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Let y , i s 1, . . . , n, be independent observations with the density ofi
Ž . w Ž . Ž .xy of the form h y , f s exp y f y b f q c y , where b and c arei i i i i i i

given functions and b is twice continuously differentiable and bounded
Ž Ž .. Ž . Ž1. Žd .away from 0. Let f s f t i , where t s t , . . . , t g TT m ??? m TT s TT,i 1 d

the TT Ža . are measurable spaces of rather general form and f is an
unknown function on TT with some assumed ‘‘smoothness’’ properties.

� Ž . 4 Ž .Given y , t i , i s 1, . . . , n , it is desired to estimate f t for t in somei
region of interest contained in TT. We develop the fitting of smoothing

Ž . Ž .spline ANOVA models to this data of the form f t s C q Ý f t qa a a

Ž .Ý f t , t q ??? . The components of the decomposition satisfy sidea - b a b a b

conditions which generalize the usual side conditions for parametric
ANOVA. The estimate of f is obtained as the minimizer, in an appropriate

Ž . Ž . Ž .function space, of LL y, f q Ý l J f q Ý l J f q ??? ,a a a a a - b a b a b a b

Ž . Ž .where LL y, f is the negative log likelihood of y s y , . . . , y 9 given f,1 n
the J , J , . . . are quadratic penalty functionals and the ANOVA decom-a a b

position is terminated in some manner. There are five major parts re-
Ž .quired to turn this program into a practical data analysis tool: 1 methods

Žfor deciding which terms in the ANOVA decomposition to include model
. Ž .selection , 2 methods for choosing good values of the smoothing parame-

Ž .ters l , l , . . . , 3 methods for making confidence statements concern-a a b

Ž .ing the estimate, 4 numerical algorithms for the calculations and, finally,
Ž .5 public software. In this paper we carry out this program, relying on
earlier work and filling in important gaps. The overall scheme is applied
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to Bernoulli data from the Wisconsin Epidemiologic Study of Diabetic
Retinopathy to model the risk of progression of diabetic retinopathy as a
function of glycosylated hemoglobin, duration of diabetes and body mass
index. It is believed that the results have wide practical application to the
analysis of data from large epidemiologic studies.

1. Introduction. We, along with many others, are interested in building
Žflexible statistical models for prediction a.k.a. multivariate function estima-

.tion . Desirable features of such models include the ability to simultaneously
handle continuous variables on various domains, ordered categorical vari-
ables and unordered categorical variables. A crucial feature is the availability
of a set of methods for adaptively controlling the complexity or degrees of

Ž .freedom of the model sometimes called the bias]variance tradeoff and for
comparing different candidate models in the same or related families of
models. Other desirable features include the reduction to simple parametric
models if the data suggest that such models are adequate, readily inter-
pretable estimates even when several predictor variables are involved, rea-
sonable accuracy statements after the model has been fitted and publicly
available software.

Ž .Smoothing spline ANOVA SS-ANOVA models, which are the subject of
this paper, are endowed with all of these features to a greater or lesser
extent, although the development of both theory and practice is by no means

Ž . Ž .complete. Briefly, these models represent a function f t , t s t , . . . , t of d1 d
Ž . Ž . Ž .variables as f t s C q Ý f t q Ý f t , t q ??? , where the compo-a a a a - b a b a b

nents satisfy side conditions which generalize the usual side conditions for
parametric ANOVA to function spaces, and the series is truncated in some
manner. Independent observations y , i s 1, . . . , n, are assumed to be dis-i

Ž Ž Ž ... Ž Ž .. Ž .tributed as h y , f t i with parameter of interest f t i , and f ? is as-i
sumed to be ‘‘smooth’’ in some sense; f is estimated as the minimizer, in an

Ž . Ž . Ž .appropriate function space, of LL y, f q Ý l J f q Ý l J fa a a a a - b a b a b a b

Ž . Ž .q ??? , where LL y, f is the negative log likelihood of y , . . . , y given f , the1 n
J , J , . . . are quadratic penalty functionals and the l , l , . . . are smooth-a a b a a b

ing parameters to be chosen.
These models have been developed extensively for Gaussian data, and the

d s 1 special case has been developed for exponential families. Our goal here
is to extend this work to the d ) 1 case for exponential families and to
demonstrate its usefulness by analyzing data from the Wisconsin Epidemio-

Ž .logic Study of Diabetic Retinopathy WESDR . We build an SS-ANOVA model
to estimate the risk of progression of diabetic retinopathy, an important
cause of blindness, at followup, given values of the predictor variables
glycosylated hemoglobin, duration of diabetes and body mass index at base-

Ž .line, and the response progression of retinopathy or not at followup. From
the data set analyzed here we have been able to describe interesting relations
that were not found using more traditional methods.

w Ž .x wCART Breiman, Friedman, Olshen and Stone 1984 , MARS Friedman
Ž .x w Ž .x1991 , projection pursuit Friedman and Steutzle 1981 and the p method
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w Ž .xBreiman 1991 are some of the more popular methods that have been
proposed in the statistical literature for multivariate function estimation.
Certain supervised machine learning methods, in particular feedforward
neural nets and radial basis functions, are also used for this purpose. See

Ž . Ž .Geman, Bienenstock and Doursat 1992 , Ripley 1994 , Cheng and Tittering-
Ž . Ž .ton 1994 , Wahba 1992, 1995 and references therein, for a discussion of

relationships between neural nets and statistical nonparametric regression
Ž .methods. The popular additive models of Hastie and Tibshirani 1990 , when

fitted with smoothing splines, are a special case of the smoothing spline
w Ž .xANOVA model. The varying-coefficient models Hastie and Tibshirani 1993

Ž .are a very interesting subfamily. Roosen and Hastie 1994 have taken a
further interesting step by combining the additive spline models with projec-
tion pursuit. Two basic reference works for smoothing splines are Eubank
Ž . Ž . Ž .1988 and Green and Silverman 1994 . Stone 1994 has recently studied
theoretical properties of sums of tensor products of polynomial splines used in

Ž .a regression approach as opposed to the smoothing approach here to esti-
mate components of an ANOVA decomposition of a target function. In Stone’s
regression context numbers of basis functions play the role of smoothing
parameters. They are chosen there theoretically, although it would be possi-
ble to choose them, as well as the knot locations, adaptively. It is tantalizing
to conjecture the circumstances under which Stone’s convergence rates could
be obtained in the smoothing context employed in the present paper. See

Ž . Ž .Chen 1991 , Gu and Qiu 1994 and references cited there.
ŽSS-ANOVA models for Gaussian data are described in some but not

. wŽ . xcomplete generality in Wahba 1990 , Chapter 10 , where references to the
Ž . Žprevious literature are given. GCV generalized cross-validation , UBR unbi-

. Ž .ased risk and GML generalized maximum likelihood are all discussed there
for choosing the smoothing parameters in the Gaussian case. See Craven and

Ž . Ž .Wahba 1979 and Li 1985, 1986 for properties of GCV and UBR estimates.
Ž . Ž . Ž .Gu, Bates, Chen and Wahba 1989 , Chen, Gu and Wahba 1989 , Gu 1992b ,

Ž . Ž .Gu and Wahba 1991a, b, 1993a, b , Chen 1991, 1993 and others discuss
w Ž .further various aspects of these models. The code RKPACK Gu 1989 ,

xavailable from statlib@lib.stat.cmu.edu will fit specified SS-ANOVA
models given Gaussian data.

Ž . Ž .O’Sullivan 1983 and O’Sullivan, Yandell and Raynor 1986 , in the d s 1
case, proposed penalized log-likelihood estimates with spline penalties for
data from general exponential families. Methods for choosing a single
smoothing parameter in the d s 1 non-Gaussian case have been a matter of

Ž .lively activity. O’Sullivan, Yandell and Raynor 1986 , Green and Yandell
Ž . Ž . Ž . Ž . Ž .1985 , Yandell 1986 , Cox and Chang 1990 , Wahba 1990 , Moody 1991 ,

Ž . Ž . Ž .Liu 1993 , Gu 1990, 1992a, c and Xiang and Wahba 1995 have addressed
this issue, all considering methods related to ordinary leaving out one, GCV

Ž .or UBR adapted to the non-Gaussian case. Wong 1992 has examined the
existence of exactly unbiased estimates for the expected Kullback]Leibler
information distance as well as predictive mean square error in several

Ž .non-Gaussian cases. See also Hudson 1978 . One can conclude from Wong’s
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work that there is no exact unbiased risk estimate of the Kullback]Leibler
information distance in the Bernoulli case. It is clear, however, that for dense
data sets and smooth unknown true functions, good approximations must
exist. This may explain why no unique, completely definitive result is avail-

Ž .able in the Bernoulli case. We will use the approach in Wang 1994 , which
Ž .represents a multiple smoothing parameter extension of Gu’s 1992a exten-

sion of the UBR estimate originally obtained for Gaussian data with known
w Ž . Ž .xvariance Mallows 1973 , Craven and Wahba 1979 .

