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ON CONVERGENCE OF POSTERIOR DISTRIBUTIONS

BY SUBHASHIS GHOSAL,1 JAYANTA K. GHOSH 2 AND TAPAS SAMANTA

Indian Statistical Institute

Ž .A general asymptotic theory of estimation was developed by Ibragi-
mov and Has’minskii under certain conditions on the normalized likeli-
hood ratios. In an earlier work, the present authors studied the limiting
behaviour of the posterior distributions under the general setup of Ibragi-
mov and Has’minskii. In particular, they obtained a necessary condition

Ž .for the convergence of a suitably centered and normalized posterior to a
constant limit in terms of the limiting likelihood ratio process. In this
paper, it is shown that this condition is also sufficient to imply the
posterior convergence. Some related results are also presented.

1. Introduction. We consider the general setup of Ibragimov and
Ž . Ž .Has’minskii 1981 henceforth abbreviated as IH that includes the regular

Ž .cases and also a wide variety of nonregular cases. A general asymptotic
theory of estimation was developed in IH, where the problem was reduced to
the study of the properties of a suitably normalized likelihood ratio. IH
obtained the asymptotic properties of estimates under certain conditions on

Ž .the normalized likelihood ratios see Section 2 . In the recent paper of Ghosh,
Ž . Ž .Ghosal and Samanta 1994 GGS hereafter , it was shown that under the

general setup of IH, one can obtain useful information on the asymptotic
behaviour of posterior distributions as well. In particular, GGS obtained a

Žnecessary condition for the convergence of a suitably centered and normal-
.ized posterior distribution to a constant limit in terms of the limiting

likelihood ratio process. The main purpose of this paper is to show that this
condition is also sufficient to imply the posterior convergence. This result is
potentially applicable to many situations involving stochastic processes and
some nonregular cases. In particular, it implies an in-probability version of
the Bernstein]von Mises theorem in an extremely general form. Apart from
this, we show that the first two conditions of IH always imply posterior
consistency. A very general result on the asymptotic equivalence of the Bayes

Ž .estimates and the maximum likelihood estimate MLE in the regular cases
is also proved under the present setup. While this result is quite well known
in many particular cases or under conditions much stronger than ours, it
seems to be new in this general form.
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�Ž n n. n 42. Convergence of posterior distributions. Let XX , AA , P ; u g Qu

be a sequence of statistical experiments generated by observations X n g XX n,
where Q ; R d, d G 1, is a Borel set with nonempty interior and P n admits au

nŽ n .density p x ; u . For a fixed u in the interior of Q, the likelihood ratio0
Ž .process LRP is defined by

pn x n ; u q w uŽ .0 n
Z u s Z u s , u g U ,Ž . Ž .n n , u nn n0 p x ; uŽ .0

y1Ž .where U [ w Q y u and w is an appropriate normalizing factor.n n 0 n
The general theory of IH has been developed under the conditions stated

below.

Ž .CONDITIONS IH .

Ž .IH1 For some M ) 0, m G 0 and a ) 0,1

< 1r2 1r2 < 2 m1 5 5 aE Z u y Z u F M 1 q R u y u ,Ž . Ž . Ž .u n 1 n 2 1 20

5 5 5 5for all u , u g U satisfying u F R and u F R.1 2 n 1 2
Ž .IH2 For all u g U ,n

1r2 5 5E Z u F exp yg u ,Ž . Ž .u n n0

� 4 w .where g is a sequence of real-valued functions on 0, ` satisfying then
Ž . Ž . Ž .following: a for a fixed n G 1, g y ­` as y­`; b for any N ) 0,n

Nlim y exp yg y s 0.Ž .n
yª`
nª`

Ž . � Ž . d4IH3 The finite-dimensional distributions of Z u : u g R converge ton
� Ž . d4those of a stochastic process Z u : u g R .

Below, all the probability statements will refer to the ‘‘true parameter’’ u .0
Ž .Let P be the class of possibly improper prior densities on Q which are

continuous and positive at u and have polynomial majorants. For example,0
Jeffreys’ prior in the regular case is an element of P. Let LL be the class of

d w .continuous loss functions l: R ª 0, ` satisfying the conditions of Theorem
I.10.2 of IH. This class of loss functions is sufficiently general to include all

Ž . 5 5 ploss of the form l x s x , p G 1. Below, we shall consider only priors
p g P and loss functions l g LL . Set

