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ON TESTING THE EXTREME VALUE INDEX VIA
THE POT-METHOD

By MiIcHAEL FALK

Katholische Universitiat Eichstdtt

Consider an iid sample Y7,...,Y, of random variables with common
distribution function F, whose upper tail belongs to a neighborhood of the
upper tail of a generalized Pareto distribution Hg, 8 € R. We investigate
the testing problem B = B, against a sequence B = B, of contiguous
alternatives, based on the point processes N, of the exceedances among Y;
over a sequence of thresholds ¢,. It turns out that the (random) number of
exceedances 7(n) over ¢, is the central sequence for the log-likelihood
ratio d-%; (N,)/d%, (N,), yielding its local asymptotic normality (LAN).
This result implies in particular that 7(n) carries asymptotically all the
information about the underlying parameter 8, which is contained in N,,.
We establish sharp bounds for the rate at which 7(n) becomes asymptoti-
cally sufficient, which show, however, that this is quite a poor rate. These
results remain true if we add an unknown scale parameter.

0. Introduction. Consider a distribution function (d.f) F on the real
line whose upper tail belongs to a member of a parametric family of d.f’s. To
be precise, we suppose that there exists an unknown root x, € R such that

(M) F(x) = Fy(x) for x> x,,

where {F,: B € 0} is a family of d.f’s, parametrized by the elements g from
some parameter space ®. Our problem is to deduce statistical inference about
the unknown parameter 8 from an iid sample Y,...,Y, with common d.f. F.
A model assumption on the upper tail of the underlying d.f. such as (M) is,
for example, indispensable if one is interested in extreme quantities of the
underlying d.f., that is, such quantities of F which are usually outside the
range of the given data Y;,...,Y,. A typical example is inference about
extreme quantiles F~'(p) = inf{t € R: F(¢) > p} with p being close to 1.
This problem is typically tackled by hydrologists for the prediction of large
floods [cf. Hosking and Wallis (1987) and the literature cited therein].
Statistical inference about the parameter 8 in model (M) can clearly be
deduced only from those observations among Y,,...,Y, which are large in
some sense. There are two obvious but different ways to define an observation
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Y; as large:
(a) if it is among the & largest order statistics Y, _ ;1.0 Yo hs2:ns-++» Yo ns
where Y;., < -+ <Y,., denote the ordered values of Y,,...,Y,;

(b) if it exceeds a given high threshold t,, say.

While (a) has been the center of interest of extreme value theory since its
beginning [cf. de Haan (1970) and Galambos (1987)], approach (b) has only
recently found increasing interest [cf. Smith (1987), Davison and Smith
(1990), Falk, Husler and Reiss (1994) and the references given therein].
Although it seems to be more natural to call a value large if it exceeds some
specific threshold, the minor attention paid to approach (b) might be due to
the fact that this method generates a vector (V,...,V,,,) of random length
7(n), say, if we apply it to Y;,...,Y,. Here V,,V,,...,V,,  denote those
values Y, among Y,,...,Y, which exceed the threshold ¢,, arranged in the
order of their outcome; their total number 7(n) is then binomially distributed
B(n,1 — F(t,)). This peaks-over-threshold (POT) method suffers therefore
from a dimensionality problem, and the formulation of convergence results is
not obvious.

In recent years, however, the theory of point processes has become more
and more important in different statistical fields, due to the fact that it
provides a way to analyze data in a dimension-free way. This quite general
concept is therefore tailor-made for approach (b). While the recent book by
Falk, Hiisler and Reiss (1994) focuses on applications of the point process
approach to extreme value models, excellent introductions to general point
process theory are provided by the monographs by Daley and Vere-Jones
(1988) and Reiss (1993). We briefly summarize the very few elements from
the general theory which we need for dealing with our particular model (M).

First of all, we identify a point x € R with the pertaining Dirac measure
g, (B)=1x(x) =1 if x € B and 0 otherwise. We thus identify the excess
V. — t, with the random Dirac measure

gVi—tn(B) =15(V; - tn)’ B ez,

on the Borel o-field % of R. We prefer to work with the excesses V, — ¢,
rather than with the exceedances V; over ¢, themselves, as their range (0, )
is kept fixed by this shift.

A mathematically precise description of the vector (V; —¢,,...,V,,, — t,)

of excesses is then

n 7(n)
N,(B) = Z ‘9Yi—tn(B)‘9Yi(tn’°O) = Z ‘9Vi—t,l(B)’ Bez,
i=1 i=1

where 7(n) = N,(R) = N,((0, «)). Note that N, is a random element in the
set M={u=X" 6. x,...,x, €R, n=0,1,2,...} of (finite) point mea-
sures on (R, %), equipped with the smallest o-field .# such that for any
A € F the projection 7,: M — {0,1...}, m(u) = u(A), is measurable. As
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such, N, is called a point process. [For technical details we refer to Reiss
(1993), Section 1.1.]

The following lemma is crucial for the POT-method; it is a special case of a
general result for truncated empirical processes [cf. Reiss (1993), Theorem
1.4.1]. We let Z(N,) denote the distribution of N,,.

LEmMA 0.1. Let Yy, Y,,... be independent copies of a random variable
(r.v) Ywith d.f. F, and we choose t, € R such that 0 <1 — F(¢,) < 1. Then

7(n) 7(n)
Z(N,) =3( Z SVi—tn) =3( Z ey,
i=1

i=1

b

where 7(n) is B(n, 1 — F(¢,)) distributed, U;, U,,...,U, are iid r.v.’s with
common d.f.