Bayesian ‘‘confidence intervals’’ were proposed for the cross-validated
Ž .smoothing spline with Gaussian data by Wahba 1983 and their properties

Ž .were studied by Nychka 1988, 1990 . Generalization to the componentwise
Ž . Ž .case in SS-ANOVA appears in Gu and Wahba 1993b . Gu 1992c discussed

their extension to the single smoothing parameter non-Gaussian case. In this
Ž .work, we develop and employ the componentwise generalization of Gu 1992c

to the non-Gaussian componentwise SS-ANOVA case.
Model selection in the context of non-Gaussian SS-ANOVA has many open

questions. The first model selection question might be: will the parametric
model which is built into the SS-ANOVA as a special case do as well as a
model which contains nonparametric terms? A method for answering this
question in the Gaussian case from a hypothesis testing point of view was

Ž .given by Cox, Koh, Wahba and Yandell 1988 and by Xiang and Wahba
Ž .1995 in the Bernoulli case. In the general case where one is comparing one
nonparametric model with another, the problem is more complicated. Chen
Ž .1993 proposed an approximate hypothesis testing procedure in the general

Ž .Gaussian case. Gu 1992b proposed cosine diagnostics as an aid in model
selection. The use of componentwise confidence intervals to eliminate terms

Ž .was suggested in Gu and Wahba 1993b . Of course model selection from a
Ž .hypothesis testing point of view i.e., is a simple model correct? is not the

Žsame as model selection from a prediction point of view i.e., no model is
.correct, which model is likely to predict best? . In our analysis of the WESDR

data we carry out informal model selection procedures including deletion of
terms small enough to be of no practical significance, and examination of the
componentwise Bayesian ‘‘confidence intervals.’’ We will discuss a number of
open questions related to model selection in this context from a prediction
point of view.

It is clear that the existence of user-friendly software is essential for this
and any other sophisticated nonparametric regression method to be useful. A

w Ž .xcomputer code GRKPACK Wang 1995 , which calls RKPACK as a subrou-
tine, has been developed to carry out the SS-ANOVA analysis for Bernoulli
and other non-Gaussian data. We use GRKPACK to carry out the WESDR
data analysis.

In Section 2 we review penalized GLIM models with a single smoothing
parameter, and then review the SS-ANOVA decomposition of a function and
established methods for fitting SS-ANOVA models in the Gaussian case.
Although this review is fairly detailed, the presentation of this detail eases
greatly the exposition of the generalization of the fitting of these models in
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the non-Gaussian case. In Section 3 we describe the extension of SS-ANOVA
models to the non-Gaussian exponential family no nuisance parameter case,
including a numerical algorithm and methods for choosing the smoothing
parameters. In Section 4 Bayesian ‘‘confidence intervals’’ are extended to the
componentwise exponential family case and a procedure for computing them
is described. In Section 5 we discuss model selection and in Section 6 we carry
out the WESDR data analysis. Section 7 discusses some computational
considerations and Section 8 gives some conclusions.

2. Penalized GLIM and Gaussian SS-ANOVA models. For simplicity
of notation, we will be primarily concerned with data from a member of an
exponential family with no nuisance parameter and semiparametric general-

Ž .izations of the generalized linear models GLIM’s introduced by Nelder and
Ž . Ž .Wedderburn 1972 ; see also McCullagh and Nelder 1989 . Our method can

Ž .also deal with overrunderdispersion situations; see Wang 1994 for details.
Ž .We consider random variables y with density h y , f of the formi i i

2.1 h y , f s exp y f y b f q c y ,Ž . Ž . Ž . Ž .i i i i i i

where b and c are given functions with b twice continuously differentiable
and uniformly bounded away from 0. This includes binomial, Poisson and
other random variables as well as normal random variables with variance 1.
Letting t be a vector of predictor variables taking values in some fairly

� Ž . 4arbitrary index set TT, we observe pairs y , t i , i s 1, . . . , n , where the yi i
Ž Ž Ž ...are independent observations with distribution h y , f t i . Our goal is toi

Ž .estimate f t for t in some region in the space TT of interest. GLIM models
represent f as a linear combination of simple parametric functions of the
components of t, typically as low degree polynomials. Usually the unknown
coefficients are then estimated by minimizing the negative log likelihood, that
is, by minimizing

n

2.2 LL y , f s y y f t i y b f t i .Ž . Ž . Ž . Ž .Ž . Ž .Ž .Ý i
is1

Ž .O’Sullivan, Yandell and Raynor 1986 replaced the parametric assump-
tion on f by the assumption that f is a member of some ‘‘smooth’’ class of
functions of t, and they estimated f as the minimizer, in an appropriate

w Ž .x Ž . Ž .function space reproducing kernel Hilbert space RKHS of LL y, f q lJ f ,
where J is a roughness penalty. An SS-ANOVA model provides a decomposi-
tion of f of the form

2.3 f t , . . . , t s m q f t q f t q ???Ž . Ž . Ž . Ž .Ý Ý1 d a a a b a b
a a b

Ž . Ž . Ž .and the penalty lJ f is replaced by Ý l J f q Ý l J f q ??? .a a a a a b a b a b a b

The SS-ANOVA model with Gaussian data has the form

2.4 y s f t i , . . . , t i q « , i s 1, . . . , n ,Ž . Ž . Ž .Ž .i 1 d i

Ž . Ž 2 . Ža . Ža .where « s « , . . . , « 9 ; N 0, s I , t g TT , where TT is a measur-1 n n=n a

Ž . Ž1. Žd . 2able space, a s 1, . . . , d, t , . . . , t s t g TT s TT m ??? m TT and s may1 d
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be unknown. For f satisfying some measurability conditions a unique ANOVA
Ž .decomposition of the form 2.3 can always be defined as follows. Let dm be aa

probability measure on TT Ža . and define the averaging operator EE on TT bya

2.5 EE f t s f t , . . . , t dm t .Ž . Ž . Ž . Ž . Ž .Ha 1 d a aŽa .TT

Then the identity is decomposed as

I s EE q I y EEŽ .Ž .Ł a a
a

s EE q I y EE EEŽ .Ł Ý Ła a b
a b/aa

2.6Ž .

q I y EE I y EE EE q ??? q I y EE .Ž . Ž .Ž .Ý Ł Ła b g a
ag/a , ba-b

The components of this decomposition generate the ANOVA decomposition
Ž . Ž . ŽŽ . .of f of the form 2.3 by C s Ł EE f , f s I y EE Ł EE f , f sa a a a b / a b a b

ŽŽ .Ž . . Ž .I y EE I y EE Ł EE f and so forth. Efron and Stein 1981 discussa b g / a , b g

this kind of ANOVA decomposition in a different context. Further details in
Ž .the RKHS context may be found in Gu and Wahba 1993a, b .

The idea behind SS-ANOVA is to construct an RKHS HH of functions on TT
so that the components of the SS-ANOVA decomposition represent an orthog-
onal decomposition of f in HH. Then RKHS methods can be used to explicitly

Ž . Ž .impose smoothness penalties of the form Ý l J f q Ý l J f q ??? ,a a a a a b a b a b a b

where, however, the series will be truncated at some point. This is done as
Ža . Ža . Ž .Ža .follows. Let HH be an RKHS of functions on TT with H f t dm s 0TT a a a

Ž . Ža . w Ža .xfor f t g HH and let 1 be the one-dimensional space of constanta a

functions on TT Ža .. Construct HH as
d

Ža . Ža .w x � 4HH s 1 [ HH� 4Ž .Ł
as1

w x Ža . w Ža . Ž b . xs 1 [ HH [ HH m HH [ ??? ,Ý Ý
a a-b

2.7Ž .

w xwhere 1 denotes the constant functions on TT. With some abuse of notation,
w Ža .xfactors of the form 1 are omitted whenever they multiply a term of a

Ža . w Ž1.x w Žay1.x Ža .different form. Thus HH is shorthand for 1 m ??? m 1 m HH m
w Žaq1.x w Žd .x Ž .1 m ??? m 1 which is a subspace of HH . The components of the
ANOVA decomposition are now in mutually orthogonal subspaces of HH. Note
that the components will depend on the measure dm , and these should bea

chosen in a specific application so that the fitted mean, main effects, two
factor interactions and so forth have reasonable interpretations.