Z u p u q w uŽ . Ž .n 0 n
j u s ,Ž .n H Z v p u q w v dvŽ . Ž .U n 0 nn

y1Ž .which is the posterior density of the normalized parameter u s w u y un 0
Ž . Ž . Ž Ž . .with respect to a prior p g P, and also set j u s Z u r H Z v dv . LetR

Ž < n. np u g A X denote the posterior probability of a set A ; Q given X .n
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DEFINITION 1. We say that the posterior is strongly consistent if, for any
Ž < n.neighbourhood V of u , lim p u f V X s 0 a.s.0 nª` n

Ž < n.The posterior is called weakly consistent if p u f V X ª 0.n p

In GGS, it was shown that the posterior is asymptotically free of prior if
Ž .one has posterior consistency GGS, Theorem 2.1 . We here observe that

Ž . Ž .posterior consistency always holds under conditions IH1 and IH2 .

Ž . Ž .PROPOSITION 1. Assume Conditions IH1 and IH2 and consider a prior
` 5 5 sp g P. Then the posterior is weakly consistent. If further Ý w - ` forns1 n

Žsome s ) 0, then the posterior is strongly consistent provided the almost sure
.convergence is meaningful .

PROOF. Let V be a neighbourhood of u and let r ) 0 be such that the0
open ball of radius r around u is contained in V. Then by Lemma I.5.2 of IH,0
for any N ) 0, there is a constant C such thatN

Nn yN< 5 5E p u f V X F E j u du F C r w .Ž . Ž .Hn n N n
5 5 5 5u )rr wn

The result is now immediate. I

d ˆDEFINITION 2. An R -valued statistic u is called a proper centering if, forn
d d Ž .all sets A in the Borel sigma-field BB on R , there exist numbers Q A such

that

y1 n dˆ <1 sup p w u y u g A X y Q A : A g BB ª 0.Ž . Ž .Ž .½ 5ž /n n n p

ˆ dA statistic u is called a semiproper centering if, for each A g BB ,n

y1 ˆ n<2 p w u y u g A X ª Q A .Ž . Ž .Ž .ž /n n n p

ˆ y1 ˆŽ . Ž ŽA statistic u is called compatible with the posterior if w u yn n n
. Ž .. d 1Ž d .u , j ? , as a random element in R = L R , converges in law.0 n

REMARK 1. In view of Theorem 2.1 of GGS, if any of the above statements
in Definition 2 holds for some prior p g P, then it holds for any other prior
in P.

The following result characterizes the existence of a posterior limit.

Ž .THEOREM 1. Assume Conditions IH . If either a proper centering or a
ˆcompatible semiproper centering u exists, then there exists a random variablen

y1 ˆ dŽ . Ž . Ž . Ž .W such that a w u y u ª W and b for almost all u g R , j u y Wn n 0 d
is nonrandom.

Ž .Conversely, if b holds for some random variable W, then any Bayes
Ž .estimate for a loss l g LL and a prior p g P works as a compatible proper

centering.
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Ž .The necessity part was established in GGS Theorems 2.4 and 2.5 . We
˜here prove the sufficiency part. Let u be a Bayes estimate with respect to an

loss l g LL and a prior p g P. By Remark 1, it is enough to consider the
Ž . Ždposterior with respect to the same prior p . Also, set c s s H l s yn R

. Ž . Ž . Ž . Ž .du j u du and c s s H l s y u j u du. By the assumptions made on then R

Ž .loss function l, the random function c s attains its absolute minimum at a
unique point t .

We first establish the following result, which is also of independent inter-
est.

Ž .PROPOSITION 2. Under Conditions IH , any Bayes estimate is compatible.

PROOF. We shall show that
y1 ˜3 w u y u , j ? ª t , j ? .Ž . Ž . Ž .Ž .Ž .ž /n n 0 n d

By the arguments used in the proof of Theorem I.10.2 of IH, it suffices to
show that, for all M ) 0,

< <4 c ? M , j ? ª c ? M , j ?Ž . Ž . Ž . Ž . Ž .Ž .Ž .n n d

w x d 1Ž d . Ž < . Ž < .as random elements in C yM, M = L R ; here c ? M and c ? M standn
Ž . Ž . w x dfor the restrictions of c ? and c ? , respectively, on yM, M , andn

w x d w x dC yM, M denotes the space of continuous functions on yM, M with the
uniform metric. From Theorem I.10.2 of IH and Theorem 2.3 of GGS, respec-

� Ž < .4 � Ž .4tively, we know that c ? M and j ? are tight; hence it suffices to verifyn n
the convergence of finite-dimensional distributions. Let s , . . . , s g R d and1 m
A , . . . , A g BBd. We have to show that1 k

c s , . . . , c s , j A , . . . , j AŽ . Ž . Ž . Ž .Ž .n 1 n m n 1 n k
5Ž .