1-F(t, +x)

(1) B(x) =P(Y —t, <x[Y —¢,>0)=1- T

x>0,

and 7(n) and the vector (Uy,...,U,) are independent.

The preceding result provides a rather easy access to the investigation of
N, =¥ ey, _;, by decomposing it into two independent parts, namely, the
values of the excesses V, — ¢, and their number 7(n). The excesses V, — ¢,
are independent with common d.f. B(-) as given in the preceding result, and
7(n) is B(n, 1 — F(¢,)), distributed.

We will investigate, within the model (M), the testing problem
B =B, againsta sequence g, * B,

converging to B,, based on the POT-method with increasing thresholds ¢, for
particular families Fj of d.f’s, which we will introduce in the sequel.

According to the results in Balkema and de Haan (1974) or in Rychlik
[(1992), Theorem 2.1] [see also Falk, Husler and Reiss (1994), Theorem 1.3.5],
the only set of possible nondegenerate weak limits of the excess d.f. B(x) =
1-Q-F(, +x)/A - F(,), x>0, as F(¢,) - 1, is under mild regular-
ity conditions on the sequence ¢, the class of generalized Pareto d.f.’s
(GPD’s). In their von Mises parametrization, these GPD’s are for g € R
defined by

Hy(x)=1-(1+Bx) """, 0<@1+px) <1

Interpret H, as Hy(x) = limg _, , Hy(x) = exp(—x), x > 0. Note that Hj has
support (0, —1/8) if B < 0 and (0, ) if 8 > 0.

This result makes a GPD a natural model for the excess d.f. B in (1), in
which case the upper tail of F equals that of a shifted GPD. This is, for
example, a quite common approach in insurance mathematics to model large
claims [cf. Teugels (1984)] or in hydrology to model large floods [cf. Hosking
and Wallis (1987)]. We will therefore consider in this paper such d.f’s F,
whose upper tails are in certain neighborhoods of that of a GPD.
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Denote by w(G) := sup{x € R: G(x) < 1} the right endpoint of the support
of a d.f. G. The upper tail of a d.f. F belongs to the §-neighborhood of some
GPD H, if o(F) = o(H,) and F has density f for some (commonly unknown)
xy < o(F) such that, for some constant C > 0,

F(x)/hy(x) — 1 < C(1 — Hy(x))’,  x=x,,

where h; denotes the density of H,. The importance of §-neighborhoods of
GPD’s in extreme value theory, their derivation from von Mises conditions,
their connection with rates of convergence of extremes and so on is exten-
sively described in Falk, Hiisler and Reiss [(1994), Section 1.3 and Chapter 2].

We will therefore consider for the testing problem B = 8, against B, # B,
in this paper a parametric family {F,: 8 € R} such that for each 8 € R the
d.f. F; is in a &-neighborhood of a GPD H,.

While estimation of the extreme value index B has been extensively
studied in the literature [see, e.g., Smith (1987); Reiss (1989), Chapter 9;
Dekkers and de Haan (1989); Falk, Hiisler and Reiss (1994), Sections 2.4 and
2.5; and the literature cited therein], comparatively little has been published
on testing of B, in particular, on testing B = 0 against a sequence B, # 0
[Castillo, Galambos and Sarabia (1989), Gomes (1989) and Hasofer and Wang
(1992)]. In particular, the powerful theory of local asymptotic normality
(LAN) of statistical experiments, developed by Le Cam [cf. Le Cam (1960,
1986), Le Cam and Yang (1990) and Strasser (1985)], has been applied to
extreme value problems as yet in only a few and quite recent papers [Marohn
(1991, 1994a, b), Janssen and Marohn (1994) and Wei (1992); related papers
are Janssen and Reiss (1988), Hopfner and Jacod (1993) and Hopfner (1994)].

In the present paper we will test B = B, against a sequence S, of
contiguous alternatives, where the tests are based on the point processes N,
of excesses. This will be done within Le Cam’s concept of local asymptotic
normality. We index expectations E,, distributions .4 and so on by the
underlying parameter. An expansion of the log-likelihood ratio

L, = log{—d%o(Nn) }(Nn)

reveals that 7(n) is the central sequence for our testing problem B, against
By, yielding that L, is under B, local asymptotically normal distributed,
LAN for short. This implies that asymptotically 7(n) is sufficient for B,
against B,; that is, the complete information contained in N, about the
structural parameter B is already contained in the number 7(n) of ex-
ceedances only. Asymptotically optimal tests for g = B, against B, can
therefore solely be based on 7,, and standard results from LAN theory
provide the asymptotic power function as well; see the remarks after Theo-
rem 1.1. For a precise definition of asymptotic sufficiency and its connection
with central sequences we refer to Le Cam and Yang [(1990), Proposition 2 in
Section 5.3].
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We establish a bound for this increasing sufficiency of 7(n) by establishing
a sharp bound for the Hellinger distance H(Z;(N,), Z;,(N,*)) between the
distribution of N, = X/} &, _, and that of

7(n)

=) Ew,
i=1

under B = B,, where 7(n) = N, ((0, «)) is kept, but W,,W,,... are excesses
based on the hypothetical Fj, . Under B = B, the distributions of N, and N
coincide. This bound converges to zero as 8, —, .. B, but at a rather slow
rate. These considerations are the content of Section 1.

Adding an unknown scale parameter ¢ > 0 to F, and considering Fj(cx),
one might guess that the excesses contribute to the information about the
scale parameter ¢, when testing

(B,,c,) against (B, cq).

However, the results of Section 1 carry over to this problem; that is, 7(n) is
still asymptotically sufficient, which is shown in Section 2.

