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AUTOMATIC BANDWIDTH CHOICE AND CONFIDENCE
INTERVALS IN NONPARAMETRIC REGRESSION

BY MICHAEL H. NEUMANN

Weierstrass-Institut fur Angewandte Analysis und Stochastik¨
In the present paper we combine the issues of bandwidth choice and

construction of confidence intervals in nonparametric regression. Main
'emphasis is put on fully data-driven methods. We modify the n -

consistent bandwidth selector of Hardle, Hall and Marron such that it is¨
appropriate for heteroscedastic data, and we show how one can optimally
choose the bandwidth g of the pilot estimator m . Then we considerˆ g
classical confidence intervals based on kernel estimators with data-driven
bandwidths and compare their coverage accuracy. We propose a method to
put undersmoothing with a data-driven bandwidth into practice and show
that this procedure outperforms explicit bias correction.

1. Introduction. We assume observations

Y s m x q « , i s 1, . . . , n ,Ž .i i i

where the errors « are independently, not necessarily identically distributedi
Ž .with zero mean and variance v x . The nonrandom design points x arei i

w xassumed to be spaced on the unit interval 0, 1 , x - x - ??? - x .1 2 n
We aim at defining a confidence interval for the regression function m at

some interior point x of this interval.0
There already exists a very developed theory for confidence intervals based

on kernel estimators with nonrandom bandwidths. Under assumptions on the
decay of the bandwidths it is shown that these methods are consistent and,
moreover, there are rates for the errors in coverage probability calculated.

Ž . Ž .Hall 1991, 1992a , for confidence intervals for a density, and Hall 1992b ,
for intervals in regression with i.i.d. errors, found optimal rates for the
bandwidths involved in the confidence interval procedure by optimizing the
coverage accuracy. On the other hand, the majority of the available literature
does not take into account the bandwidth choice that is necessary for practi-
cal applications. Some exceptions we are aware of are papers of Faraway and

Ž . Ž .Jhun 1990 for density estimation and Faraway 1990 for the regression
case, where the bandwidth as well as the quantile for confidence bands are
obtained on the basis of the same bootstrap sample. However, the authors do
not provide any rigorous result on the real coverage probability in comparison
to the prescribed level.

Received May 1992; revised April 1995.
AMS 1991 subject classifications. Primary 62G15; secondary 62G07, 62G20.
Key words and phrases. Nonparametric regression, bandwidth choice, confidence intervals,

Edgeworth expansions.

1937



M. H. NEUMANN1938

Usually the first step in constructing asymptotic confidence intervals
consists in the definition of an asymptotically normally distributed pivotal
quantity. There are two commonly used methods to deal with the bias of the

Ž .initial estimator m x , undersmoothing and explicit bias correction on theˆ h 0
Ž .basis of yet another kernel estimator. In Hall 1991, 1992a it is shown that

the undersmoothing method leads to a better coverage accuracy. An analo-
Ž .gous result is proved in Neumann 1992b for the regression case with not

necessarily identical error distributions, again for kernel estimators with
nonrandom bandwidths.

In the present paper we mainly focus on the practical bandwidth choice.
Whereas we can apply the bias correction method with usual bandwidth
selectors at all stages, we replace the pure undersmoothing method by a
two-step procedure that yields the same rates for the coverage accuracy. As
an estimator of the optimal global bandwidth we employ here, with some

'minor modifications, the n -consistent bandwidth selector of Hardle, Hall¨
wŽ . xand Marron 1992 , hereafter HHM . It is based on plug-in estimates of the

integrated variance and the integrated squared bias of m . To make thisˆ h
method fully data-driven, we propose a method for how the bandwidth of the
pilot estimate m needed for the bias estimation can be optimally chosenˆ g
from the data.

The second step in getting confidence intervals is the recognition of the
distributions of the aforementioned pivotal quantities. We restrict our consid-
erations exclusively on a distribution recognition via Edgeworth expansions
for the pivotal quantities. Recently, the application of bootstrap techniques in
general, and in the context of heteroscedasticity the wild bootstrap proposed

Ž . Ž .by Wu 1986 and by Hardle and Mammen 1993 in particular, has become¨
Ž .quite popular. It is used by Hardle, Huet and Jolivet 1995 for the construc-¨

Ž .tion of asymptotic confidence intervals. However, in Neumann 1992b it is
shown that we obtain via Edgeworth expansions the same rate for the
approximation of the cumulative distribution function. Since on the other
hand the quantiles via Edgeworth expansions are explicitly given, there
seems to be no need for the computationally more involved bootstrap.

The paper is organized as follows. In Section 2 we develop a completely
'data-driven, n -consistent bandwidth selector. In Section 3 we introduce

pivotal quantities used for the construction of confidence intervals. Estimates
for the error in coverage probability of the intervals are derived in Section 4.
Section 5 contains a discussion of the applied methods. A list of the assump-
tions, some technical lemmas and the proofs are deferred to the Appendix.

2. A fully data-driven bandwidth selector. As a starting point we
Ž .take a kernel estimator, as proposed in Gasser and Muller 1979 , which can¨

be written as

n

m x s W x , h Y .Ž . Ž .ˆ Ý ih i
is1
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Ž . s i y1 ŽŽ . .The weights are defined as W x, h s H h w z y x rh dz, where w isi s iy 1w xsome usual kernel of order r with support y1, 1 if h F x F 1 y h, and some
boundary kernel otherwise. Explicit formulas for such kernels are given in

Ž . Ž .Gasser, Muller and Mammitzsch 1985 . Further we set s s x q x r2¨ i i iq1
for i s 1, . . . , n y 1 and s s 0, s s 1.0 n

As already mentioned, all kernel estimators included in the procedure
should be equipped with data-driven bandwidths. Although we adopt the
coverage accuracy as our main criterion to evaluate the performance of our
methods, we choose the bandwidths according to the risk behavior of the
corresponding estimator, since a specific choice for confidence interval pur-
poses seems to be difficult for some conceptual reasons discussed in Section 5.
Since only the behavior of m at x influences the properties of the confi-ˆ h 0
dence interval, it seems to be on first sight reasonable to seek an estimate of
the locally optimal bandwidth. On the other hand, we agree with Hardle and¨

Ž .Bowman 1988 , who claim that the potential advantages of local adaptive
bandwidth selection in the context of confidence intervals are not clear.

Ž .Roughly speaking, the initial estimator m x will only serve as a vehicle toˆ h 0
introduce a nondegenerate noise structure, whereas its bias will be corrected
with the help of a second estimator m . For a more detailed discussion of thisˆ g
subject we refer again to Section 5. On the other hand, since our methods are
based on Edgeworth expansions of pivotal quantities with nonrandom band-
widths, we can expect a better coverage accuracy for intervals with random
bandwidths that are very close to some fixed one. This is certainly an
argument in favor of global bandwidth selectors, which are usually more
stable than local ones.