Next, HH Ža . is decomposed into a parametric part and a smooth part, by
Ža . Ža . Ža . Ža . Žletting HH s HH [ HH , where HH is finite dimensional the ‘‘paramet-p s p

. Ža . Ž . Ža .ric’’ part and HH the ‘‘smooth’’ part is the orthocomplement of HH ins p

HH Ža .. Elements of HH Ža . are not penalized through the device of lettingp

Ž . 5 Ža . 5 2 Ža . Ža . w Ža .J f s P f , where P is the orthogonal projector onto HH ; HH ma a s a s s
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Ž b .x w Ža . Ž b .xHH is now a direct sum of four orthogonal subspaces: HH m HH s
w Ža . Ž b .x w Ža . Ž b .x w Ža . Ž b .x w Ža . Ž b .xHH m HH [ HH m HH [ HH m HH [ HH m HH . By con-p p p s s p s s

w Ža . Ž b .xvention the elements of the finite-dimensional space HH m HH will notp p

be penalized. Continuing this way results in an orthogonal decomposition of
HH into sums of products of unpenalized finite-dimensional subspaces, plus
main effects ‘‘smooth’’ subspaces, plus two-factor interaction spaces of the

w Ža . Ž b .x w Ža .form parametric m smooth HH m HH , smooth m parametric HH mp s s
Ž b .x w Ža . Ž b .xHH and smooth m smooth HH m HH and similarly for the three andp s s

higher factor subspaces.
Now suppose that we have selected the model MM ; that is, we have decided

which subspaces will be included. Collect all of the included unpenalized
subspaces into a subspace, call it HH 0, of dimension M, and relabel the other
subspaces as HH b, b s 1, 2, . . . , p; HH b may stand for a subspace HH Ža ., or fors

w Ža . Ž b .xone of the three subspaces in the decomposition of HH m HH which
contains at least one ‘‘smooth’’ component, or for a higher order subspace
with at least one ‘‘smooth’’ component. Collecting these subspaces as MM s HH 0

[ Ý HH b, the estimation problem in the Gaussian case becomes: find f inb

MM s HH 0 [ Ý HH b to minimizeb

pn1 2 2y1 b5 52.8 y y f t i q l u P f ,Ž . Ž .Ž .Ž .Ý Ýi bn is1 bs1

where P b is the orthogonal projector in MM into HH b. The overparameteriza-
tion luy1 s l is convenient for both expository and computational purposesb b

w Ž . Ž .xsee Gu 1989 and Gu and Wahba 1991b and is accounted for in RKPACK.
Ž . w Ž .The minimizer f of 2.8 is known to have a representation Wahba 1990 ,l, u

x � 4 0 Ž .Chapter 10 in terms of a basis f for HH and the reproducing kernels RK’sn

� Ž .4 bR s, t for the HH . Lettingb

p

2.9 Q s, t s u R s, t ,Ž . Ž . Ž .Ýu b b
bs1

it is
M n

2.10 f t s d f t q c Q t i , t s f t 9d q j t 9c,Ž . Ž . Ž . Ž . Ž . Ž .Ž .Ý Ýl, u n n i u
ns1 is1

where

f9 t s f t , . . . , f t ,Ž . Ž . Ž .Ž .1 M

j 9 t s Q t 1 , t , . . . , Q t n , t .Ž . Ž . Ž .Ž . Ž .Ž .u u

c and d are vectors of coefficients which satisfyn=1 M=1

Q q nlI c q Sd s y ,Ž .u2.11Ž .
S9c s 0,

where here and below we are letting Q be the n = n matrix with ijth entryu

Ž Ž . Ž .. Ž Ž ..Q t i , t j and S be the n = M matrix with in th entry f t i . Thisu n

system will have a unique solution for any l ) 0 provided S is of full column
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rank, which we will always assume. This condition on S is equivalent to the
� 4uniqueness of least squares regression onto span f . Since the RK of a tensorn

product space is the product of the RK’s of the component spaces, the
computation of the R ’s is straightforward. For example, the RK correspond-b

Ža . Ž b . Ž .ing to the subspace HH m HH is in an obvious notationp s
Ž . Ž .Ža . Ž b .R s , t R s , t . Of course any positive-definite function may in prin-HH a a HH b bp s

ciple play the role of a reproducing kernel here. Special properties of RK’s
Ž .related to splines are noted in Wahba 1990 . Conditionally positive-definite
w Ž .xfunctions as occur in thin plate splines Wahba and Wendelberger 1980 can
Ž .be accommodated; see Gu and Wahba 1993a and references cited therein.

Ž .Examples on the sphere can be found in Wahba 1981, 1982 and Weber and
Ž .Talkner 1993 ; examples on a discrete index set, as might occur in large

Ž .contingency tables, can be found in Gu and Wahba 1991a . It is not hard to
modify reproducing kernels so that a given particular set of functions plays

Ža . wŽ . xthe role of a spanning set for HH ; see Wahba 1978 , Section 3 . Arbitraryp

functions including functions containing breaks and jumps and indicator
0 Ž .functions may be added to HH ; see Shiau, Wahba and Johnson 1986 , Wahba

Ž . Ž .1990 , Wahba, Gu, Wang and Chappell 1995 .
Ž .Assuming the model 2.4 , the smoothing parameters l, u may be chosen

Ž . Ž 2 . Ž .by generalized cross-validation GCV s unknown or unbiased risk UBR
Ž 2 .s known . The GCV and UBR estimates are the minimizers of V and U,
respectively, given by

5 5 21rn I y A l, u yŽ .Ž .
2.12 V l, u sŽ . Ž . 21rn tr I y A l, uŽ . Ž .Ž .

and
1 22 25 52.13 U l, u s I y A l, u y q s tr A l, u ,Ž . Ž . Ž . Ž .Ž .
n n

Ž .where A l, u satisfies

2.14 f t 1 , . . . , f t n 9 s A l, u y.Ž . Ž . Ž . Ž .Ž . Ž .Ž .l, u l , u

The properties of GCV and UBR estimates in the Gaussian case are well
Ž .known; see Wahba 1990 and the references cited therein, especially Li

Ž .1985 . Loosely speaking, under appropriate assumptions they provide good
n Ž Ž Ž .. Ž Ž ...2estimates of the l, u which minimize Ý f t i y f t i . The codeis1 l, u

w Ž .xRKPACK Gu 1989 may be used to compute the GCV and UBR estimates
of the luy1, along with f and the components of f in the ANOVAb l, u l, u

decomposition. Of course to estimate luy1 the component matrices withb

Ž Ž . Ž ..i, jth entry R t i , t j must be ‘‘sufficiently distinguishable.’’ One way tob

quantify this would be to examine the Fisher information matrix for the ub

w Ž .x Ž .based on the associated Bayes model Wahba 1978 and 4.1 below.

3. SS-ANOVA for general exponential families. The generalization
of an ANOVA estimate for Gaussian data to the general exponential family is

Ž . Ž Ž Ž ...2 Ž . Ž . Ž .obtained by replacing 1rn Ý y y f t i by 1rn LL y, f , where LL y, fi
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Ž .is given by 2.2 , and then solving the variational problem: find f in MM to
minimize

pn 2y1 b5 53.1 LL y , f q l u P f .Ž . Ž . Ý b2 bs1

Ž .The minimizer of 3.1 is also known to have a representation of the form
Ž . w Ž . Ž .x2.10 O’Sullivan, Yandell and Raynor 1986 , Wahba 1990 and it is well
known that now c and d are the minimizers of

n n
3.2 I c, d s y l f9 t i d q j 9 t i c q lc9Q c,Ž . Ž . Ž . Ž .Ž . Ž .Ž .Ý i u2is1

Ž . Ž . Ž Ž .. Ž Ž ..where l f s y f y b f with f s f9 t i d q j 9 t i c and where Q is asi i i i i i u

Ž . Ž .in 2.11 . Since the l ’s are not quadratic, 3.2 cannot be minimized directly.i
Ž .If all l f ’s are strictly concave, we can use a Newton]Raphson procedure toi i

Ž .compute c and d for fixed l and u . Let u s ydl rdf , u9 s u , . . . , u ,i i i 1 n
2 2 Ž . Ž Ž Ž .. Ž Ž ...w s yd l rdf , W s diag w , . . . , w and S s f t 1 , . . . , f t n 9. Notei i i 1 n

that from the properties of the exponential family, the vector u and the
diagonal entries of the matrix W contain the means and variances for the
distributions with parameter f . We have  Irc s Q u q nlQ c,  Ir d si u u

S9u,  2Irc c9 s Q WQ q nlQ ,  2Irc  d9 s Q WS and  2Ir d  d9 su u u u

S9WS. The Newton]Raphson iteration satisfies the linear system

Q W Q q nlQ Q W S c y c yQ u y nlQ cu y u u u y y u y u y3.3 s ,Ž . ž / ž / ž /S9W Q S9W S d y d yS9uy u y y y

where the subscript minus indicates quantities evaluated at the previous
Ž .Newton]Raphson iteration; see Gu 1990 . With some abuse of notation when

Ž .the meaning is clear, we will here let f stand for the vector f , . . . , f 9.1 n
Ž .Then, as in Gu 1990 , f s Sd q Q c is always unique as long as S is of fullu

Ž . Ž .column rank. So only a solution of 3.3 is needed. If Q is nonsingular, 3.3u

is equivalent to the system

W Q q nlI q W Sd s W f y u ,Ž . Ž .y u y y y yc3.4Ž .
S9c s 0.