Various examples which we have computed indicate that the log-likelihood
ratio L, is no longer LAN if F, and F,; are not in §-neighborhoods of GPD’s.
The proof of the conjecture that L,is actually LAN only if F, and F, are in
6-neighborhoods of GPD’s is an open problem.

1. Testing the extreme value index. Consider at first a d.f. F whose
upper tail coincides with that of a GPD in the sense of model (M), that is,
F(x) = Hg(x), x> x,, for some unknown x,==x,(g8) and B € R. The
case F(x) = Hy(cx) for some (unknown) scale parameter ¢ > 0 is considered
in the next section. The d.f. of the excess distribution B,(x) = P(V —
t,<x)=PY <t,+xlY>t,, x>0,is, by Lemma 0.1,

By(x) = 1- 1—Hg(x+t,)
1 = Hy(t,)
x ~1/8
=1—(1+BTM) ,  0=<x<ow(Hy) —t,

with By(x) =1limg_,, By(x) =1 — exp(—x), x>0, if 0 <H,(¢,) <1 and ¢, >
x,. The excess distribution B, has density

-1/8-1
by(x) = +B—) . O<x<aw(H)—t,

—|1
1+Btn( 1+ B¢,

with by(x) = lim,_,, by(x) = exp(—=x), x > 0. First we consider the hypoth-
esis B, = 0. Choose the threshold

= IOg( nan)
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and the alternatives
B, = B,(9) = 2%a;/?/¢2, 9 € R,

where the sequence a, > 0, n € N, satisfies a, - 0, na, > © as n — «.
Notice that the threshold ¢, may converge to infinity at any prescribed rate
below log(n) by a suitable choice of «,, yielding an asymptotically increasing
number of expected excesses. However, once ¢, has been chosen, the preced-
ing definition of the alternatives B, is required for a nondegenerate normal
limit of the log-likelihood ratio in Theorem 1.1. The same applies to subse-
quent results.

The following result shows that the number 7(n) of exceedances is the
central sequence for testing B = 0 against B = B,; that is, Theorem 1.1
reveals that the complete information about the underlying extreme value
index B contained in N, is asymptotically already contained in the number
7(n) = N,((0, ©)) of exceedances of the original data over the threshold ¢,. By
—g, We denote weak convergence under the parameter 8, and by oPB(l) a
stochastic remainder term which converges to zero in probability under 8 as
the sample size n increases.

THEOREM 1.1 (LAN). Under the hypothesis B = 0 we have, for any % € R,

d% (N,)
log{—dgo(Nn) }(Nn)

92 92
=da)/*(7(n) —a,") e +op (1) =5, N(—7, 192).

Notice that the ad hoc test statistic for testing B, against 8, based on N,
is

m(n) bB
o Bl
i=1 Bo

which is suggested by the Neyman—-Pearson lemma, with fixed sample size n
replaced by the (independent) r.v. 7(n). The proof of Theorem 1.1 shows,
however, that T, is of order 0p(1) under 3, and B, = 0. Although 7, seems to
be a natural and powerful test statistic for testing B, against B, = 0, it is
therefore not adequate, as it cannot distinguish asymptotically between S,
and 0, but (7(n) — a, 1)al/? does. Theorem 1.3, as well as Theorem 2.1, shows
that this remains true for a hypothetical value B, # 0, even if an unknown
scale parameter is added.

The preceding result enables us to apply the powerful general LAN
theory to our particular testing problem [cf. Le Cam (1986), Le Cam and
Yang (1990), and Strasser (1985)]. Le Cam’s first and third lemmas imply,
in particular, asymptotic equivalence between the log-likelihood ratio
log{d-% (N,)/dZ(N)YN,) and da)/*(r(n) —a,") — 9?/2 also under the
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contiguous alternatives Fj ; that is, Theorem 1.1 implies

1 w N) = dql/2 _*1_19_24_ 1
g dgo(Nn) ( n)_ ay (T(n) a, ) 2 OP‘;H()

ﬂZ
ﬁ%nN(7,ﬁz).

Denote by ® the standard normal d.f., and set v, == ® (1 — @), 0 < a < 1.
Then, by the preceding result and the Neyman—Pearson lemma,

(2) eu(N,) = L, o(sign(9)a;/*(7(n) - a,))

is an asymptotically optimal level « test, based on N,, for testing =0
against B, = B,(9), with asymptotic power function

(3) Y(9) = lim E; ,(¢,) =1— ®(u, —19)), IR
Note that ¢,(N,) is asymptotically optimal uniformly for ¢ > 0 and ¥ < 0.

Proor oF THEOREM 1.1. From Reiss [(1993), Example 3.1.2] we conclude
that Z; (N,) has Z (N, )-density

g(m) =

L 1 — Hy(t,) Hy(t,)

R, an(xi) l_HBn(tn) w(R,) HBn(tn) n—u®,)
i=1 bo(x;) ( ) ( )

if w=2YM} &, and 0 < w(R,) < n. Consequently,

d<% (N, ’
log{#(m;}(m =f1°g{%}“(dy)
1-H
+M(R+)log{Tﬁj:((;n))}
H
+(n—/.L(R+))10g( Higin; )

In the following we will drop the index n of B, for the sake of a clear
presentation. Recall that na, = exp(¢,), and observe that 0 < log(na,) <
w(HB”) if n is large. Taylor expansions of log at 1 and exp at 0 imply the
following fact.