Ž . Ž .For fixed h, the mean squared error of m x s ÝW x , h Y can beˆ h 0 0 i i
Ž . 2 n Ž .2 Ž .written as MSE h s V q B , where V s Ý W x , h v x and B sh h h is1 0 i i h

n Ž . Ž . Ž .Ý W x , h m x y m x .is1 0 i i 0
Since we are not willing to impose restricting assumptions on the smooth-

ness of v, we borrow the idea of the wild bootstrap and estimate V simply byh

n
2ˆ2.1 V s W x , h v ,Ž . Ž . ˆÝh 0 ii

is1

where
222.2 v s « s Y y m x ,Ž . Ž .Ž .ˆ ˆ ˜i i i i

and where m denotes yet another Gasser]Muller kernel estimator. Anticipat-˜ ¨
ing the following results, we remark that the consistency of the bandwidth
selector considered in this section as well as of the confidence intervals in the
next section require a higher degree of smoothness for m than the basic
kernel estimator m can exploit. We assume throughout the present paperˆ h

Ž .that m is r q s -times continuously differentiable, and therefore we take m̃
ˆŽ .as a kernel estimator m with an r q s th-order kernel and a bandwidth f ,ˆ f̂

which can for simplicity be chosen by cross-validation or by some other
consistent bandwidth selector.
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Ž .We opt here for these particular variance estimators 2.2 because they are
close to the squared errors « 2, which are easy to analyze. Another obviousi

Ž .Ž .possibility would be given by v s Y y Y Y y Y .ĩ i iy1 i iq1
The bias B will be approximated by an estimator of the formh

n
ˆ2.3 B s W x , h m x y m x ,Ž . Ž . Ž . Ž .ˆ ˆÝh , g 0 g i g 0i

is1

Ž .where m x is another Gasser]Muller kernel estimator with weightsˆ ¨g
˜Ž .W x, g based on an sth-order kernel w and a bandwidth g.˜i

Now we intend to modify the bandwidth selector of HHM such that it
accounts for the possible heteroscedasticity of the data. An even more impor-
tant issue is the data-dependent choice of the bandwidth of the auxiliary
estimator m , which is used for the estimation of the bias.ˆ g

We are going to estimate the bandwidth h that is optimal with respect to0
Ž .the mean integrated squared error MISE of m , where the integration isˆ h

w xbecause of boundary effects restricted to some interval c, d , 0 - c - d - 1,
that should include for our purposes the point x .0

The MISE splits up into an integrated variance part,
n n

d d2 2IV h s W x , h v x dx s W x , h dx v x ,Ž . Ž . Ž . Ž . Ž .Ý ÝH Hi ii i
c cis1 is1

and an integrated squared bias part,

2n
d

ISB h s W x , h m x y m x dx .Ž . Ž . Ž . Ž .ÝH i iž /c is1

Ž . Ž .We estimate IV h analogously to 2.1 by
n$ d 22.4 IV h s W x , h dx v .Ž . Ž . Ž . ˆÝ H i i

cis1

Provided an appropriate choice of g, the quantity

2n
d

2.5 ISB h , g s W x , h m x y m x dxŽ . Ž . Ž . Ž . Ž .ˆ ˆÝH i g i gž /c is1
n

s A h , g Y Y ,Ž . i jÝ i j
i , js1

with

d ˜ ˜A h , g s W x , h W x , g y W x , gŽ . Ž . Ž . Ž .i j ÝH k ik iž /
c k

˜ ˜= W x , h W x , g y W x , g dx ,Ž . Ž . Ž . jÝ jl lž /
l
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Ž .could already serve as an estimator of ISB h . A quantity similar to the sum
Ž . Ž . Ž .of 2.4 and 2.5 was proposed by Muller 1988 as an estimator of the MISE.¨

Ž .As remarked by HHM, ISB h, g is biased due to the variance of the diagonal
Ž .terms, and therefore it turns out to be better to estimate ISB h by

n$
2.6 ISB h , g s ISB h , g y A h , g v .Ž . Ž . Ž . Ž . ˆÝ i i i

is1

An alternative approach in the framework of density estimation is proposed
Ž .by Sheather and Jones 1991 . They recognize that the nonstochastic bias

term has the opposite sign to the bias due to the smoothing, and they choose
the auxiliary bandwidth such that these terms cancel. However, an appropri-
ate choice of this bandwidth requires the estimation of higher derivatives. If
enough smoothness is present to do this reasonably well, then we could
alternatively use it to improve on the whole procedure at other stages. Now$ $

Ž . Ž . Ž .we have with IV h q ISB h, g a pattern to estimate MISE h , but it
remains to fix an appropriate value of g. This problem was not solved in an
entirely satisfactory way in HHM, and the authors conjectured that there is
no substitute for trying some number of different g ’s. Assuming slightly more

2 rqsw xregularity than in HHM, namely, m g C 0, 1 instead of m g
2 r n rqsw x Ž y1 .C 0, 1 , we obtain that the term of order O n of the mean squared$

Ž . Ž .error of ISB h, g as an estimator of ISB h does not depend on g, whereas
the largest two of the remaining terms do. These terms can be used to get a
reasonable, asymptotically optimal choice for g.

The assumptions needed for the following lemma as well as for the
assumptions in the sequel are given in the Appendix.

Ž . Ž .LEMMA 2.1. Assume A and A . ThenG BW

$ 2
i E ISB h , g y ISB hŽ . Ž . Ž .Ž .

s h4 rC h ny1Ž .
2

d4 r 2 s 4 2 Žrqs. Žr .q4h g k l m x m x dxŽ . Ž .Hr s ž /c

2v xŽ .d4 r y2 yŽ4 rq1. 4q2h n g k dxHr ž /d xŽ .c

2
Žr . Žr .= w y w y q z dy dzŽ . Ž .˜ ˜H Hž /

qo h4 r g 2 s q ny2 gyŽ4 rq1. ,Ž .Ž .

Ž . Ž . r Ž .y 1 r Ž .where C h is bounded and k s y1 r ! Hz w z dz , l sr s
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Ž . sŽ .y1 s Ž .y1 s! Hz w z dz;˜

iiŽ .
d 2g s 4r q 1 v x rd x dxŽ . Ž . Ž .Ž .Hopt ½

c

2
Žr . Žr .= w y w y q z dy dzŽ . Ž .˜ ˜H Hž /

Ž .1r 2 sq4 rq1y12
d2 Žrqs. Žr . y2= 4sl m x m x dx n 1 q o 1 .Ž . Ž . Ž .Ž .Hs ž / 5c

Let g be any consistent estimator of g , that is, g s g qopt opt$
y1rŽ sq2 rq1r2. ˆŽ . Ž .o n . Now we define h as a measurable minimizer of MISE h, gp $ $
Ž . Ž .s IV h q ISB h, g , whose existence is ensured by a lemma of Jennrich

Ž .1969 .