Ž . Ž .If Q is singular, any solution to 3.4 is also a solution to 3.3 . Letu
1r2 1r2 y1r2 1r2 ˜ y1r2ŽQ s W Q W , c s W c, S s W S and y s W W f y˜W , u y u y W y W y y y yy y y

. Ž .u . Then 3.4 becomesy

˜Q q nlI c q S d s y ,˜Ž .W , u W Wy y y3.5Ž .
SX c s 0;Wy

Ž .compare 2.11 .
So far, the smoothing parameters l s luy1 are fixed. We now considerb b

Ž .their automatic choice. It is easy to see that the solution of 3.4 gives the
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minimizer of

pn n2 21r2 y1 b˜ 5 5y y w f q l u P f˜Ž .Ý Ýi i i b2is1 bs1

pn n2 2y1 b5 5s w y y f q l u P f ,Ž .˜Ý Ýiy i i b2is1 bs1

3.6Ž .

˜ 1r2 ˜where y s f y u rw and the y s w y are the components of yˆ ˜ ˜ ˜i iy iy iy i i i
Ž .defined before 3.5 . The y ’s are called the pseudo-data. The Newton]ĩ

Raphson procedure iteratively reformulates the problem to estimate the f ’si
Ž .from the pseudo-data by weighted penalized least squares. See Wang 1994

Ž .for further details. Wang 1994 proved the following lemma, which shows
that the pseudo-data approximately have the usual data structure if f is the
canonical parameter and f is not far from f.y

Ž .LEMMA 1. Suppose that b of 2.1 has two continuous derivatives and b0 is
< < Ž .uniformly bounded away from 0. If f y f s o 1 uniformly in i, theniy i

y s f q « q o 1 ,Ž .ĩ i i p

where « has mean 0 and variance wy1.i i

Ž .See also Gu 1990 .
wŽ . x ŽWahba 1990 , Section 9.2 suggested in the single smoothing parameter

. Ž .case that l be chosen by minimizing the generalized cross-validation GCV
score

˜ 25 51rn I y A l, u yŽ .Ž . ˜
3.7 V l, u s ,Ž . Ž . 21rn tr I y A l, uŽ . Ž .Ž .

Ž .where A l, u satisfies

1r2 1r2 ˜3.8 w f t 1 , . . . , w f t n 9 s A l, u yŽ . Ž . Ž . Ž .Ž . Ž . ˜Ž .1y l , u ny l , u

Ž Ž .. Ž .and f t i ’s are computed from the solution of 3.5 . She suggested that ll, u

Ž . Ž .be fixed, the Newton]Raphson iteration 3.3 be run to convergence, V l be
Ž .evaluated, a new l be chosen, the new V l be evaluated at convergence and

Ž . Ž .then l be chosen to minimize the V l so obtained. Gu 1992a provided an
argument why a better estimate would result from carrying out one step of
the Newton]Raphson iteration, minimizing the GCV score, carrying out a
second iteration with the new value of l and iterating to convergence. See

Ž .also Yandell 1986 .
Ž . Ž . 2In the case l f s y f y b f , the dispersion parameter is 1 and u rw si i i i i i i

Ž .2 Ž . Ž .y y Ey rvar y . As a result, Gu 1992a suggested that V be replaced byi i i
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U with s 2 s 1, giving the U criteria

1 22˜5 53.9 U l, u s I y A l, u y q tr A l, u ,Ž . Ž . Ž . Ž .Ž . ˜
n n

again arguing that U should be minimized at each step of the iteration.
Various criteria can be adopted to measure the goodness of fit of f to f.l, u

Let n be a given probability distribution on TT. We define the symmetrized
Ž . Ž .Kullback]Leibler distance SKL f , f with respect to n as SKL f , f sn l, u n l, u

1 w Ž . Ž .x Ž .KL f , f q KL f , f , where the KL distance KL f, f in then l, u n l, u n l, u2
Ž . Ž . w� Ž . Ž .exponential family case of 2.1 is given by KL f , f s H m t f t yn l, u

Ž Ž ..4 � Ž . Ž . Ž Ž ..4x Ž . Ž .b f t y m t f t y b f t dn t ; here m t is the expected value ofl, u l, u

< Ž Ž .. Ž .y t under the distribution h y, f t of 2.1 . Following the same argument as
Ž . Ž . Ž .in Gu 1992a , it is shown in Wang 1994 that U l, u is a proxy for SKLn

Ž .with n the sample design measure for the t i and f calculated from thel, u

Ž .solution of 3.5 . That is, the minimizer of U with respect to l, u can be
expected to be a reasonable estimate of the minimizer of SKL with respect ton

l, u with n the sample design measure.
Ž . Ž .By comparing 2.11 and 3.5 , it can be seen that RKPACK can be called at

Ž .each step of a Newton]Raphson iteration to solve 3.5 and can then be used
to minimize the V or U score at each step.

Ž .A simulation study to compare the iterated GCV criteria of 3.7 and the
Ž .iterated UBR criteria of 3.9 for Bernoulli data was carried out in Wang

Ž . Ž .1994 and further reported in Wang, Wahba, Chappell and Gu 1995 . In
that study, the iterated UBR outperformed the iterated GCV criteria in terms

Ž .of minimizing SKL f , f , and we will be using the former criteria in theˆ ˆl, u

analysis of Bernoulli data from WESDR.

4. Approximate Bayesian confidence intervals for exponential fam-
ilies. Bayesian ‘‘confidence intervals’’ for the cross-validated univariate

Ž .smoothing spline with Gaussian data were introduced by Wahba 1983 and
their ‘‘across-the-function’’ properties were suggested there, for functions in
an appropriate function space, and l was chosen according to a predictive
mean square criterion. The across-the-function property means that, if for
example, n s 100, then the 95% Bayesian ‘‘confidence intervals’’ will cover
about 95 of the 100 true values of the function being estimated, evaluated at

Ž . Ž .the data points. Nychka 1988, 1990 , Wang and Wahba 1995 and others
Ž .studied the properties of these intervals. Gu and Wahba 1993b extended

these confidence intervals componentwise to the Gaussian SS-ANOVA case,
and simulation results there suggested that the across-the-function property
was excellent for f with l, u estimated by GCV and that the component-l, u

wise intervals generally behaved reasonably well in the examples studied. Gu
Ž .1992c discussed the extension of these confidence intervals in the univariate
case for data from non-Gaussian distributions with convex log likelihood. In
this section we review these previous results and describe their extension to
the non-Gaussian convex log-likelihood smoothing spline ANOVA case.
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We first review the Bayes model associated with smoothing spline ANOVA
for Gaussian data and generalize the results to the case where the sampling
errors are not iid. Let MM s HH 0 [ Ýq HH b be the model space as before, withbs1

0 � 4 Ž . b Ž . q Ž .HH s span f , . . . , f , R s, t the RK for HH and Q s, t s Ý u R s, t .1 M b u bs1 b b

Ž .Define the stochastic process X t , t g TT, byj

qM
1r24.1 X t s t f t q b u Z t ,Ž . Ž . Ž . Ž .'Ý Ýj n n b b

ns1 bs1

Ž . Ž .where t s t , . . . , t 9 ; N 0, j I and Z are independent, zero mean Gauss-1 M b

Ž . Ž . Ž .ian stochastic processes, independent of t , with EZ s Z t s R s, t . Letb b b
qŽ . Ž . Ž . Ž . Ž .Z t s Ý u Z t . Then EZ s Z t s Q s, t . Suppose observations have'bs1 b b u

the form

4.2 y s X t i q « , i s 1, . . . , n , « , . . . , « 9 ; N 0, s 2Wy1Ž . Ž . Ž . Ž .Ž .i j i 1 n

2 Ž .with W positive-definite and known. Let nl s s rb. Following Gu 1992c
Ž . Ž . Ž . Ž .and Gu and Wahba 1993b and using 1.5.11 and 1.5.12 of Wahba 1990

Ž . Ž . Ž Ž . < . Ž .we have that for each t g TT f t s lim E X t y , where f ? isl, u j ª` j l, u

the minimizer in MM of
p

2y1 5 54.3 min y y f 9W y y f q nl u P f .Ž . Ž . Ž . Ý b b
bs1

The derivation of posterior means and covariances for the components of the
Ž . Ž .model 4.2 is a straightforward generalization of Gu and Wahba 1993b , who

provide the result with W s I. For reference below, the result is stated in
Appendix A. The componentwise confidence intervals will be used to aid in
model selection in the data analysis below.