Fact 1. We have Hy(¢,) — Hy(t,) = —na,'(9a)/? + O(a,)).
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Consequently,
1 - Hgy(¢, H,(t,
T(n)log{TiEZ;} +(n—7(n))log(Hix ;)

(nan(HO(tn)z—HB(tn))) +O(ai/2)}

+(n—f(n)){(1—(nan>1)1(Hﬂ<tn) ~Hy(1,)) +0 (“ ; )}

Recall that under B = 0 the r.v.7(n) is B(n,1 — H\(¢,)) = B(n,1/(na,))-
distributed and hence, by Fact 1,

(na,(Ho(t,) — Hy(t)))" _  9%a,(1+o(1) o*
T(n) 9 - T(n) 2 2
3/2

(4) :T(n){nan(HO(tn) _H,B(tn)) -

in probability, since 7(n)a, converges to 1. Equally, 7(n)a)’* and (n —
7(n))a, /(na,)? both converge to 0. Finally, we order the remaining terms in
(4) as follows:

r(mynay(Ho(t,) — Hy(4,)) + T'r:';)_l(ﬂﬁ(tn) ~Hy(t,)
= (r(n) —a,')na,(H,(t,) — Hy(t,))
1 T(n)
+{” 1= (na,) " 1) 1 (nan)l}(HB(t”) ~ )
= (7(n) —a, " )¥a)/?(1 +0(1)) + %(H (¢,) — Hy(t,))

= (7(n) —a,")da)/? + 0p (1),
as (7(n) — a,"a,/? is asymptotically standard normal and H,(t,) — H(t,)

is, by Fact 1 of order O(a'/?/(na,)) = o(al/?). Thus we have shown so far

that
1—-H H
T(n)log{—l — Hixi } +(n - T(n))log( H‘;EZ; )

192
= (7(n) —a, ")Va)/* - -t 0p(1).

In order to prove Theorem 1.1 it therefore remains to show that, under

B =0,
* { ,B(y)

(5) J, 1og by )}N<dy)—op<1>
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First observe that

e bB(y) _
fmm“ log{ bo(y) }N"(dy) = on(1):

By making use of Lemma 0.1 this is immediate from

> B(y)
/1/|,8\’1/21 {b (y }Nn(dy)

)
7(n) .
e

P, > g

=PO( > &
(6) <Py(U, = 18I /2 for some i € {1, ., 7(n)})
= Zn: PO(Ui > | B|"'/* for some i € {1,...,m})P0(7(n) =m)
m=1
-y mPy(U; = | BI"*)Py(7(n) = m)
m=1

(1= Ho(IBI?))Eg(7(n)) = 0(1),

where & > 0 is arbitrary. By using again the expansion log(l + &) = & —
£2/2 4+ O(&®) for &£ > 0, we can write

i

_ 1/|/3|1/2 1 + B By _
f log|1 + 1+ pr, log(1 + B¢,)N,(dy)
_ (/181 _1+B Py PV 0( B%*
g {1+Btn 20+ pry P
— Bt, + O( B*t;)N,(dy)
By?
_ 1/181Y 1 2,3
J; ~ +B){1+Bt 2(1+Btn)2+0(ﬁy)}

- BtnNn(dy) + OPO(l)’

as fl/IB\“’B tIN (dy) < B2tir(n) = 49%a,7(n)/t2 = 0p, (1). By the inequali-
ties in (6) we can extend the preceding integral again over the range
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[0, ») and obtain that it is asymptotically equivalent to
o 1+8 B
[[i- —r
0 1+ B, 2(1 + Bt,)
7(n)

-1 1 U2
“Ph 1+Bt (G- (1+Bt)(__1))

-1 1
' BT(”){ L+ Bt (L+ Bt t”}

2 — BtnNn(dy)

7(n)

-1
BT(n)l/zn—)T(n)m L(G-1

1+ Bt
1/2 (n) ( U2 2 242 3.3
N 2)T(n)1/2 > (_l B 1) B BB
(1+pBt,) i—1\ 2 (1 + Bt,)
=0PO(1)’

by the definition of B, the central limit theorem and the fact that 7(n)a, — 1
in probability. Recall that by Lemma 0.1 the r.v’s 7(n) and V,,V,,... are
independent. This implies (5) and completes the proof of Theorem 1.1. O

The preceding result remains true if we replace the parametric family {Hj:
B € R} of GPD’s by d.f’s F; in the §-neighborhood of Fj. Fix C, § > 0; again
choose B, = B,(3) = 20a1/2/10g2(na ), but this time con51der for g =,
and B =0, d.f’s F; with w(F) = w(H,) having density f; on [x,( ), w(F}))
such that

fs(%)

ho(z)

<C(1-Hy(x))", x€[xy(B), o(Fy)).

If we now require that x,(B,) <t, = log(na,), n € N, then it turns out
that the number of exceedances over the threshold ¢, is again the central
sequence for testing 8 = 0 against 8 = B,() and is therefore asymptotically
sufficient, under the additional assumption a'/?(na,)® - « as n — . To be
precise, we have again under 8 = 0 the expansion

B( n)
lo {d_%(N)}(N)
02
= da;/?(r(n) —Eo(7(n))) = = + 0p(1)

192 2
=da)/?(7(n) —a,") Yy +op(1) =4, N(——,l‘}z).
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This can be shown along the lines of the proof of Theorem 1.1 by using Fact 2
in the proof of the following bound for the sufficiency of 7(n).
Consider again the empirical point process of the excesses

7(n)
Nn = Z gVi—t"‘
i=1

If 7(n) essentially contains all the information about B, delivered by N,,
then the error should be small if we replace the actual data V, —¢,,...,
V. — t, simply by ideal standard exponential r.v’s Wy,..., W ,,, with the

sequence W;, W,, ... being independent of 7(n). Define therefore

7(n)
Nn* = Z SWi’
i=1

which is generated from N, by just replacing V, — ¢, by W,.