REMARK. Analogously to Theorem 1 in HHM, one can prove that

ĥ y h0 yDs O n ,Ž .ph0

Ž .where D s 1r2 n sr s q 2r q 1r2 .

The next point concerns the appropriate choice of the bandwidth g for the
ˆlocal bias estimator B . First we infer from Lemma A.2 thath, g

ry1hz y yŽ .hz Žr . Žr .B̂ y B s w z m x q y y m x q y dy dzŽ . Ž . Ž .ˆŽ .H Hh , g h g 0 0r y 1 !Ž .0

q O ny2 gy1Ž .P

holds. Since h < g holds for h and g of optimal orders, the task of estimat-
Žr .Ž . Žr .Ž .ing B is nearly equivalent to the estimation of m x by m x . To giveˆh 0 g 0

a definite rule for the choice of g, we use the method proposed by Muller and¨
Ž . Žr , s.Stadtmuller 1987 for the choice of the optimal global bandwidth g ,¨ 0

which can be applied in the case of heteroscedasticity, too. They observed that

g Žr , s. s C w C m, v ny1rw2Žrqs.q1x 1 q o 1Ž . Ž . Ž .Ž .0 r , s

holds with some constant C that depends on the kernel function w but notr , s
on the unknown functions m and v. On the other hand, the optimal global

Ž .bandwidth for an estimator of m itself with an r q s th-order kernel w has
the form

Ž0, rqs. y1rw2Žrqs.q1xg s C w C m , v n 1 q o 1 .Ž . Ž . Ž .Ž .0 0, rqs
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Now we can estimate g Ž0, rqs. by some asymptotically optimal bandwidth0$
Ž0, rqs. Žr , s.g , and then we obtain a consistent estimate of g by0 0

$C wŽ .r , s Ž0 , rqs.2.7 g s g ,Ž . ˆ 0C wŽ .0, rqs

Ž .which spares us the more involved direct estimation of the constant C m, v .

( )3. Confidence intervals for m x .0

3.1. Construction principles for confidence intervals. All commonly used
methods to establish confidence intervals are based on the principle of first

Ž . Ž .estimating m x by an initial estimator m x and then estimating theˆ0 0
Ž . Ž .distribution of m x y m x . Usually a distinction is made between pivotalˆ 0 0

and nonpivotal methods. For the related problem of bootstrap confidence
Ž .intervals, Hall 1992b pointed out that pivotal methods, which are based on

ŷ1r2 ˆ ˆ ˆŽ .a quantity V q y q that contains an estimator V of the variance of q ,
should be preferred to nonpivotal methods, which are simply based on an

ˆŽ .estimation of the distribution of q y q . Hence, in the present paper we
restrict ourselves to pivotal methods.

The main problem with confidence intervals in nonparametric regression
Ž .rests on the fact that a consistent estimator of m x is necessarily biased.0

Strictly speaking, MISE-optimal estimators have bias and standard deviation
of the same order. There are two common methods to deal with this problem,

Ž .undersmoothing and subsequent bias correction. Hall 1991, 1992a shows in
situations closely related to ours that the first method leads to a better
asymptotic coverage accuracy, at least in the case of nonrandom bandwidths.

An important goal of the present paper is to provide methods where all
bandwidths are chosen by the data in a reasonable way. The only available
guideline for a reasonable choice seems to be the risk behavior of the
corresponding estimators; hence, the bandwidths we deal with are of MISE-
optimal order, which means that bias and standard deviation of the estimator
can be expected to decay at the same rate to zero. Therefore, we cannot apply
the undersmoothing method in its pure form.

In contrast, it is possible to construct a bias-corrected pivotal quantity on
the basis of MISE-optimal kernel estimators by a normalization of the initial
estimator with estimates of its bias and variance. Now it seems to be more
natural to estimate the bias first and then to divide the corrected quantity by
an estimator of its standard deviation. It turns out that this method is
equivalent to undersmoothing and, in accordance with the existing theory, we
obtain a better coverage accuracy than by the first method.

3.2. Definition of the pivotal quantities. As already announced, we con-
sider the bias-corrected pivotal quantity

ˆm x y B y m x ÝW « q bŽ . Ž .ˆ h 0 h , g 0 h , g , i i h , g
3.1 T s s ,Ž . h , g 1r2 1r2ˆ ˆV Vh h
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ˆ ˆ Ž . Ž .where V and B are defined by 2.1 and 2.3 , respectively, and b sh h, g h, g

Ž . Ž .ÝW m x y m x denotes the remaining bias. Further, we obtain ah, g , i i 0
method equivalent to undersmoothing by estimating the whole variance of

Ž .the numerator of T instead of that of m x . In this case the usualˆh, g h 0
condition h < g, which is introduced to keep the variance of the bias

Ž .estimator of smaller order than that of m x , is no longer necessary and weˆ h 0
optimize g with respect to the asymptotic coverage accuracy by choosing it of
the same order as h. Since there is no other guideline for doing this in
practice, we simply set g s h, where h will be chosen later by some data-
dependent rule.

With W s W and b s b we get the pivotal quantityh, i h, h, i h h, h

ÝW « q bh , i i h
3.2 U sŽ . h

1r2ˆ̂Vh

2ˆ̂where V s ÝW v .ˆh h, i i
ˆ ˆNote that the roles of B and B are very different. Whereas theh, g h, h

ˆ ˆquantity B in T estimates the bias, the term B in U reduces onlyh, g h, g h, h h
Ž .the nonstochastic part of m x , but contributes by a stochastic part of theˆ h 0

Ž .same order as the initial estimator m x . In both cases we get a newˆ h 0
ˆ ˆŽ . Ž .estimator, m x y B and m x y B , respectively, with a squaredˆ ˆh 0 h, g h 0 h, h

bias of smaller order than its variance.
To obtain knowledge about the asymptotic distributions of the pivotal

quantities, we intend to apply Edgeworth expansions as far as possible. For
that we approximate the quantities of interest by certain smooth functions of

Ž .random vectors. Using results of Skovgaard 1981, 1986 , we can then prove
Ž .the validity of these formal expansions. To draw conclusions from the size of

the difference of two random variables to the difference of their cumulative
distribution functions in a convenient way, we introduce the following nota-
tion.

� 4 � 4 Ž .DEFINITION 3.1. Let Y and Z Z G 0 a.s. be sequences of randomn n n
� 4variables, and let g be a sequence of positive reals. We writen

˜Y s O Z , gŽ .n n n

if
< <P Y ) CZ F CgŽ .n n n

holds for n G 1 and some C - `.