Ž . Ž .Gu 1992c considers the univariate case where LL y, f is no longer
Ž .Gaussian, but convex and completely known except possibly for division by

an unknown dispersion parameter s 2, and f is assumed to have the same
Ž .prior distribution as lim X t , t g TT. Considering the single smoothingj ª` j

parameter case, he shows, upon setting nl s s 2rb, that the posterior distri-
Ž . < Ž .bution of f t y is approximately Gaussian with mean f t and covariancel

Ž . 2 y1the converged value of s W . Gu makes some remarks concerning the
precision of the estimate, remarking that it is likely to be better for larger l
and noting that it is primarily useful for obtaining the Bayesian confidence
intervals. He carried out a Monte Carlo experiment with a single predictor
variable and Bernoulli data and the results were highly suggestive that these
intervals do have reasonable across-the-function properties. Gu’s argument
extends word for word to the multicomponent smoothing spline ANOVA case
w Ž .xsee Wang 1994 , resulting in posterior covariances for the components of
the model. The result is stated in Appendix A.

To compute the approximate componentwise Bayesian confidence inter-
vals, we need to calculate the posterior variances given in Appendix A, based

Ž .on converged values. Gu and Wahba 1993b discussed calculation of these
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quantities for the Gaussian case when W s I, and a demonstration program
w Ž .xwith examples was added to the original RKPACK Gu 1989 in 1992. An

outline of how the computational algorithm in RKPACK is exploited to
compute the componentwise confidence intervals for W / I is given in Ap-

w Ž .xpendix A. GRKPACK Wang 1995 can be used to obtain SS-ANOVA esti-
mate of f with Bernoulli data as well as general binomial data and Poisson

Ž .and gamma data. GRKPACK minimizes 3.2 via the Newton]Raphson itera-
Ž .tion of 3.5 , using RKPACK as a subroutine, and provides for V, U and a

third option not discussed here for choosing l and u . The code may also be
used to compute the confidence intervals componentwise and for the entire
function f , using the estimated l and u , and converged values of u andˆ ˆl, u y
W . Computational details and program documentation may be found iny

Ž .Wang 1995 . The code is available by ftp to netlib.att.com in the file
netlib/ gcv / grkpack.shar.Z.

Results of a simulation study of the overall and componentwise Bayesian
Ž .confidence intervals with Bernoulli data may be found in Wang 1994 , using

the U option for the smoothing parameters. The means of the nominal
coverages were quite good even with sample sizes of only 200 and 400. As in
the Gaussian case the componentwise intervals were somewhat less reliable
than the intervals for the whole function. Although further study of the
properties of these intervals is warranted, they turned out to be quite useful
in our applications; see Section 6. We note that these across-the-function
studies are typically being carried out as though the unknown f is in fact an
element of the model space MM.

Ž .Recently Raghavan 1993 carried out an exhaustive study of the proper-
ties of the posterior distribution of the logit f in the case of Bernoulli data,
where f is considered to be a realization of the associated stochastic process.
She raises some interesting questions concerning the tail behavior of the
posterior. At this time we do not know what implications of these results
might be for the use of the Bayesian confidence intervals under the assump-
tion that f is an element of MM, since this is a different assumption than f a
realization of the stochastic process associated with the reproducing kernel of
the model space.

5. Selecting the model. In this discussion we assume that our goal is
prediction and that no model under consideration may be correct. We want to
select, from among the models being entertained, one or several which are
likely to have the best predictive capability, in some sense to be defined. The
value of U at the minimum could be compared for different models. However,

Ž .for nested models, this is not quite ‘‘fair,’’ since min U l , . . . , l Fl , . . . , l 1 p1 p
Ž .min U l , . . . , l , ` : setting l s ` is equivalent to deleting thel , . . . , l 1 py1 p1 py1

component in the pth penalized subspace from the model. It appears that one
should apply a ‘‘charge’’ to this minimization procedure for allowing the
minimization over l . What this charge should be in the SS-ANOVA contextp
is an interesting question to which we do not have the answer at the present
time.
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For sufficiently large data sets, we have the trivial but highly defensible
answer to the model selection problem, which is much favored in the super-
vised machine learning community: divide the data into a ‘‘training’’ set and

Ža ‘‘testing’’ set, fit each candidate model on the training set including
.choosing the smoothing parameters and select one or more of the fitted

models, on the basis of their predictive ability on the ‘‘testing’’ set. For
Ž .example, letting KL f , f be the selection criteria, we need only be con-ˆ ˆn l, u

w Ž . Ž .cerned with the so-called comparative KL distance yH m t f t yˆ ˆl, u

Ž Ž ..x Ž .b f t dn t since this quantity differs from the KL distance by a quantityˆ ˆl, u

which does not depend on f . This may be estimated on the testing set byˆ ˆl, u

1
KL s y y f t j y b f t j ,Ž . Ž .Ž . Ž .Ž .ˆ ˆ ˆ ˆÝn j l , u l , ua in test set jgtest set

where f has been fitted on the training set. That was done in the confer-ˆ ˆl, u

w Ž .xence proceedings Wahba, Gu, Wang and Chappell 1995 . In practice several
models may appear to be ‘‘close’’ by this procedure. In that case one might

Ž .like to retain all of the models which are not in some sense significantly
worse than the best model. How to define and quantify ‘‘significantly’’ here is
again an interesting question for which we do not have an answer.

ŽIf n is not large enough to set aside a test set, a second-level k-fold or
.n-fold cross-validation may be used to estimate the comparative KL distance

by dividing the data into k subsets, fitting the candidate model on the data
Žwith the kth subset left out presumably including refitting the smoothing

. Ž .parameters , estimating the comparative KL distance on the omitted test
subset and averaging over k estimates. This procedure can be extremely
computer intensive due to the smoothing parameter reestimation. It would be
interesting to develop a defensible variant of this procedure which does not
involve repeated reestimation of the smoothing parameters. A bias-corrected

Ž .bootstrap BCB can also be defined for estimating the comparative KL
w Ž . Ž .xdistance Efron and Tibshirani 1993 , Wang 1994 , and some reasonable

Ž .results with small data sets n ; 200 and a main effects model were
Ž .obtained in Wang 1994 . The BCB estimates were nearly the same as those

obtained by a second-level n-fold cross-validation. However, the BCB was not
Ž .satisfactory on the WESDR data set of n s 669 below because the smooth-

ing parameter estimates on the bootstrap samples tended to seriously overfit
the data in a substantial fraction of the bootstrap samples. We attributed this
to the fact that the UBR estimate for the smoothing parameters being used
here is assuming a dispersion parameter of 1, while what might be consid-
ered the effective dispersion parameter of the bootstrap samples must be less
than 1, since in large data sets some observations are likely to be resampled
many times. It remains an open question whether some variant of the BCB
can be successfully developed in this context.