The following result estimates the error, when replacing N, by NJF; it
provides therefore a bound for the sufficiency of 7(n). By H(-, ) we denote
the Hellinger distance between the distributions of random elements on the
same sample space. Precisely, let @, and @, be probability measures on the
same measurable space, and let u be any measure dominating @, and Q,.
The Hellinger distance between @, and @, is then defined by

1/2

H(Qy, @) = (f( VoY dp)

where f; is a p-density of @,, i = 1,2. Note that the variational distance is

13

bounded by the Hellinger distance. For an explanation of why we prefer the
Hellinger distance and for further technical details, we refer to Reiss [(1993),
Section 1.3].
THEOREM 1.2. Choose a, > 0 such that a, — 0, na, > © as n - ». For
v € R, set
13011/2
= ’(9 = —n .
Bn Bn( ) logZ(nan)

Suppose that w(F; ) = o(Hg ) and
fﬁ,,(x) _
hg (x)

for some C,8 > 0, where x,(8,) <t, =log(na,). Then, uniformly for 9 in
compact subsets of R,

(C) 1< C(1-Hy(x))', x€[x(B,), o(F)),

1
+ .
(log( na,) (nan)aal/z

n

H(%,(N,), %.(N})) = 0
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REMARKS. It is just an exercise to show that the rate O(log™!(na,) +
(na,) %a,'/?) in the preceding result is sharp. The second error term
(na,)"’a,'/? can be dropped in case of equality f;(x)=hy(x), x€
[x0(B,), o(Fp )). Furthermore, the proof of Theorem 1.2 shows that

H(Z(N,), Z(N})) = 0| ————1.

The bound O(1/log(na,)) = O(1/¢,) in the preceding result entails that 7(n)
becomes sufficient at a rather slow rate as the sample size n increases. The
obvious advice by Theorem 1.1, simply to drop the information contained in
the excesses for small up to moderate n, could therefore be taken only with a
grain of salt; see also the remarks at the end of the paper.

ProOOF OF THEOREM 1.2. From Corollary 1.2.4(iv) in Falk, Husler and
Reiss (1994) we obtain, if x,(g,) < ¢, = log(na,) < o(H, ),
H(%,(N,), %, (N;))
1/2
< (Ey(7,))""*H(By,, B,)
1/2

= nl/z{f: [fé{z(y + tn)exp(g) -(1- Fﬁn(tn))mrexp( -) dy}

From now on we suppress the index n of B,. Elementary computations
yield the following fact.

Facr 2. For y € [x,(B), o(H,)) and some constant C; > 0,
1- FB(y) _
1- HB(y)

Fact 2 implies the following fact.

1| < Cy(1 - Hy(9))’.

Fact 3. We have
[ [fé/z(y + tn)exp(z) - (1= Fy(t,))"” exp(—y) dy
1/181V2 2

= O((nan)_z).
From Fact 3 we deduce that

H(%/(N,), 2% (N5))

<l a0+ (3] - (0= B00) 7 esnt-) as)

+ O((nan)ﬂ),
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and from Fact 2 and condition (C) we obtain
/1812 p1/2 Y /2]’
nfo fs (y + tn)exp(E) - (1 — FB(tn)) exp(—y) dy
- nfol/\ml/z [h}g/Z(y + tn)exp(g)(l +O0((1 - Hy(y + tn)))s)

—(1 - Hy(1,)) (1 + 0(<nan)‘3))] exp(—y) dy

= nfol/”‘”w [eXP{g - 12+B310g(1 +B(y + tn))}(l +0((na,) "))

1 sal?
_exp{— 2—Blog(1 + ,Btn)}(l + O((nan) ))} exp(—y) dy

pt?
)

=aqa,! exp(

1 1/2 B 9
x/o/\ﬁl [exp{(z)(y + 2yt,)
+O(B(y +1t,) + B (y + tn)?’)}(l +0((na,)"?))

—exp{O( th,?)}(l + O((nan)a))} exp(—y) dy;

recall that HB(tn) = 0(1/n). From the expansion lexp(x) — 1| < 3|x|, for
|x| < 1, we deduce that the preceding term is of order

a;1f1/\13|1/z [0(|3|(y2 +2yt,) + B(y +t,) + B2y + tn)g)
0

+0((na,) ") exp(~y) dy
= a;lO(I Bt,|” + (nan)_%) = O(t,f2 + a;l(nan)_za),

which implies the assertion. O

Next we consider the case B, # 0. For the sake of simplicity we will drop in
the following the von Mises parametrization of GPD’s H for g +# 0 and

parametrize this subclass instead by
1—x"7, x>1,if >0,
Lﬁ(x) = -B .
1-(-x) ", —-1<x<0,ifg<O0.

Note that L; with 8> 0 is the standard Pareto distribution and L_, is, for
example, the uniform distribution on [ — 1, 0]; L, can be obtained from H, by
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the identity Ly(x) = H, ,z(B(x — 1)) if B> 0 and Ly(x) = H, , z(—B(x + 1))
if B <0.

[Ign the following we modify the empirical point process of the excesses
pertaining to the exceedances V,,...,V,,, over the threshold ¢, (greater than
1if 8> 0 and between —1 and 0 if 8 < 0). We consider instead the process

m(n)
M, = ,Zl EVi/ >

where, by Lemma 0.1, 7(n) is B(n,1 — Lg(¢,))-distributed and independent

of Vi/It,l, Vy/I¢,l, ..., which are iid with common d.f.