This notion differs obviously from the usual O , which would provide ap
similar property for an arbitrary constant g instead of Cg on the right-handn
side. As a rule, for arbitrary d , l ) 0, we can conclude under sufficiently
strong moment conditions on the distributions of the errors, by Markov’s and
Whittle’s inequalities, that

˜ d yl5 53.3 a 9« s O n a , nŽ . Ž . Ž .n n
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and
Xd yl˜3.4 «9 A « y E«9 A « s O n tr A A , n'Ž . Ž .ž /n n n n

n Ž .hold uniformly over a g R and arbitrary n = n -matrices A , wheren n
Ž .« s « , . . . , « 9. Furthermore, we obtain similar assertions for random quan-1 n

tities a and A , which is made rigorous by Lemma A.1 in the Appendix.n n
˜The following lemma shows that O is an appropriate concept for the

calculation of the cumulative distribution function of quantities that do not
immediately admit an Edgeworth expansion.

� 4LEMMA 3.1. Let X be a sequence of random variables that admit then
Edgeworth expansion

P X - t s F t q p t f t q O u ,Ž . Ž . Ž . Ž . Ž .n n n

with some polynomials p of bounded order with bounded coefficients. Fur-n
˜Ž .ther, we assume Y s O g , g . Thenn n1 n2

P X q Y - t s P X - t q O u q g q g .Ž . Ž . Ž .n n n n n1 n2

The proof of this lemma follows immediately from the inequalities

< <P X - t y Cg y P Y ) CgŽ . Ž .n n1 n n1

< <F P X q Y - t F P X - t q Cg q P Y ) CgŽ . Ž .Ž .n n n n n n11

Ž . Ž . Ž .and the Lipschitz equicontinuity of the functions F t q p t f t .n

4. Coverage accuracy of the confidence intervals.

4.1. Coverage accuracy in the case of nonrandom bandwidths. First, we
approximate the cumulative distribution functions of the pivotal quantities
with nonrandom bandwidths via Edgeworth expansions. The following propo-
sition serves then as a starting point to derive formulas for quantities with
data-driven bandwidths.

Ž . Ž . Ž . Ž .PROPOSITION 4.1. Assume A , A and h s h n and g s g n to beG E
nonrandom.

Ž .i If nh ª `, g ª 0 and hrg ª 0 as n ª `, then

b 2 t 2 q 1h , g
P T - t s F t y f t q r f tŽ . Ž . Ž .Ž .h , g n1r2 6Vh

Ž .2 rq11 V y V hh , g h y12 sy tf t q O g q q nhŽ . Ž .ž /ž /2 V gh

y3r2 3 3Ž .holds uniformly in t, where r s V Ý W x , h E« and V sn h i 0 i i h, g
2 Ž .Ý W v x .i h, g , i i



M. H. NEUMANN1946

Ž .ii If nh ª ` and h ª 0 as n ª `, then

b 2 t 2 q 1h y12 sP U - t s F t y f t q r f t q O h q nhŽ . Ž . Ž . Ž . Ž .Ž .h n1r2 6Vh , h

y3r2 3 3holds uniformly in t, where r s V ÝW E« .n h, h h, i i

The proof of this proposition is essentially the same as that of Proposition 3.2
Ž . Ž .in Neumann 1992b and may be sketched, w.l.o.g. for i , as follows. First we

approximate T byh, g

y1r22 2T̃ s W x , h « W « q b .Ž .Ý Ýž /ž /h , g 0 i h , g , i i h , gi

Ž .By Lemma 3.2 in Neumann 1992b we have
y1 y1˜ ˜4.1 T y T s O nh , n .Ž . Ž .Ž .h , g h , g

2 2Ž Ž . .The vector S s Ý W « ,Ý W x , h « 9 is a sum of independent randomn i h, g , i i i 0 i i
Ž .vectors and admits, in accordance with results of Skovgaard 1986 , an

ŽŽ .y1yd .Edgeworth expansion with a residual term of order O nh for some
˜d ) 0. Since T is a smooth function of S , we infer from Theorem 3.2 andh, g n

Ž .Remark 3.4 in Skovgaard 1981 the validity of the formal Edgeworth expan-
˜sion of T . To identify the expansion, we must calculate the cumulants ofh, g

˜ Ž .T , which has already been done in Neumann 1992b . By Lemma 3.1 weh, g
˜Ž .conclude from 4.1 that the expansions of T and T are identical up to ah, g h, g

ŽŽ .y1 .term of order O nh , which completes the proof.
For the rest of this subsection we assume that the nonrandom bandwidths

ˆh and g are chosen of the same order as h and g described above, namely,ˆ
h 7 ny1rŽ2 rq1. and g 7 ny1rŽ2Žrqs.q1.. Now it is easy to see that

b s O hrg s , b s O hrqs ,Ž . Ž .h , g h

y1r2V , V 7 nh ,Ž .h h , h

y1r2
r , r s O nhŽ .Ž .n n

and
rq1V y V hh , g h s O .ž /ž /V gh

Ž .If u denotes the 1 y a -quantile of the standard normal distribution,1ya

then we obtain

ˆ ˆ1r2P m x g m x y B y u V , `Ž . Ž .ˆž /0 h 0 h , g 1ya hž /
s P T - uŽ .h , g 1ya4.2Ž .

rq1 y1r2ss 1 y a q O g q hrg q nhŽ . Ž .Ž .
s 1 y a q O nys rw2Žrqs.q1x q nyr rŽ2 rq1.Ž .
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and

ˆ1r2ˆ ˆP m x g m x y B y u V , `Ž . Ž .ˆž /0 h 0 h , h 1ya hž /
y1r2ss 1 y a q O h q nhŽ .Ž .4.3Ž .

s 1 y a q O nyŽ s n r .rŽ2 rq1. .Ž .

Estimating r and r byn n

3y3r2 3 y3r2 3 3ˆˆ ˆˆr s V W x , h v and r s V W v ,Ž .ˆ ˆ ˆÝ Ýn h 0 i n h h , h , i ii

respectively, and inverting the expansions from Proposition 4.1, we obtain
confidence intervals

2u2 q 11ya 1r2ˆ ˆI s m x y B y 1 q r u V , `Ž .ˆ ˆh , g h 0 h , g h 1ya hž /ž /6

and

2u2 q 11ya 1r2ˆ˜ ˆ ˆˆI s m x y B y 1 q r u V , ` ,Ž .ˆh h 0 h , h h 1ya hž /ž /6

with coverage probabilities

rq1 y1sP m x g I s 1 y a q O g q hrg q nhŽ . Ž . Ž .Ž . Ž .0 h , g4.4Ž .
s 1 y a q O nys rw2Žrqs.q1xŽ .

and

y1s˜P m x g I s 1 y a q O h q nhŽ . Ž .Ž .Ž .0 h4.5Ž .
s 1 y a q O nyŽ s n 2 r .rŽ2 rq1. .Ž .

Ž . Ž . Ž .Equations 4.4 and 4.5 are also proved in Neumann 1992b .