6. Wisconsin Epidemiological Study of Diabetic Retinopathy. The
WESDR is an ongoing epidemiological study of a cohort of patients receiving
their medical care in an 11-county area in southern Wisconsin, who were first
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examined in 1980]1982, then again in 1984]1986 and 1990]1992. Detailed
descriptions of the data have been given by Klein, Klein, Moss, Davis and

Ž .DeMets 1988, 1989c and references therein. All younger onset diabetic
Ž .persons defined as less than 30 years of age at diagnosis and taking insulin

and a probability sample of older onset persons receiving primary medical
care in an 11-county area of southwestern Wisconsin in 1979]1980 were
invited to participate; 1210 younger onset patients were identified, of which
996 agreed to participate in the baseline examination, and of those, 891
participated in the first followup examination. The older onset persons fell
into two groups: older onset taking insulin and older onset not taking insulin.
Data from these groups were also analyzed and the results were reported in

Ž .Wang 1994 , but not here.
A large number of medical, demographic, ocular and other covariates were

recorded at the baseline and later examinations along with a retinopathy
Ž .score for each eye to be described . Relations between various of the covari-

ates and the retinopathy scores have been extensively analyzed by standard
statistical methods including categorical data analysis and parametric GLIM
models, and the results have been reported in the various WESDR

Ž .manuscripts. See Klein, Klein, Moss, Davis and DeMets 1984a, b, 1989a, b ,
Ž .Klein, Klein, Moss, DeMets, Kauffman and Voss 1984 and Klein, Klein,

Ž .Moss and Cruickshanks 1994a, b . Thus, the present study has benefited
from the previous analyses. It was our goal to see whether or not further
information might be extracted via SS-ANOVA, and if so, to demonstrate its
use. We limited this first study to developing a predictive model for progres-

Ž .sion to be defined of diabetic retinopathy at the first followup, as a function
of some of the covariates available at baseline. We only list the covariates
pertinent to our analysis:

Ž .1. agb: age at the baseline examination years ;
Ž .2. agd: age at diagnosis years ;

3. dur: duration of diabetes at baseline (agd+ dur = agb);
Ž .4. gly: glycosylated hemoglobin, a measure of hyperglycemia % ;

Ž .5. bmi: body mass index weight in kilogramsrheight in meters, squared .

At the baseline and followup examinations, stereoscopic color fundus pho-
tographs of each eye were graded in a masked fashion using the modified
Airlie House classification system. Grading protocols have been described in

Ž .detail elsewhere; see Klein, Klein, Moss, Davis and DeMets 1989a, b . At
baseline and the four-year followup, each eye was given one of six retinopathy

Ž . Žseverity score grades: 10 no retinopathy , 21, 31, 41 or 51 nonproliferative
. Ž .retinopathy or 60 q proliferative retinopathy . In the WESDR, a retinopa-

thy severity score was also assigned to each participant by giving the eye
wwith the higher score greater weight. See Klein, Davis, Segal, Long, Harris,

Ž .xHaug, Magli and Syrjala 1984 . For example, the level for a participant with
level 31 retinopathy in each eye is specified by the notation ‘‘level 31r31,’’
whereas that for a participant with level 31 in one eye and less severe
retinopathy in the other eye is noted as ‘‘level 31r- 31.’’ This scheme
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provided an 11-step scale: 10r10, 21r- 21, 21r21, 31r- 31, 31r31, 41r- 41,
41r41, 51r- 51, 51r51, 60 q r- 60 q and 60 q r60 q . In the WESDR

Ž . Žstudy, progression y for a participant with nonproliferative or no retinopa-i
.thy at baseline is defined to be 1 if the participant had hisrher baseline level

Žincreased two steps or more 10r10 to 21r21 or greater, or 21r- 21 to
.31r- 31 or greater, for instance , and 0 otherwise. Our aims are to find risk

factors and to build models for prediction of progression of diabetic retinopa-
thy.

We report an analysis of a subgroup of the younger onset population,
Žconsisting of 669 subjects with no or nonproliferative retinopathy scores of

.51r51 or better at the start and no missing data for the variables we
Ž� 4. Ž . Ž f .studied. Since we will be analyzing Bernoulli 0, 1 data, b f s log 1 q e .

The averaging operators, penalty functionals and reproducing kernels used
are given in Appendix B. This group has been called the younger onset
progression group and was analyzed in Klein, Klein, Moss, Davis and DeMets
Ž .1988 . The sample size differs slightly from Klein, Klein, Moss, Davis and

Ž .DeMets 1988 due to different missing data patterns. The remainder of the
891 subjects either had proliferative retinopathy at the start or had missing
data.

Ž .Klein, Klein, Moss, Davis and DeMets 1988 reported that gly is a strong
predictor of progression of diabetic retinopathy in the younger onset group.
Figure 1 there suggests that dur has a nonlinear effect on the probability of
progression. Four individual univariate spline fits for risk of progression as
functions, respectively, of gly, agb, dur and bmi suggested that the effect of
gly was very strong and fairly linear in the logit and that agb, dur and bmi
were strong and nonlinear. Some exploratory GLIM modeling using the SAS

w Ž .x Ž .procedure LOGISTIC SAS Institute 1989 suggested agb,bmi andror
Ž .dur,bmi interactions might be present. We entertained the model

f dur, gly, bmi s m q f dur q a ? glyŽ . Ž .1 2

q f bmi q f dur, bmiŽ . Ž .3 13

6.1Ž .

Ž .and also the model 6.1 with agb replacing dur.
These two models gave qualitatively very similar results, suggesting the

possibility, previously considered by the WESDR study, that agb may be
considered as a proxy for dur, the relevant predictor being the length of time
the subject is exposed to diabetes. To see whether there was an effect of age
over and above that explained by dur, it was decided to fit a model using

Ž .agd, dur, gly and bmi. Recall that agd + dur = agb. General main effects
for agd, dur, gly and bmi were included, along with general interaction
terms for agd,dur and agd,bmi. The gly smooth part and the agd,bmi
interaction term turned out to be of negligible size in a practical sense
compared to the other terms. After deleting these terms, the model

f agd, dur, gly, bmi s f agd q f dur q a ? glyŽ . Ž . Ž .1 2 3

q f bmi q f agd, bmiŽ . Ž .4 14
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was fitted and the Bayesian confidence intervals were computed for f. The
components for agd were not obviously negligible at the fitting stage. How-
ever, plots of cross sections of f versus agd at the median gly and several
levels of dur plotted along with the confidence intervals for f showed that a
constant function of agd was in the interior of all of the confidence bands,

Ž .suggesting that the somewhat difficult to interpret marginal dependence on
agd, taking into account dur, was probably not meaningful. Therefore, we

Ž .adopted the model of 6.1 as our SS-ANOVA model. Without the f term,13
Ž .the model 6.1 would correspond to an additive model with cubic smoothing

Ž .splines for the smooth, also described in Hastie and Tibshirani 1990 and
Ž .Chambers and Hastie 1992 . An examination of the size of the fitted f13

term, along with cross sections of its confidence intervals revealed that it was
Žnot negligible in a practical sense, i.e., negligibly small compared to the other

.terms in the model and, although the confidence intervals were wide, there
was a reasonably sized region where they did not cover 0. For this reason f13
was retained in the model. The fitting procedure, which is based on a proxy
for the SKL distance of the fit from the truth, has, by its choice of smoothing

Žparameter, suggested that this term does belong in the model. Other in
. Žsample procedures for reexamining whether to retain f are possible as13

.noted by a referee ; for example, we could have examined the minimum
Ž .U l, u with and without the f term, and the cosine diagnostics in Gu13

Ž .1992a could also have been examined. Absent objective methods for inter-
preting the results of these examinations, we have used informal methods
and confidence intervals here. Analysis of all three models are in Wang
Ž .1994 .

The left panel in Figure 1 gives a scatterplot of dur versus bmi, with the
solid circles representing patients with four-year progression of retinopathy

FIG. 1. Left: Data and contours of constant posterior standard deviation. Right: Estimated
probability of progression as a function of duration and body mass index for glycosylated
hemoglobin fixed at its median.
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and open circles representing those without progression of retinopathy. The
contour lines in this panel are level curves of constant posterior standard
deviation of the overall fit f , evaluated at the median value of gly. Theˆ ˆl, u

heavy curve is the 0.5 contour. Note that this heavy curve provides a
reasonable boundary defining a data-dense region. The right panel gives a
three-dimensional plot of the estimated probability of progression
Ž .p dur,bmi,gly as a function of dur and bmi for gly fixed at its median

Ž .value, from the SS-ANOVA fitted model 6.1 . This three-dimensional plot
covers only the region enclosed by the 0.5 level curve of the left panel. Outside
this region, the fit is not considered reliable. Plots of multivariate SS-ANOVA
fits carried into regions of very sparse or no data can be assumed to be
meaningless and can appear visually ugly and misleading. Therefore, it is
useful to have this readily computable method for determining a reasonable
region over which the fits are to be taken at face value. Figures 2 and 3 give

Ž .slices of p dur,bmi,gly , with the cross sections of Figure 2 plotted as a
function of dur for four levels of bmi and gly, and the cross sections of Figure
2 plotted as a function of bmi for four levels of dur and gly. These levels are
at the 12.5th, 37.5th, 62.5th and 87.5th percentiles of the bmi and gly values.