1- LB(yltnD
1- LB(tn)

The reason for replacing N, by M, is the fact that in the case B # 0 the

excess d.f. B, is stable in the sense that it is again equal to Lg. The d.f.
By(y) = Lg(y) has density

Bg(x) =1- =Lg(x).

Bx P, x>1,if B> 0,
b.B(x) = lﬁ(x) = -p-1 .
-B(—x) , —1<x<0,if8<0.
Now fix B, # 0 and choose the threshold

w=tu g, =Lg' (1~ (na,) ") = sign( By)(na,)"™
and the alternatives B, = B,() such that

(By — B,)/Bo = 9al/?/log(na,), 9 e R,

where again a, > 0, n € N, satisfies ¢, = 0, na, > © as n — «.

Notice that the alternatives B, converge to B, # 0 at a slower rate than
in our previous considerations, that is, al/?/log(na,) compared to
al’? /log*(na,). It is therefore more difficult to distinguish between hypothe-
sis and alternatives in the subfamilies {L;: 8 < 0} and {Lg: 8 > 0} than to
decide between B = 0 and B # 0 in the general class {H;: 8 € R}.

t

THEOREM 1.3 (LAN). For B, # 0 we have, with the preceding choice of
alternatives and the particular threshold t, , = sign( By)(na,)"/ ,

log{—d%o(Mn) }(Mn)

2

1/2 3 LA
= da)/*(r(n) - a, )_7+0P130(1) —g, N —7,19 .

Recall that under B, the r.v. 7(n) =M,(R) is B(n,1 - L,(¢, 5 ) =
B(n,1/(na,))-distributed. An asymptotically optimal level « test for S,

against B, is, by Theorem 1.3, again given by ¢, as in (2) with N, replaced
by M,, and asymptotic power function () defined in (3).
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ProOF OF THEOREM 1.3. As in the proof of Theorem 1.1 we have, with
t, =t
n n, By’

d% (M,) bs ()
log(—d g;( 7 )( w = [ 1og{ biom }M(dy)

1-L
+,U,(R)log{—1 — LZ"E?; } +

n — p(R)log

LB"( tn) )
LBO( tn) ‘

Facr 4. We have L;(t,) — Ly (t,) = —(na,) ' (®ay/* + O(a,)).

Elementary computations yield the following fact.

With w(R) replaced by 7(n), and Eg(7(n)) = n(1 — Ly (¢,)) = 1/a, under
B,, we obtain, as in the proof of Theorem 1.1 under B,

1-L,(¢, L,(t,
7-(n)10g{—1 — LZZE%; } +(n - T(n))log{—LZitn; }

1(}2
= (7(n) = a,")a;/* = —= + op(1);

recall that Lg(¢,) =1 —(na,)”" and that, by Fact 4, L, (¢,) — Ly (¢,) =
va)/?/(na,) + O(l/n) Flnally, we have, under S,
)Bo_ﬁn}

Bn( ) 7(n) B
J1og {bﬁo( )} ) = _Zl‘)g{(ﬁo)(
g, :gl)l()g{(z_zymwom},

where W;,W,,... are iid with common d.f L; and independent of 7(n),
which is B(n, 1/(na,))-distributed. The last term equals

Vi

m(n) —
)y bog{1-+ B"B BO} +-(Bo—-BnﬂogU“GD)

i=1 0
7(n)

=17(n)0 B, — Bo) ; (Bal - 10g(|Wi|))‘

(o

Now observe that E; (log(IW,)) = 1/8, and Eg (log>(IW;])) = 2/| Bol*. The
central limit theorem together with the fact that 7(n)a, converges to 1 in
probability implies that the final line above is of order Op, (1) which com-
pletes the proof of Theorem 1.3. O
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Theorem 1.3 remains true if we replace {Lz: B # 0} by the &-neighborhood

F,: F; is a d.f. with o(F,) = o(Lg) having a density f,
n [xo( B), w(Fy)) for some x,( B) < w(Fj) such that

x
fi () C(l—LB(x))é,xe [xO(B),w(FB))
lg(x)
and require that x,(B,) <t, 5 =Lg'(1 — (na,)”"). Then again (r(n) -
Eg (r(n))ay/? = ((n) — a_l)al/2 + op (1) is the central sequence for testing
B, against B,(8), with (8, — B,)/B, = ﬂal/z/log(na ), n € N, if in addition
the sequence a, > 0, n € N, satisfies a}/%(na,)® > ©as n — .

In the following we will establish the analogous result to Theorem 1.2 in
the case of B, # 0. We Will establish a bound for the Hellinger distance
between %, (M,) =%, (X1 &y, ‘) and % (M) =% (L7 ey ), where F,
is in Q(C 5), and M * s obtamed from M, by replacing V,/It, 4|,
Vo/lt, g, by Wi, Wy, ..., which are iid with common d.f. L, and indepen-
dent of T(n) M, (R). The rate for the sufficiency of 7(n), obtained in the
following result, coincides with that in Theorem 1.2.

Q(C,9) =

-1| <

THEOREM 1.4. Choose a, > 0 such that a, — 0, na, > @ as n — ©, and
choose for 9 € R the sequence B, = B,(9) such that

BO - Bn 190’}/2

By  log(na,)’
Suppose that w(F; ) = o(Lg ) and
fa(x
(C) L) —-1| < C(l - Lﬁn(x))a, x € [xo( B,), “’(Fﬁn))
an(x)

for some C, 6 > 0, where

x0( B,) < th g, = Lﬁ_ol(l - (nan)_l) = sign( BO)(nan)l/BO, n € N.
Then

1 1
H(’%n(Mn)’%n(M:)) = 0(log(nan) + (na ) al/z)

REMARK. In case of equality f,(x) = I, (x), the error term (na,) ’a,'/”
can again be dropped. Equally, the proof of Theorem 1.4 shows that

1
H(%,(M,), L, (M) = o(—)

(na,) 2 ql/2

ProOF OF THEOREM 1.4. For the sake of a clear presentation, in the
following we will write ¢, in place of ¢, ;. Repeating the arguments of the
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proof of Theorem 1.1, we obtain

H(%,(M,), %, (M)

1/2
1/2 /

1/2 12fn(y|tn|) 122
<nl/ {/R[|tn| / Bléo/zT_(l_FB"(tn))/] lﬁo(y) dy}

and the following fact.