4.2. The effect of the bandwidth choice on the coverage accuracy. Now we
are going to consider the performance of confidence intervals in practical
situations, that is, intervals based on pivotal quantities T and U involv-ˆ ˆh, g hˆ
ing estimators with data-driven bandwidths. These quantities do not immedi-
ately admit Edgeworth expansions, because they cannot be written as smooth
functions of a sum of independent random vectors. We will use the approxi-
mations to T and U given by Proposition 4.1 and treat the differencesh, g h
between T and T as well as between U and U by estimates basedˆ ˆh, g h, g h hˆ

˜on O.
First, we consider the order of approximation of the optimal bandwidth by

their estimates considered in Section 2. From here let d ) 0 be an arbitrarily
small quantity, whose occurrence is explained by application of Lemma A.1.
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Ž . Ž .LEMMA 4.1. Under A and A we haveG BW

ĥ y h0 d yD y1˜s O n n , n ,Ž .
h0

Ž .where D s 1r2 n sr s q 2r q 1r2 .

On the basis of Lemma A.1 it is easy to see that

d
d sy1 y1˜T s O n g , n ,� 4 Ž .ĥ , gdg

d
d y1 y1˜T s O n h , n� 4 Ž .h , gdh

and
d y1r2d y1 y1˜r s O n h nh , n .� 4 Ž .ˆ Ž .hdh

From the decomposition

2u2 q 1 2u2 q 1 2u2 q 11ya 1ya 1ya
T y r s T y r q r y rˆ ˆ ˆ ˆŽ .ˆ ˆ ˆh , g h h , g h h hˆ ž /6 6 6

q T y T q T y TŽ .Ž .ˆ ˆ ˆh , g h , g h , g h , gˆ

Ž .we obtain, by Lemmas 3.1 and 4.1 and by 4.4 , the following assertion.

Ž . Ž . Ž . Ž . < <THEOREM 4.1. Assume A , A , A , A and g y g rg sˆG U BW E 0 0
˜ yg y1Ž .O n , n for some g ) 0. Then

P m x g I s P m x g I q O ndnyDŽ . Ž . Ž .Ž . Ž .ˆ0 h , g 0 h , gˆ 0 0

s 1 y a q O nys rw2Žrqs.q1x .Ž .

For confidence intervals based on the pivotal statistic U we can derive inĥ
an analogous way estimates for the error in coverage probability. However,
since U yields for nonrandom h better rates than T , the error due to theh h, g

ˆrandomness of h is not automatically majorized by the error in coverage
probability of the confidence interval with nonrandom bandwidths. Hence, we

ˆlook for a better approximation to h. The idea is quite simple. Neglecting the
effect of the estimator m involved in the v ’s, the pivotal statistic Uˆ ˆf̂ i h

Ž .depends only on O nh of the n observations, whereas the bandwidth selector
˜uses all of them to a certain amount. We define another bandwidth h by a

similar criterion, where only the observations in some neighborhood of x of0
Ž .size O h are excluded, such that the quantity U is based on a set of˜0 h

˜observations disjoint from that used for the choice of h. Then the conditional
˜distribution of U under h is the same as the unconditional distribution of Uh̃ h

˜at the point h s h. Thus Proposition 4.1 remains valid for U as well, andh̃
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˜ ˆbecause h approximates h better than h , we obtain a better estimate for the0
error in coverage probability than via an approximation to U by U .ĥ h0

For appropriate C, let

D s Cny1rŽ2 rq1. ,n

< < <� 4J s i g 1, . . . , n x y x F D .� 4n i 0 n
$

Ž .We replace MISE h, g by
& &˜4.6 M h s IV h q ISB h ,Ž . Ž . Ž . Ž .

where

& d d2 22IV h s W x , h dx « q W x , h dx v xŽ . Ž . Ž . Ž .Ý ÝH Hi ii i
c cifJ igJn n

and
&
ISB h s A h , g Y YŽ . Ž .Ý i j0 i j

i , jfJn

q A h , g EY Y y A h , g v x ,Ž . Ž . Ž .Ý Ýi j0 i j 0 ii i
Ž .i , j : igJ or jgJn n

˜and define h as a measurable function with

˜ ˜h g arg min M h .Ž .
w xhg h r2, 3h r20 0

˜Ž .Let the constant C be chosen so large that U and M h are based on disjointh̃
sets of observations.

Now we can prove analogously to Lemma 4.1 that

ˆ ˜< <h y h
d yD9 y1˜4.7 s O n n , n ,Ž . Ž .

h0

Ž Ž Ž ... Ž .where D9 s 1r2 q 1r 2 2r q 1 n sr s q 2r q 1r2 .
The additional factor ny1r2Ž2 rq1. comes into play, because, roughly speak-$˜Ž . Ž . Ž .ing, the number of the Y ’s included in M h y MISE h, g is O nD ratheri 0 n$

Ž . Ž .than O n as in MISE h, g .
Again by Lemma A.1 we obtain

d d y1r2d y1 y1 d y1 y1˜ ˜ˆ� 4U s O n h , n and r s O n h nh , n .Ž . Ž .� 4 Ž .h hdh dh

With the decomposition

2u2 q 1 2u2 q 11ya 1yaˆ ˆU y r s U y rˆ ˜ ˜h h h hž /6 6

2u2 q 11ya ˆ ˆq r y r q U y UŽ .˜ ˆ ˆ ˜ž /h h h h6
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Ž . Ž .we obtain, by Proposition 4.1 ii , 4.7 and Lemma 3.1, the following theorem.

Ž . Ž . Ž . Ž .THEOREM 4.2. Under A , A , A and A we haveG U BW E

˜ ˜ d yD9P m x g I s P m x g I q O n nŽ . Ž . Ž .ˆ ˜Ž . Ž .0 h 0 h

s 1 y a q O nyŽ s n 2 r .rŽ2 rq1. q ndnyD9 .Ž .

Comparing the results of the Theorems 4.1 and 4.2 we see that the
undersmoothing method retains its superiority to the explicit bias-correction
also in the case of data-dependent bandwidths chosen by the above criteria.