FIG. 2. Estimated probability of progression as a function of dur for four levels of bmi by four
levels of gly.
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FIG. 3. Estimated probability of progression as a function of bmi for four levels of dur by four
levels of gly.

Ž .Figure 4 gives slices of p solid lines and their Bayesian confidence intervals
Ž .dotted lines plotted as a function of dur for three levels of bmi,gly, and
Figure 5 gives slices and their Bayesian confidence intervals as a function of
bmi for three levels of dur,gly. The three levels are at the 25th, 50th and
75th percentiles. For the convenience of a reader who might like to find his or
her probability of four-year progression in Figures 2]5, Table 1 gives the
correspondence between the percentiles and the physical units.

w Ž .xAs previously reported Klein, Klein, Moss, Davis and DeMets 1988 ,
increases in glycosylated hemoglobin at baseline are associated with in-
creases in the risk of progression of diabetic retinopathy over the first four
years of the study. At most durations of diabetes or glycosylated hemoglobin
levels at baseline, the risk of four year progression of retinopathy increases
with increasing body mass index at baseline until a value of about 25 kgrm2,
after which there was flattening, except at the longer durations, where risk of
progression continues to increase with body mass index. However, the confi-
dence intervals are fairly wide at this part of the surface. These relations of
body mass index to progression of retinopathy were not found in earlier
analysis and the reasons for these findings are not known.
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FIG. 4. Estimated probability of progression and Bayesian confidence intervals as a function of
dur for three levels of bmi by three levels of gly.

The risk of progression of retinopathy as a function of duration at baseline
increases up to a duration of about 10 years, when it then decreases. Several
explanations for this decrease are possible. The frequency of other factors
associated with higher risk of progression of retinopathy, which were not
included in these analyses, may decrease in people with longer duration of
diabetes. These findings may also be due to censoring due to death in people

Žwith longer duration of diabetes if people with longer duration of diabetes
whose retinopathy progressed in the interim are more likely to not get
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FIG. 5. Estimated probability of progression and Bayesian confidence intervals as a function of
bmi for three levels of dur by three levels of gly.

TABLE 1

Percentile 12.5 25 37.5 50 62.5 75 87.5

Ž .dur years 3.3 5.4 7.1 9.2 11.5 15.3 21.6
Ž .gly % 9.6 10.7 11.5 12.2 13.2 14.1 15.4

2Ž .bmi kgrm 18.7 20.6 21.7 22.9 23.9 25.2 27.0
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examined at the four-year followup due to death than people with long
.duration of diabetes whose retinopathy did not progress .

7. Computational considerations. A detailed discussion of the compu-
Ž .tations may be found in Wang 1995 . RKPACK is based on matrix decompo-

Ž 3.sitions, generally O n . Since the GRKPACK algorithm calls RKPACK
Ž 3.iteratively, it also uses O n operations. For the models we tried, it usually

took from one to up to as much as eight hours on our Decstation 3000r400
alpha workstation, depending on the number of smoothing parameters being
estimated. The calculations as presently performed require the storage of two
n = n matrices for each smoothing parameter to be fitted, so that storage
requirements are also relatively high. The biggest data set we have run with
five to seven smoothing parameters is about 800. The cost is still negligible,
compared with the cost of collecting data like the WESDR data, and, we
trust, not large considering the potential for extracting interpretable informa-
tion from very expensive data sets. Numerical methods for efficiently apply-
ing SS-ANOVA with multiple smoothing parameter estimation to much
larger data sets is an area of active research. One tool to consider is to

Ž . Ž .approximate the span of the n q M basis functions in 2.10 by a carefully
Ž .chosen subset. The variational problem of 3.2 is then solved in this lower

Ž .dimensional subspace. This approach was proposed in Wahba 1980 for the
special case of thin plate splines, and has been developed and implemented

Ž . Ž .by Hutchinson 1984 in ANUSPLIN, Hutchinson and Gessler 1994 , O’Sul-
Ž . Ž .livan 1990 , Luo and Wahba 1995 and others. See also the discussion in

Ž .Section 7 of Nychka, Wahba, Goldfarb and Pugh 1984 and references cited
therein. Numerical methods appropriate for solving the variational problem
on a set of basis functions with a single smoothing parameter are imple-

w Ž .xmented in GCVPACK Bates, Lindstrom, Wahba and Yandell 1987 and can
be extended to the multiple smoothing parameter case. Extension of these
so-called hybrid methods to the exponential family SS-ANOVA case are an

Ž .area of active research Z. Luo and D. Xiang, personal communications .
Criteria with various goals in mind may be adopted to choose the basis
functions. The second tool is to exploit and extend the randomized trace

Ž . Ž .technique in Girard 1987, 1989, 1991 and Hutchinson 1989 , possibly in
conjunction with iterative methods for solving the variational problem that

wavoids matrix decompositions. This too is an area of active research Golub
Ž . xand Von Matt 1995 , J. Gong, personal communication . This has been done

in a single smoothing parameter Gaussian case in Wahba, Johnson, Gao and
Ž .Gong 1995 , where a conjugate gradient algorithm for the variational prob-

lem is employed and the number of conjugate gradient iterations is also
considered as a parameter.

A referee has asked us to discuss the relationship between the estimation
w Ž .procedure here and the backfitting algorithm Hastie and Tibshirani 1990

Ž . Ž .x Ž .HT , Chambers and Hastie 1992 . We do that here. HT Section 5.2.3
discussed backfitting in the context of the general SS-ANOVA problem of
Ž . Ž . Ž . Ž .2.8 as earlier set up by Chen, Gu and Wahba 1989 . Referring to 2.8 ] 2.11 ,
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Ž . M Ž . Ž . n Ž Ž . . Ž .let f t s Ý d f t and let f t s Ý c u R t i , t . Then f ? s0 ns1 n n b is1 i b b l, u

Ž . n Ž . Ž .f ? q Ý f ? , with c and d satisfying 2.11 , is the minimizer over f in MM0 bs1 b

of
pn

2 2b5 57.1 y y f t i q l P f ,Ž . Ž .Ž .Ž .Ý Ýi b
is1 bs1

y1 ˜ ˜Ž . Ž . Ž .where we have set l s nlu . Now define f ? s f ? and f ? sb b 0 0 b
n Ž Ž . .Ý c R t i , ? , for arbitrary c . In what follows it will be useful to recallis1 ib b ib

˜ 2 b ˜ 2 X5 5 5 5 Ž .that f ' P f s c R c , where c s c , . . . , c 9 and R is theb b b b b b 1b nb b

Ž Ž . Ž .. Ž .n = n matrix with ijth entry R t i , t j ; see Wahba 1990 . HT observeb

Ž .that the minimizer of 7.1 in the span of all functions of the form
˜ ˜ ˜� Ž . Ž . Ž .4f ? , f ? , . . . , f ? is obtained by finding d and c , b s 1, . . . , p, to mini-0 1 p b

5 p 5 2 p Xmize y y Sd y Ý R c q Ý l c R c . They remark that there arebs1 b b bs1 b b b b

pn q M unknowns, since the c have been replaced by c . They note that thei ib
˜ ˜ ˜Ž .vector smooths corresponding to the minimizers f ' Sd and f ' R c0 b b b

satisfy the backfitting equations

˜ ˜7.2 f s S y y f , g s 0, 1, . . . , p ,Ž . Ýg g až /
a/g

Ž .y1with the smoother matrix S given by S s S S9S S9 and the other0 0
Ž .y1smoother matrices S given by S s R R q l I , b s 1, . . . , p. The back-b b b b b

˜ ˜ ˜fitting algorithm solves for f and f , b s 1, . . . , p, by cycling through f s0 b g
˜Ž .S y y Ý f , g s 0, 1, . . . , p. The backfitting algorithm is known to con-g a /g a

verge if the Frobenius norm of each product S S is less than 1.a b

The last p backfitting equations are equivalent to
p

7.3 R l c q R c s R y y Sd , b s 1, . . . , p.Ž . Ž .Ýb b b a a bž /
as1

Now suppose l c s nlc for some c, a s 1, . . . , p. Recalling that l s nluy1,a a a a

this would give
p

7.4 R nlI q u R c s R y y Sd , b s 1, . . . , p.Ž . Ž .Ýb a a bž /
as1

Ž p .Thus if c satisfies nlI q Ý u R c s y y Sd, then c s u c, b s 1, . . . , p,bs1 b b b b

satisfies the backfitting equations. Thus, despite the apparently larger num-
ber np q M of unknowns compared to the n q M unknowns in the present

