)] = Yn,1

σn,1
cr0 + oP (1),

where cr = (−1)rf (r)(x0)
∫
R
K(v)vr−1/(r − 1)!dv.

The latter case r0 ≥ (2β − 1)−1 can be dealt with similarly as in the proof of (i)
via Lemma 4.

(iii) Under the imposed conditions, we have β ≤ (3 + 2r0)/(2 + 4r0) (see
Figure 1) which implies (2β − 1)−1 ≥ r0 + 1/2 > r0 and thus the conditions of
Lemma 4 are satisfied for j = 0. Moreover,

max
1≤j≤r0−1

bj+1
n σn,r0−j = o(bnσn,r0) and

√
nbn = o(bnσn,r0).

Then by Lemma 4, (17) results from (22), (2) and (7). �
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PROOF OF THEOREM 4. By Avram and Taqqu (1987) and the decomposi-
tion (2), part (c) follows from (22) and (7) and Lemma 4 after elementary manip-
ulations. The form of coefficient pertaining to Zr0−j,β in (19) follows from the
asymptotic equality

1

b
r0−j−1
n σn,1

∼ 1

σn,r0−j

{
C(β, r0 − j)

Cr0−j−1(β,1)

}
1

cr0−j−1

for j = 0,1, . . . , r0 − 1. Now we prove only (a) since (b) can be obtained in
a similar manner. So let r0 = 1. Let sn = ∑n

i=0 ai for n ≥ 0 and sn = 0 for n < 0.
Recall the proof of Lemma 2 for the definitions of ξn,t and ζn,t . For any fixed
nonzero λ1, λ2 ∈ R let

ηn(t) = λ1ξn,t + λ2

σn,1
εt sn−t , t = 1,2, . . . , n

and

ηn(t) = λ2

σn,1
εt (sn−t − s−t ), t = 0,−1,−2, . . . .

By the Cramér–Wold device in view of the proof of Theorem 2 it suffices to show
the asymptotic normality N(0, λ2

1σ
2(x0) + λ2

2) of
∑n

t=−∞ ηn(t). Observe that the
sequence {ηn(t)}nt=−∞ is a (triangular) martingale difference w.r.t. X̃t . Thus by the
martingale central limit theorem, we only need to verify the convergence of the
conditional variances

n∑
t=−∞

E[η2
n(t) | X̃t−1] P→ λ2

1σ
2(x0)+ λ2

2(23)

and the Lindeberg condition
0∑

t=−∞
+

n∑
t=1

E
[
η2
n(t)1|ηn(t)|>ε

] = o(1) for any ε > 0.(24)

Clearly, in view of the proof of Lemma 2, the convergence of the conditional
variances (23) follows from the following relation for the cross-product terms:

n∑
t=1

E

∣∣∣∣ξn,t εt sn−t

σn,1

∣∣∣∣ = O(
√
bn) → 0.

The last claim is an immediate consequence of sn = O[n1−βL(n)] which follows
from Karamata’s theorem [see, e.g., Theorem 0.6 in Resnick (1987)] and

E

∣∣∣∣ε1K

(
x0 −X1

bn

)∣∣∣∣ =
∫ ∫

R2

∣∣uK[b−1
n (x0 − u− v)]∣∣f1(u)f̃1(v) dudv

= bn

∫ ∫
R2

|uK(z)|f1(u)f̃1(x0 − u− bnz) dudz

≤ bnC

∫
R2

|uK(z)|f1(u) dudz= O(bn),
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where f̃1 = F̃
(1)
1 is the density function of Rt with an upper bound C in view of

Lemma 1 and σ−1
n,1

∑n
t=1 sn−t+1 = O(n1/2).

We check now Lindeberg condition (24). Elementary computations show that
the first summand in (24) is o(1). For the second one, let φn(t) = λ1ζn,t +
λ2εt sn−t /σn,1, 1 ≤ t ≤ n. Then ηn(t) = φn(t) − E[φn(t) | X̃t−1]. In view of
Corollary 9.5.2 in Chow and Teicher (1988) it remains to show that

n∑
t=1

E
[
φ2
n(t)1[|φn(t)|>ε]

] = o(1) for any ε > 0.

To this end, let

G(n) = min
{∣∣∣∣ε

√
nbn

2λ1

∣∣∣∣, ∣∣∣∣ εσn,1

2λ2sn−t

∣∣∣∣, t = 1,2, . . . , n
}
.

Then limn→∞ G(n) = ∞ and for all 1 ≤ t ≤ n,

1[|φn(t)|>ε] ≤ 1[|K[b−1
n (x0−Xt)]|≥G(n)] + 1[|εt |≥G(n)].

Applying the inequality (A +B)2 ≤ 2(A2 +B2), we have

φ2
n(t) ≤ 2λ2

1ζ
2
n,t + 2λ2

2σ
−2
n,1 [εt sn−t ]2.

In view of Karamata’s theorem,
∑n

i=1 s
2
n−t /σ

2
n,1 = O(1). Thus

n∑
t=1

E
{
σ−2
n,1 [εt sn−t ]21[|εt |≥G(n)]

} ≤ E
{
ε2
t 1[|εt |≥G(n)]

} = o(1)

and since f is bounded

n∑
t=1

E
{
ζ 2
n,t1|K[b−1

n (x0−X1)]|≥G(n)

} = O(1)
∫
|K(z)|≥G(n)

K2(z) dz = o(1).

Thus we can now conclude the proof of the Lindeberg condition by first noting
that

E

∣∣∣∣K2
(
x0 −Xt

bn

)
1[|εt |≥G(n)]

∣∣∣∣
=

∫
|u|≥G(n)

∫
R

K2[b−1
n (x0 − u − v)]f1(u)f̃1(v) dudv

= bn

∫
|u|≥G(n)

∫
R

K2(z)f1(u)f̃1(x0 − u− bnz) dz du

= O(bn)

∫
|u|≥G(n)

f1(u) du= o(bn)
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and then, reasoning as before,

n∑
t=1

E
{[σ−1

n,1εt sn−t ]21|K[b−1
n (x0−Xt)]|≥G(n)

}
≤ E

{
ε2

11|K[b−1
n (x0−X1)]|≥G(n)

}
= bn

∫ ∫
|K(z)|≥G(n)

u2f1(u)f̃1(x0 − u− bnz) dz du

= O(bn)

∫
|K(z)|≥G(n)

dz

≤ O(bn)G
−2(n)

∫
R

K2(s) ds = o(bn). �

6. Conclusion. Clearly Theorem 4 does not cover the cases (b, β,L(·)) ∈
T3c ∩ T10 and (b, β,L(·)) ∈ T3c ∩ T1c′ for some c, c′ > 0. The latter is more
interesting and it corresponds to the case when bandwidths satisfy the hyperbolic
decay condition of Corollary 1 to the situation that (β,α) is exactly the common
joint point T . We conjecture that in this situation the limiting distribution is
a convolution of random normal variable and multiple Wiener–Itô integrals.
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