5. Discussion.

˜5.1. Our estimates via the O-calculations seem to be, on first sight,
somewhat rough, and there arises the question whether we would obtain
better estimates by formal Edgeworth expansions of the pivotal quantities
T and U , respectively. Apart from the fact that the validity of theseˆ ˆh, g hˆ
expansions is not immediately clear, it turns out that we would obtain the
same rates as given by Theorems 4.1 and 4.2 with the exception of the factor
nd. To see this, expand U in the Taylor seriesĥ

2ˆ ˜h y hŽ .X Yˆ ˜ <U s U q h y h U q U ,˜Ž .ˆ ˜ hshh h h h2 hsh*

˜ ˆwhere h* is between h and h. The third term on the right-hand side is of
˜negligible order. All arguments can be conditioned on h, since the conditional

distribution of U is equal to the unconditional distribution of U at the pointh̃ h
˜ Ž .h s h. If we follow the proof of 4.7 , we see that the leading term of order

yD 9 ˆ ˜h n of h y h is given by0

Ý W « 2 y v x q Ý A h , g m x « q « m xŽ . Ž . Ž . Ž .Ž . Ž .i , jig J i i i Ž i , j. : ig J or jg J 0 i j i jn n n .˜ ˜yM0 hŽ .
On the other hand, we have

X ˆXm x m x VŽ . Ž .ˆ ˆh 0 h 0 hXU s y ,h 1r2 3r2ˆ ˆV 2Vh h

which depends mainly on Y ’s with i g J and has an order of magnitude ofi n
Ž y1 .O h . Therefore, the second term of the above Taylor series contributes, by0

a term of order nyD9, to the first cumulant of U , which leads to a differenceĥ
of order at least nyD9 between the Edgeworth expansions of U and U .˜ ˆh h

5.2. One disappointing fact with confidence intervals in nonparametric
regression is that we cannot obtain a size of the intervals that shrinks with
the same rate as the standard deviation of optimal estimators. The reason is
that we have actually two more or less separate problems, the estimation of
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Ž . Ž .m x by some estimator m x as well as the recognition of the distributionˆ0 0
Ž . Ž .of m x y m x , which essentially consists of the estimation of the biasˆ 0 0

Ž . Ž .Em x y m x . To solve both problems satisfactorily, we have to apportionˆ 0 0
the smoothness assumption for both purposes, which requires the application

Ž .of a suboptimal estimator m x .ˆ 0

5.3. The methods used in the present paper can obviously be applied to
kernel estimators with bandwidths chosen by other selectors. Neumann

ˆŽ .1992a shows that the cross-validation bandwidth h can be approximatedCV
˜by some random bandwidth h, which is independent of those observations

˜ y1rŽ2 rq1. d ylŽ . Ž .that enter into the estimator m x , to an order of O h n n , n ,ˆ h̃ 0 0
Ž d y1rŽ2 rq1..which yields finally an error in coverage probability of O n n .

Another direction for an extension are alternative kernel estimators, as, for
example, those of Nadaraya]Watson type.

5.4. A referee of this paper pointed out that a local bandwidth choice of h
is perhaps more appropriate than a global one, and he gave some indication
that the integral of the lengths of the intervals can be expected to be smaller
for optimal local than for optimal global bandwidth choice. We agree that
local bandwidth choice is a reasonable alternative to our proposal. However,
we recall the trade-off between length of the confidence interval and bias of
the estimator: to get a smaller length, we need a larger bandwidth, which
results in a larger bias, also after the bias correction. Moreover, data-driven
local bandwidths are usually less stable than global ones, which can influence
the rate for the error in coverage probability, as shown in Section 4.2. Finally,
we remark that neither a locally nor a globally optimal bandwidth for m isˆ h

ˆˆ Ž . Ž .optimal in any sense for the ultimate estimator m x s m x y B in ourˆ ˆ0 h 0 h
undersmoothing approach.

5.5. Another point which was raised by a referee is that our automatically
chosen bandwidths are not optimal in any sense for the constructed confi-
dence intervals. However, we think that a specific choice for confidence
intervals is quite difficult in our completely nonparametric approach. Even
from the theoretical point of view it is not clear which bandwidth should be
considered to be optimal. There exist different reasonable aspects for the
performance of confidence intervals, as, for example, coverage accuracy,
length or a connection between length and miscentering of the interval as

Ž . Ž .proposed by Beran 1986 in the discussion of Wu 1986 , which would lead to
different optimal bandwidths.

APPENDIX

A.1. Assumptions. Here we list the assumptions needed for the asser-
tions in the previous sections.
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Ž .GENERAL ASSUMPTIONS A .G

Ž . Ž . x i Ž .i The design points x s x n are regularly spaced, that is, H d t dt si i 0
Ž . w xi y 1r2 rn, for some positive, continuous density d on 0, 1 ;

Ž . 0w xii w g C y1, 1 is a kernel function of order r G 2, that is,
1, if k s 0,

kw z z dz sŽ . 0, if k s 1, . . . , r y 1,H ½
C / 0, if k s r ;

Ž . rw xiii w g C y1, 1 is a kernel function of order s G 2;˜
Ž . rqsw xiv m g C 0, 1 .

Ž .ASSUMPTION FOR UNIFORM APPROXIMATIONS A . All moments of the « ’sU i
< <M Ž .are uniformly bounded by corresponding constants, that is, E « F C Mi

Ž . Žfor some C M - `. If we assume instead that only a finite number of
moments are bounded, then we have to choose d in dependence on this
number and on the entropy of the families of vectors and matrices, as can be

.seen in the proof of Lemma A.1.

ASSUMPTIONS ESPECIALLY FOR THE CHOICE OF THE OPTIMAL GLOBAL BANDWIDTH
Ž .A .BW

Ž . 2 rqsw x dŽ Žr .Ž ..2i m g C 0, 1 , H m x dx / 0,c
21 z y xd

w m z dz y m x dx / 0 for all h ) 0;Ž . Ž .H H x , h ž /h hc

Ž . 0w xii v g C 0, 1 is bounded from zero.

Ž .ASSUMPTIONS FOR EDGEWORTH EXPANSIONS A .E

Ž .i A sufficiently large number of moments of the « ’s are uniformlyi
bounded;

Ž .ii Cramer’s condition is uniformly satisfied by the random vectors a s´ i
Ž 2 3.« , « , « 9 in some neighborhood of x , that is,i i i 0

< <� 4sup sup E exp it9a - 1,i
< < 5 5i : x yx FC t )bi 0

for some C ) 0 and all b ) 0.

A.2. Some technical lemmas.

˜ n Žn. n=nŽ . � 4LEMMA A.1 Uniform O-approximation . Let AA s a and AA su u g Q

� Žn.4 Ž .A be families of n-vectors and n = n -matrices, respectively. Further,u u g Q

Ž n=n. n=n Ž .define the «-entropy E AA of AA as the minimal number of n = n -«

matrices A with the property that each A g AAn=n can be approximated byi
5 5 Ž n.some A with A y A F « . Analogously, we define the «-entropy E AA ofi i «

n Ž . Ž n. Ž l. Ž n=n. Ž l.y1 r2yb y1ybAA . Assume A , E AA s O n and E AA s O n for someU n n
b ) 0 and l - `. Then:

y1Žn. yb Žn.9 d yg˜5 5 < <i sup a q n a « s O n , n ,Ž . Ž .Ž .½ 5u u
ugQ



BANDWIDTH CHOICE AND CONFIDENCE INTERVALS 1953

y1
Žn. Žn.9 yb Žn. Žn. d yg˜< <ii sup tr A A q n «9 A « y E«9 A « s O n , n'Ž . Ž .Ž .u u u už /½ 5

ugQ

hold for d ) 0 and g - `, which can be chosen arbitrarily small and large,
respectively.