ª c s , . . . , c s , j A , . . . , j A ;Ž . Ž . Ž . Ž .Ž .d 1 m 1 k

Ž . Ž . Ž . Ž .here j A and j A stand for H j u du and H j u du, respectively. By then A n A
Ž .arguments used in the proof of Theorem I.10.2 of IH, 5 follows from

Theorem A.1 of the Appendix. I

Ž . Ž .PROOF OF THEOREM 1. By the given condition, j u s g u q W , where g
is a fixed probability density. Let c be the unique minimizer of the function

Ž . Ž .dH l s y u g u du. Then t s W q c and hence, without loss of generality, weR
y1 ˜Ž .can assume that W s t . The posterior density of v [ w u y u is given byn n

U n y1 ˜Ž < . Ž . Ž .p v X s j v q t , where t s w u y u . By Proposition 2 and Lemman n n n n n 0
1Ž d .A.1 of the Appendix, in the space L R , we have

U < n d d6 p v X : v g R ª g v : v g R .Ž . Ž . Ž .Ž .Ž .n d

Ž .The result is now immediate since g ? is a nonrandom element. I

Theorem 1 has a wide range of applicability since no particular structure
Ž .like i.i.d. or regularity is assumed. The theorem is valid irrespective of the
form of the limit; it may be nonnormal as in Examples 2 and 4.
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EXAMPLE 1. If the families of distributions satisfy the LAN condition,
then the posterior converges and the limit is a normal probability. Examples
of such regular cases include the independent homogeneous case, indepen-
dent nonhomogeneous case, nonlinear regression model, Gaussian white

Ž .noise, the case with almost smooth densities see IH and planar Gibbsian
w Ž .xpoint processes Mase 1992 .

Ž .EXAMPLE 2. Consider i.i.d. observations with a common density f ? ; u
Ž . Ž .possessing r jumps at points a u , . . . , a u and satisfying the conditions of1 r

Ž . Ž . Ž .IH Chapter V, page 242 . Let p u and q u denote, respectively, thei i
Ž .right-hand and left-hand limits of the density at x s a u , i s 1, . . . , r.i

Assume that either

q u s 0 and aX u ) 0 or p u s 0 and aX u - 0Ž . Ž . Ž . Ž .Ž . Ž .i i i i7Ž .
; i s 1, . . . , r

or

q u s 0 and aX u - 0 or p u s 0 and aX u ) 0Ž . Ž . Ž . Ž .Ž . Ž .i i i i8Ž .
; i s 1, . . . , r .

Then the family is locally asymptotically exponential in the sense of IH
Ž . Ž . Ž .Chapter V, page 276 and hence condition b of Theorem 1 holds. If case 7

Ž . w Ž .Ž Ž ..xholds, the limiting posterior distribution has density c u exp c u x q b u
Ž . Ž . r Ž Ž . Ž .. X Ž . Ž .supported on x - yb u , where c u s Ý p u y q u a u ) 0 and b uis1 i i i

Ž . 0 Ž . Ž . w Ž . x Ž .is the unique minimizer of h s [ H l s y u c u exp c u u du. If case 8y`

holds, the limit can similarly be identified. Important examples of this kind
Ž .include location shift of an exponential density, U 0, u and so forth.

EXAMPLE 3. Consider a multiparameter family of densities which is non-
regular with respect to a real parameter u and ‘‘smooth’’ with respect to the

Ž .other parameters, say, w e.g., w may be a scale parameter . Ghosal and
Ž . Ž .Samanta 1994 verified Conditions IH for such a family and showed that

the limiting LRP factorizes into two independent processes. If w is the
parameter of interest, proceeding as in Theorem 1 and using the results of

Ž .Ghosal and Samanta 1994 , one can see that the marginal posterior of w is
asymptotically normal.

EXAMPLE 4. For the multiparameter family considered in Example 3, the
joint posterior of u and w converges if the nonregularity is of the type
mentioned in Example 2. The limit in this case is the product of the limit
obtained in Example 2 and a normal probability.