Facr 5. For y € [x,(B,), o(Fj )) and some constant C, > 0,

1/2

~1|<C(1-Ly ()

( 1 _Fﬁn(y)
1 _Lﬁn(y)

Consequently, we have, by condition (C) and Fact 5,

nf |l |1/2fﬁl,,/2(y|tn|)
r| " L(y)

L/ (y1)) fa* (v,
_ 1/2 2By AT TnT T
—nfml“"' o 1 [y

1-F,(t,) | ’
] o

- (1- Fﬁn(tn)f“} L (y) dy

~(1- LBn(tn))l/z{l -

ll/z(y|t ) 1/2
=n |tn|1/25n—" — (1 =L, (¢,)
/{;[ léo/z(y) ( Bn )

1% (ylt,)

+ |tn|1/2
{ Lg% ()

—
xof(1- Lﬁn(tn))s)}rl%(y) dy

—nlt [P [(%)1/2|y|(ﬁoﬁn)/2 i

|

The definition of B, implies Itnlfﬁ" = O((na,)™'). By the expansion

B 1/2
B") |y|(Bo*Bn,)/2 +1
0

o(mﬁ%} s (9) dy.
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1+ &)Y2 =1+ 0(¢), € > 0, the above integral equals therefore

_ 1/2
1+ B 'BO) |y|(BO_Bn)/2 -1

By
|

= 0(a;") [ [(1+0(B, = B))ly P * — 1

B 1/2
_”) |y|(ﬁo*l3n)/2 +1

5 O((nan)a)w lg(y) dy

+0((na,) " (1 + 1512721, (3) dy

- O(anl)/R[|y|(Ban)/2 — 1+ 0((nan)76)

+0

)8 }|y|(Ban)/2H lBo(y) dy.

al/? 1
{log( na,) * (na,
Now observe that

(Bo — B’ ( a, )
- =0 —"—
:Bn( :BO + Bn) 10g( nan)

and that [ IyIBO_B"lBO(y) dy = O(1) if n is large, since B, — B, > 0 as n
— «, The above integral is therefore of order O(a,/log(na,)* + (na,) 2°),
which implies the assertion. O

fR [|y|(ﬁofﬁn)/2 _ 1]2160(3,) dy =

2. Adding a scale parameter. In the following we extend the statistical
models of Section 1 by adding a scale parameter ¢ > 0; that is, we consider a
sequence Y,,Y,,... of independent r.v.’s with common d.f. F whose upper tail
belongs to a parametric family

1-F(x)=1-Fy(cx), x> xy=x,(F),

with the scale and the shape parameter ¢ > 0 and 8 € ® C R as well as the
root x, being unknown.

The results of this section parallel those of the previous section, as it turns
out that again only the number 7(n) of excesses carries asymptotically all the
information contained in N,. Thus, even in case of the more detailed testing
problem ( B, ¢,) against ( 8,, c,), the exceedances V,,...,V,,, over ¢, do not
contribute asymptotically to its solution. As a consequence, statistical testing
can be based in our model on 7(n) alone without any loss of asymptotic
efficiency.

In the following we specify our statistical model. Again denote by H, the
GPD-d.f. in its von Mises parametrization and define the scale-shifted ver-
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sion, for ¢ > 0, by

x>0, if 8> 0,

H, (%) = Hy(cx) =1 - (1 + Bex) /7, 0<x< -1/(cB), ifB<0,

Again interpret H,, (x)as H, (x) =1lim, ,, Hy (x) = 1 — exp(—cx), x > 0.
Let A . denote the density of H, .
The d.f. of the excess distribution over the threshold ¢, now becomes
BB, c( .X')
1-H; (x+t,)

=1 -
1 _Hﬁ,c(tn)
Bex /8 x>0, if >0,
=1-|14+4—F— for 1 .
1+ Bet, 0<x<—(Bc) (1+Bct,), ifB<O,

provided ¢, satisfies 0 < H, (¢,) = Hy(ct,) < 1, which we assume in the
following. Observe that B, (x) = H, (x) = Hy(cx) = 1 — exp(—cx), x > 0.
The excess d.f. B; . has density

b c L Bex ~1/8-1
= — _|_ e —
(%) 1+ Bet, 1+ Bet,
x>0, if B3>0,
for -1 .
0<x<—(Bc) (1+ Bet,), ifp<O,

with b, (x) = chy(cx) = cexp(—cx), x > 0.
In the following we consider at first the hypothesis.

(Bosco) = (0,1);

then we will consider a general B, # 0, but for the sake of simplicity we will
always keep ¢, = 1. This reduction can obviously be achieved for a general
hypothetical value ¢, > 0 by simply multiplying the initial observations
Y,,Y,,... by ¢, and considering ¢,Y, ..., ¢,Y, instead. We suppose implicitly
that this data manipulation has already been carried out.