� 4 Ž . Ž .PROOF. For a one-element set Q s u we obtain i and ii by Markov’s0
w Ž .x Ž .and Whittle’s inequalities see Whittle 1960 . For general Q we derive i

Ž .and ii on the basis of that set of vectors and matrices just given by the
y1r2yb y1yb ˆdefinition of the n -entropy and n -entropy, respectively. Let u

5 Žn. Žn. 5denote this parameter from the approximating grid with a y a Fu û
ny1r2yb. By Markov’s, Whittle’s and Bonferroni’s inequalities we obtain that,
for arbitrary positive d and g ,

5 Žn. 5 5 Žn. 5 5 Žn. Žn. 5 5 5a 9« F a 9« q a y a «Ž . ž /u uˆ ˆu u

d 5 Žn. 5 y1r2yb 1r2qds O n a q n nž /û

d 5 Žn. 5 d ybs O n a q n nŽ .u

Ž yg .holds uniformly over u g Q with a probability exceeding 1 y O n , which
Ž . Ž .implies i . Statement ii can be proved analogously. I

The next lemma improves the remainder term of order ny1 given in
Ž .Gasser and Muller 1979 for the expectation of their kernel estimator.¨

Ž .LEMMA A.2. Let w be uniformly in x and h Lipschitz continuous ofx, h
� 4order 1, and let g be a sequence of twice-differentiable functions. Further,n

Ž .assume that the design satisfies the condition given in A . ThenG

n 1 z y x1
W x , h g x s w g z dzŽ . Ž . Ž .jÝ Hn j x , h nž /h h0js1

y2 y1 < X < y2 < Y <q O n h sup g z q n sup g z .� 4 � 4Ž . Ž .n nž /
0FzF1 0FzF1

The proof of this lemma is straightforward and can be found in Neumann
Ž .1992b .

A.3. Proofs.

PROOF OF LEMMA 2.1. The calculations are very similar to those in the
proof of Theorem 1 in HHM. Therefore we indicate only the sources of the

Ž .terms in i . Some of these formulas will be used in the course of the proof of
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Ž .Lemma 4.1. First, we approximate the entries of the matrix A h, g by

h2 r x y xi j2 Žr . Žr .A s s y s s y s k w x w x q dxŽ . Ž . Ž .˜ ˜Hi j i iy1 j jy1 r2 rq1 ž /gg
A.1Ž . 2 rh

y2 y4 y4 < <qo n q O n h g if x y x F Cg ,Ž . i j2 rq1ž /g

< < 2 rqsw xwhereas A s 0 holds if x y x ) Cg. Further, we have, by m g C 0, 1 ,i j i j

A h , g m s C h , i ny1 h2 r q O ny1 h2 rg sŽ . Ž .Ž . Ž .i
A.2Ž .

q O ny3 hry1gyry1 q ny3 hry3 .Ž .
Now we split up

Var ISB h , gŽ .Ž .
s Var «9 A h , g « q 4 Var m9 A h , g «Ž . Ž .Ž . Ž .A.3Ž .

q 4 Cov «9 A h , g « , m9 A h , g « ,Ž . Ž .Ž .
Ž Ž . Ž ..where m s m x , . . . , m x 9, and we estimate the terms on the right-hand1 n

Ž .side separately. Those terms which enter into formula i are underlined. We
have

Var «9 A h , g «Ž .Ž .
s 2 A2 v x v x 1 q o 1Ž . Ž . Ž .Ž .Ý i j i j

i , j

24 r 2h v xŽ .1y2 4 Žr . Žr .s 2 n k dx w y w y q z dy dzŽ . Ž .˜ ˜H H Hr4 rq1 ž /ž /d xg Ž .0

A.4Ž .

= 1 q o 1 .Ž .Ž .
Ž .Further, we obtain, by A.2 ,

Var m9 A h , g « s m9 A h , g Diag v x , . . . , v x A h , g mŽ . Ž . Ž . Ž . Ž .Ž . 1 n

s h4 rC h ny1 q O h4 rny1 g sŽ . Ž .3

A.5Ž .

Ž .and, by A.1 ,

A.6 Cov «9 A h , g « , m9 A h , g « s O h4 rny2 gy2 ry1 ,Ž . Ž . Ž .Ž . Ž .
where the residual terms both will be majorized by the underlined term in
Ž .A.4 . By

$
Var ISB h , g s Var ISB h , gŽ . Ž .Ž .Ž .

'q O Var ISB h , g Var A v q Var A vŽ . 'Ž . ˆ ˆŽ . Ž .Ý Ýi i i i i iž /
and

2 4 r y3 y4 ry2Var A v F E A v y v s O h n g ,Ž . Ž .ˆ ˆŽ . Ž .Ý Ýi i i i i i i
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we see that the remaining residual terms do not enter into the asymptotic
formula. Finally, we have

$
EISB h , g y ISB hŽ . Ž .

s m9 A h , g m y ISB h q E A v y vŽ . Ž . Ž .ˆÝ i i i i

s 2h2 rg sk 2l mŽrqs. x mŽr . x dx 1 q o 1Ž . Ž . Ž .Ž .Hr s

A.7Ž .

q O ny2 q O h2 rny3r2 gy2 ry1 ,Ž . Ž .
Ž .which completes the calculations needed for the proof of i . I

Ž .PROOF OF LEMMA 4.1. First, we investigate how well MISE h is approxi-$
d 2Ž . Ž .mated by its estimate MISE h, g . Let W s H W x, h dx. We split upi c i

$
2IV h y IV h s W « y v xŽ . Ž . Ž .Ž .Ý i i i

i

2q W m x y m xŽ . Ž .ˆŽ .ˆÝ i i f i
i

ˆq 2 W « m x y W x , f m xŽ . Ž .Ž .Ý Ýi i i i jjž /
i j

ˆy 2 W « W x , f «Ž .Ý Ýi i i jj
i j

s T q ??? qT .1 4

By means of Lemma A.1 we can easily estimate the terms T through T . For1 4
w y1 xconvenience, let h first be restricted to the interval n , 1r2 . Using W si

Ž y2 y1.O n h , we get
y1 dy1r2 yl˜T s O nh n , n .Ž .Ž .1

y1 2 ˜ ˆ y1 2̂Ž rqs . yl ˆŽ Ž . Ž .. ŽŽ . .By n Ý m x y m x s O nf q f , n and f s f qˆ ˆi f i 0
˜ 3r2 d yl y1rŽ2Žrqs.q1.Ž .O f n , n , with some f 7 n , we obtain0 0

y1 y2Žrqs.rw2Žrqs.q1x yl˜T s O nh n , nŽ .Ž .2

and

2

d yl˜ ˆT s O W m x y W x , f m x n , nŽ . Ž .Ž .Ý Ý3 i i i j) jž /� 0i j

˜ y2 y1 1r2 r̂qs d yls O n h n f n , nŽ .
y1 y1r2 yŽrqs.rw2Žrqs.q1x d yl˜s O nh n n n , n .Ž .Ž .