It is interesting to note that in all the above examples, there exist
finite-dimensional asymptotically sufficient statistics of dimension the same
as that of the parameter.
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We now examine whether the Bayes estimate in Theorem 1 can be
Ž .replaced by the MLE. Let condition IH1 be replaced by the following:

Ž .XIH1 There exist numbers m G a ) d and M , m G 0 such that1 1

< 1r m 1r m < m m1 5 5 aE Z u y Z u F M 1 q R u y u ,Ž . Ž . Ž .n 1 n 2 1 1 2

5 5 5 5for all u , u g U satisfying u , u F R.1 2 n 1 2

Ž .X Ž . Ž . Ž . Ž .THEOREM 2. Assume conditions IH1 , IH2 and IH3 . Let Z ? and Z ?n
Ž .have continuous sample paths and Z ? attain its maximum at a unique point

u. Then, as n ª `,ˆ

y1 ˆ y1 ˜9 w u y u , w u y u ª u , t ,Ž . Ž .ˆŽ . Ž .ž /n n 0 n n 0 d

ˆ ˜where u stands for the MLE, u for the Bayes estimate and t is as definedn n
earlier.

d Ž . Ž .PROOF. For any function f on R , let f ?; M denote the restriction of f ?
w x don yM, M . By arguments used in the proofs of Theorems I.10.1 and I.10.2

w x dof IH, it is enough to show that, as random elements in C yM, M =
w x dC yM, M ,

10 Z ?; M , c ?; M ª Z ?; M , c ?; M .Ž . Ž . Ž . Ž . Ž .Ž .Ž .n n d

Since tightness has already been verified, it remains to prove the convergence
of finite-dimensional distributions. However, this follows from an obvious

Ž .modification of the arguments given in IH page 108 and Theorem A.1 of the
Appendix. I

Theorem 2 has a useful consequence in the LAN, LAMN and LAQ situa-
w Ž . Ž . Ž .tions see Jeganathan 1982 , Le Cam 1986 and Le Cam and Yang 1990 for

xdefinitions .

COROLLARY 1. Assume the conditions of Theorem 2 and suppose further
that the limiting LRP is of the form

X X11 Z u s exp u D y 1r2 u Su ,Ž . Ž . Ž .

where D is a random vector and S is an almost surely positive definite
random matrix. Then

y1 ˜ ˆ12 w u y u ª 0,Ž . ž /n n n p

that is, the MLE and the Bayes estimates are asymptotically equivalent.
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y1 ˜ ˆŽ . Ž . Ž .PROOF. By Theorem 2, w u y u ª t y u . If 11 is satisfied, Ander-ˆn n n d
y1 Ž .son’s lemma implies that t s u s S D, and hence 12 holds. Iˆ

We now consider the special situation where both the hypotheses of
Theorem 2 and the LAN condition are satisfied. In this case, S is a nonran-

Ž . Ž .dom matrix and D is distributed as N 0, S . Then condition b of Theorem 1d
holds, and hence we can have a limit of the posterior with the Bayes estimate
as a proper centering. By Corollary 1, one can now replace the Bayes estimate

Ž y1 .by the MLE. Moreover, the limit of the posterior is N 0, S . The samed
conclusion can be reached by a more direct route. By arguments similar to
those in Theorem 2, one can show that the MLE is compatible and then one
can obtain the result following the proof of Theorem 1. Thus we obtain an
in-probability version of the well-known Bernstein]von Mises theorem in a
much more general setting.

APPENDIX

1Ž d . d Ž . Ž .LEMMA A.1. For f g L R and x g R , define f by f y s f y y x .x x
Ž . d 1Ž d . 1Ž d .Then the mapping x, f ¬ f , from R = L R into L R , is continuousx

in x and is an isometry in f , and so is jointly continuous.

wŽ . xFor a proof, see Rudin 1974 , Theorem 9.5, page 183 .

Ž . Ž .THEOREM A.1. Let j t , n G 1, and j t be measurable random functionsn
d Ž .defined on a compact set F ; R , and let w t be a measurable function on F.

Assume that the following conditions are satisfied:

Ž . Ž < Ž . < < Ž . < .a sup E H w t j t dt - `;nG1 F n
Ž . < Ž . Ž . < 5 5 ab there exist H, a ) 0 such that sup E j t y j s F H t y s ;nG1 n n
Ž . Ž . Ž .c finite-dimensional distributions of j t converge to those of j t .n

Then, for any t , . . . , t g R d,1 k

j t , . . . , j t , w t j t dt ª j t , . . . , j t , w t j t dt .Ž . Ž . Ž . Ž . Ž . Ž . Ž . Ž .H Hn 1 n k n d 1 kž / ž /F F

The proof is a minor modification of that of Theorem I.A.22 of IH.
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