As a consequence, the alternatives ¢, which we will consider will always
approach 1 as n increases. To be precise, choose the threshold ¢, = log (na,)
and the alternatives

for 9, ¢ € R, where the sequence a, > 0, n € N, again satisfies a, — 0,
na, — © as n — ». Note that the definitions of ¢, and B, coincide with those
of Theorem 1.1.

Suppose now that we are given a family {FB’C: B ER, c> 0} of df’s such
that Fy ((x) = Hj (x) = Hy(x) = 1 — exp(—x) for x > x, > 0 and F; .(x)=
H, .(x) for x > ¢, if n is large. Then we have the following result which
parallels Theorem 1.1. Its proof is completely analogous to that of Theorem
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1.1 by utilizing the equation H, . (¢,) — H, ((t,) = —(na,)" (& + £)a)/? +
0(1)) in place of Fact 1.

THEOREM 2.1 (LAN). Under the preceding model we have, under F,, ,, the
expansion

4%, .(N,) i NGRS
{m}(l\[n) =9+ &)ay/?(r(n) —a, ') - — t op, (1)
=0y, N(—@,(fw &)’|.

Note that 7(n) = N,((¢,,*) is B(n,1 — F, (¢,)) = B(n, 1/(na,))-
distributed under F, , if n is large. This immediately implies the asymptotic
normality in the above result.

The preceding result shows that we can distinguish between (8,,¢,) =
(B,(3), ¢, (£)) and (0, 1) asymptotically if and only if 3 # —¢&; as in the case
U = —¢, the limiting distributions of the log-likelihood ratio

log{d%",c"(Nn)/dgo,I(Nn)}(Nn)

under (B,,c,) and under (0,1) coincide. Asymptotically optimal tests for
testing ( B,(9), ¢,(§)) against (0, 1), where 9 + £ # 0, are again given by (2)
with sign() replaced by sign(d + ¢) and asymptotic power function (3 + &)
as in (3).

Theorem 2.1 remains true, if we replace H, n’cn(x), x>t

= ‘n> H(),l(x)’ X =X,
by 8-neighborhoods ¥, . and F, ,, having densities f; . and f; ; on[¢,, *)
and [ x,, ) such that

fB c(x) i)
et T _1l<c(1-H, ,(x)), x>t,
thcn(x) ( Bn» n( ))

and
fo,1(x) 5
Tl 1< C(1 - Hy (%)), x> x,
hO,l(x) ( 0,1( )) 0

provided that the sequence a, satisfies in addition a}/%(na,)? —> * as n — .

The following result parallels Theorem 1.2. It provides a bound for the
information contained in 7(n) about both parameters g, and c,. We compare
again the distribution of the point process N, = X7 ey, under F, . with
that of the point process N, = L") &y, where 7(n) = N,((0,>)) is kept, but
W,,W,,... are independent and standard exponential distributed r.v.’s. Its
proof is completely analogous to that of Theorem 1.2 and therefore omitted.

THEOREM 2.2. Choose a, > 0 such that a, — 0, na, > ©asn — ». For ¥,
e R, set

B, = B(9) = da;/%/t7, ¢, =c,(§) =1-éa/?/t,,
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where t, = log(na,). Suppose that o(F, )= w(H, .) and that

an,cn(y) _
th,cn(y)
for some C, 8 > 0. Then

(C) 1|<C(1~- HBn,cn(y))S, y €[t,, w(HBn,cn))’

1 1
H(“%mcn(Nn)"‘%mcn(Nn*)) - O(log(nan) * (na )5a1/2)'

REMARK. The error term (na,) °a,/* can again be dropped if f; . (y) =
hg (¥), y €lt,, o(H, .)). On the other hand we have

H(Z, (N,), % (NF)) = 0| ———|.
(Fo.2(Fo), %o, (N)) ((nan)a/)

Consider next the case B, # 0 with underlying tail distribution in the form

1—(cx)7B, x>1/c,if >0,

Ly (%) = Ly(ex) =
p.e(%) = Lg(cx) {1_(_cx)‘ﬁ, ~1/c <x <0,if B <0,

with scale parameter ¢ > 0. However, in this case the POT-method cancels
the scale parameter ¢, when we consider again the process

7(n)
M,= )% &V /1t
i=1

pertaining to the exceedances Vy,...,V,,, over the threshold ¢,. This is
immediate from

P v, ) 1L, (xl2,) I R
—_— < = -_— =
B\l = T L, (1) () xeR

|2,

provided 0 < Ly(ct,) < 1.

As a consequence, the excesses cannot contribute any information about
the underlying scale parameter within this approach. It is therefore clear
that 7(n) plays an even more predominant role, as it not only carries
asymptotically all the information from N, about the shape parameter 3, but
it contains the complete information about the scale parameter ¢ > 0 for
finite sample size n as well. In order not to overload this paper with too many
technicalities, however, we drop further details.

One clearly wonders about the information which the excesses themselves
contribute to the knowledge about the underlying parameters, as the preced-
ing results show that in those models their number 7(n) is already asymptoti-
cally sufficient. One way to upgrade the excesses is to consider the two-
parameter problem ( 3, ¢) as before, but with the scale shift ¢ being regarded
as a nuisance parameter. The popular Hill estimator of the extreme value
index B [Hill (1975)], which has been extensively studied in the literature [cf.
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Falk, Husler and Reiss (1994), Section 2.4, and the references cited therein],
is, for example, scale invariant. If one now investigates the testing problem
(By, D against ( B,, ¢,), where ¢, is such that (3,, ¢,) is some least favorable
alternative to ( By, 1), then the excesses carry asymptotically the complete
information about the underlying shape parameters. However, this is work
still in progress and will be published in a subsequent paper.
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