ˆŽ .If we write T in the form «9M h, f «, we obtain, by the relation4
Ž Ž . Ž .. Ž y1Ž .y2 Ž .y1 .tr M h, f 9M h, f s O n nh nf and Whittle’s inequality for
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quadratic forms, the following estimate:

ˆ < <T F «9M h , f « y E«9M h , f « q E«9M h , f «Ž . Ž .ˆ ˆŽ . fsf fsf4

d yl˜ ˆ ˆ ˆs O tr M h , f 9M h , f n , n q O W W x , f' Ž . Ž . ÝŽ . ž /j jž / jž /
j

y1 y1r2 yŽrqs.rw2Žrqs.q1x d yl˜s O nh n n n , nŽ .Ž .
y1 y2Žrqs.rw2Žrqs.q1x yl˜q O nh n , n .Ž .Ž .

Next, we decompose
$
ISB h , g y ISB h s «9 A h , g « y A h , g v xŽ . Ž . Ž . Ž . Ž .Ý i i i

q A h , g v x y vŽ . Ž .Ž .ˆÝ i i i i
i

q 2m9 A h , g «Ž .
q m9 A h , g m y ISB hŽ . Ž .

s T q ??? qT .5 8
Ž .By A.1 we see

2 d yl˜T s O A h , g n , nŽ .' i jÝ5 ž /
2 r y1 y2 ry1r2 d yl˜s O h n g n , n .Ž .

$
Ž . Ž .Analogously to the estimation of IV h y IV h , we obtain

2 r y2 y2 ry1 1r2 d yl˜T s O h n g n n , nŽ .6

y1r22 r y1 y2 ry1r2 d yl˜s O h n g ng n , n ,Ž .Ž .
d yl˜ 5 5T s O A h , g m n , nŽ .Ž .7

˜ 2 r y1r2 d yls O h n n , nŽ .
and

2 r s yl˜T s O h g , n .Ž .8

w y1 . Ž .Analogous estimates can be derived for h g 0, n , where O 1 -terms take
Ž .y1the place of the nh -terms. It is known that

y12 rA.8 MISE h G C h q nh n 1 ,Ž . Ž . Ž .Ž .ž /
which implies in conjunction with the above calculations that

$
MISE h , g y MISE hŽ . Ž . yD d yl˜s O n n , n .Ž .

MISE hŽ .
Ž . Ž y2 rrŽ2 rq1..On the other hand, we have MISE h s O n , which implies by0

Ž .A.8 that
h0 ylˆ< <A.9 P h y h ) s O n .Ž . Ž .0ž /2
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$ˆŽ . Ž . Ž . Ž .For brevity we set M h s MISE h, g and M h s MISE h . Because
ˆ Ž . < Ž . <M9 h s M9 h s 0, we obtainˆhsh hsh0

ˆ ˆ ˆ0 s M y M 9 h q M9 h y M9 hŽ .Ž . Ž . Ž .Ž .0

ˆ ˆ ˆs M y M 9 h q h y h M0 h*Ž .Ž . Ž . Ž .0

ˆfor some h* between h and h, which implies0

ˆ ˆM y M 9 hŽ . Ž .
ĥ y h s .0 yM0 h*Ž .

By straightforward calculations one obtains that

A.10 M0 h 7 ny1 hy3Ž . Ž .
ˆŽ . Ž .holds for h 7 h . The term M y M 9 h can be decomposed in the same way0

ˆ X XŽ . Ž .as M h y M h . It turns out that T through T are of the same order as T1 8 1
through T , respectively, with an additional factor of order hy1. Hence, we8 0
have

ˆ ˆ ˜ y1 y2 yD d ylM y M 9 h s O n h n n , n ,Ž . Ž . Ž .0

which implies

ˆ ˜ yD d ylh y h s O h n n , n . IŽ .0 0

Ž .PROOF OF 4.7 . The proof of this equation is very similar to that of
Lemma 4.1.

Ž .First, one can derive, analogously to A.9 , that

h0 yl˜< <A.11 P h y h ) s O nŽ . Ž .0ž /2
ˆ ˜Ž . < Ž . <holds. By M9 h s M9 h s 0, we obtainˆ ˜hsh hsh

ˆ ˜ ˆ ˜ ˆ ˜ ˜0 s M y M 9 h q M9 h y M9 hŽ . Ž . Ž .Ž . Ž .
ˆ ˜ ˆ ˆ ˜ ˜s M y M 9 h q h y h M0 h**Ž .Ž .Ž . Ž .

˜ ˆfor some h** between h and h, which implies

ˆ ˜ ˆM y M 9 hŽ .Ž .ˆ ˜h y h s .˜yM0 h**Ž .
˜ y1 ˜ 3 ylŽ . Ž . Ž .By A.10 we can prove, due to Lemma A.1, that M0 h** s O nh , n .0

We have
$ &

2IV h y IV h s W « y v x q T q T q TŽ . Ž . Ž .Ž .Ý i i i 2 3 4
igJn

s TU q T q T q T .1 2 3 4

Ž .Let h 7 h . By aJ s O nD , we obtain0 n n

y1U y1 y1r2 1r2 d yl˜T 9 s O nh h n D n , n ,Ž . Ž .Ž .1 n
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which differs from T X by the factor D1r2. It can be seen that the terms T X
1 n 2

X Ž U .through T are all majorized by T 9. Next, we decompose4 1
$ &
ISB h , g y ISB h , gŽ . Ž .0

s T y A h , g « « q A h , g v xŽ . Ž . Ž .Ý Ý5 0 i j 0 ii i
i , jfJ ifJn n

q T6

q m9 A h , g m y ISB h y m9 A h , g m q ISB hŽ . Ž . Ž . Ž .0

q 2m9 A h , g y A h , g «Ž . Ž .Ž .0

q 2 A h , g m x «Ž . Ž .Ý i j0 i j
Ž .i , j : igJ or jgJn n

s U q ??? qU .1 5

The terms U X, U X and U X are of the same order as T X , T X and T X , respectively.1 2 3 5 6 8
2 r y1r2 s d yl˜Ž . 5Ž Ž . Ž .. 5 Ž .By A.2 we conclude that A h, g y A h, g m s O h n g n , n0 0

holds, which implies that
X ˜ 2 r y1r2 s d ylU s O h n g n , n .Ž .4 0

Finally, we have
X ˜ 2 r y1r2 y1 1r2 d ylU s O h n h D n , n .Ž .5 n

Ž U . X X X XCollecting the upper estimates for T 9, T through T and U through U ,1 2 4 1 5
we obtain

ˆ ˜ ˆ ˜ y1 y2 yD9 d ylM9 y M9 h s O n h n n , n ,Ž .Ž . Ž .0

Ž .which yields 4.7 . I
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