˜formulation, the backfitting solutions f , g s 0, 1, . . . , p, are, at convergence,g

equivalent to solving

7.5 Q q nlI c q Sd s y ,Ž . Ž .u

7.6 S9c s 0Ž .
˜ ˜ w Ž .for c and d and setting f s Sd, f s u R c. Equation 7.6 follows by0 b b b

Ž .observing that the first backfitting equation becomes Sd s S y y Q c .0 u

Ž . Ž . Ž .Substituting this into nlI q Q c s y y Sd results in nlc s I y S =u 0
Ž . Ž . xy y Q c , which entails 7.6 . This result, while not immediately evidentu
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w Ž . xfrom HT see ii on page 113 is not surprising since we are solving a
variational problem in MM, and the setup in HT is equivalent to solving the

Ž .same variational problem in a certain np q M -dimensional subspace of MM
which contains the n-dimensional subspace in which the solution lies. Note

˜that c is not necessarily unique but the f are, provided that S is of fullg

column rank. In the SS-ANOVA context with given smoothing parameters,
the backfitting algorithm, then, is essentially an alternative method for

Ž . Ž .solving 7.5 and 7.6 . As noted in HT, in many important applications there
is special structure to the smoother matrices S , and when this can be takenb

advantage of, implementations of the backfitting algorithm can be much
faster than the methods of the present paper. In the case of completely

Ž . Ž .general S , however, direct solution of 7.5 and 7.6 can be expected to beb

faster.
The algorithms embodied in RKPACK and GRKPACK are driven by two

Ž .considerations: 1 the requirement that the smoothing parameters be chosen
Ž .by GCV or UBR and 2 no special structure is assumed in the R . Theb

algorithmic procedures were specifically designed to handle the unstructured
case. When special structure is available, cheaper algorithms are available.

We now turn to choosing multiple smoothing parameters via GCV and
then UBR in the context of the backfitting algorithm.

ŽIt has been suggested see the discussion of the BRUTO algorithm in HT
. Ž . Ž . pSection 9.4.3 that tr A l, u ' tr A l , . . . , l be approximated by Ý tr S1 p gs0 g

Ž .in the definition of the GCV function V of 2.12 , to give
p ˜ 25 5y y Ý fgs1 gB7.7 V l , . . . , l s .Ž . Ž .1 p 2p1 y 1rn M q Ý tr SŽ .Ž .bs1 b

The minimization of V B with respect to l for the other smoothing parame-b

ters fixed could be done at the b th step in each cycle of the backfitting
algorithm. This could be done in general with a matrix decomposition of each

ŽR . In contrast, RKPACK uses a variant of Newton’s method includingb

.derivative information to minimize the GCV or UBR function in all of the
smoothing parameters simultaneously, where each iteration of the Newton
descent costs one matrix decomposition. In the case of the main effects only

Ž .model, where each main effect f ? is a univariate polynomial spline, thea
˜ Ž .smooth of z ' y y Ý f , as well as tr S can be obtained at a cost O nb g / b g g

from, for example, spline.smooth or one of the univariate spline codes in
netlib/ gcv. These codes make use of the special structure that obtains for
certain matrices associated with the computation of the polynomial smooth-
ing splines in one variable. A good place to read about this special structure is

wŽ . xGreen and Silverman 1994 , Section 2.6 .
If all the S are pairwise orthogonal, S S s 0 for a / b, theng a b

Ž . p BA l , . . . , l s Ý S and the BRUTO approximation V to V is exact.1 p gs0 g

This approximation can be expected to be better or worse according as S isb

‘‘close’’ to orthogonal to S . A cheap diagnostic for this might bea
2 2'tr R R r tr R tr R . In the case of the main effects model with each'a b a b
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main effect a polynomial smoothing spline, the implied S and S can bea b

expected to be close to orthogonal for reasonably distributed data, and an
Ž . Ž 3.O n rather than O n algorithm employing backfitting is available via the

use of the backfitting algorithm, including the use of GCV to choose the
smoothing parameters; see HT. Due to this near orthogonality, it is to be

Žexpected that the results would be similar to those obtained more expen-
.sively by RKPACK. As the S become less mutually orthogonal, this approxi-b

mation may eventually break down as a good procedure for implementing
GCV or UBR. In any case, properties of this approximation in the general
nonorthogonal case remain to be obtained. Similar remarks in the Bernoulli
case using UBR could also be made. In the non-Gaussian, nonorthogonal
case, it can be expected that the estimation of the smoothing parameters by
UBR will be sensitive to the particular way in which the backfitting iteration,
the iterative calculation of the c and the search for the l are arranged; seeb b

Ž .Gu 1992a . Properties and relative timing in the unstructured, nonorthogo-
nal case remain to be investigated.

Since cheap diagnostics for orthogonality are available, it is intriguing to
speculate whether GRKPACK could be combined with backfitting to take

Ž .advantage of the strengths of both. For example, the components subspaces
in data space could be grouped so that groups are orthogonal while within
group subspaces are not. One might then call GRKPACK as a subroutine for
each group within a backfitting algorithm.

8. Conclusions. We have developed a flexible family of models for risk
Ž .factor estimation and other statistical problems which provide an inter-

pretable alternative to the rigid parametric GLIM models, for use when the
GLIM models may not be adequate. The models can be used as tools to check
whether GLIM models are adequate. We were motivated by the possibility of
describing interesting relationships in data from large epidemiologic studies
that might not be found by more traditional methods, and we have demon-
strated this possibility through an analysis of WESDR data. Further work
remains to be done in formalizing model selection procedures and in develop-
ing computational techniques which will allow analysis of much larger data
sets than we have analyzed here. The extension of the approach to survival
data, to longitudinal data and to a variety of other data structures and types
of responses arising in epidemiologic studies is certainly feasible, although
the details may be nontrivial to implement.

APPENDIX

A. Details of Bayesian confidence intervals. The calculation of pos-
Ž . Ž .terior means and covariances for the components of the model 4.1 and 4.2

as j ª ` and nl s s 2rnb is a straightforward generalization of Gu and
wŽ . xWahba 1993b , Theorem 1 with M s Q q nlI there replaced by M su

Q q nlWy1. We reproduce the result here to use in the description below ofu
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how they can be calculated in the non-Gaussian case with the aid of
y1 Ž . Ž . Ž .RKPACK. Letting M s Q q nlW , g t s t f t and g t su 0, n n n b

1r2 Ž .b u Z t , n s 1, . . . , M, b s 1, . . . , q, then' b b

<E g t y s d f t ,Ž . Ž .Ž .0, n n n

n

<E g t y s c u R t , t i ,Ž . Ž .Ž .Ž . Ýb i b b
is1

1 y1X y1<Cov g t , g t y s f t f t e S9M S e ,Ž . Ž . Ž . Ž . Ž .Ž .0, n 0, m n m n mb
1

<Cov g s , g t y s yd s f t ,Ž . Ž . Ž . Ž .Ž .b 0, n n , b nb

A.1Ž .

n1
<Cov g s , g t y s u R s, t y c s u R t , t i ,Ž . Ž . Ž . Ž . Ž .Ž .Ž . Ýb b b b i , b b bb is1

n1
<Cov g s , g t y s y c s u R t , t i ,Ž . Ž . Ž . Ž .Ž .Ž . Ýg b i , g b bb is1

Ž Ž . Ž .. Ž .where e is the n th unit vector and d t , . . . , d t s d t 9 andn 1, b M , b b

Ž Ž . Ž .. Ž .c t , . . . , c t s c t 9 are given by1, b n, b b

u R t , t 1Ž .Ž .b b

.y1y1 y1 .A.2 d t s S9M S S9M ,Ž . Ž . Ž .b .� 0u R t , t nŽ .Ž .b b

u R t , t nŽ .Ž .b b

.y1y1 y1 y1 y1 .A.3 c t s M y M S S9M S S9M .Ž . Ž . Ž .b .� 0u R t , t nŽ .Ž .b b

Ž .Gu’s 1992c Theorem 3.1 extends directly to the SS-ANOVA model consid-
Ž .ered here; see Wang 1994 . We state the result:

Ž . Ž . Ž . Ž .THEOREM. Let z , h be any one of t f t , t f t , u Z t and u Z t''n n m m b b a a

Ž < .for arbitrary points s and t. The posterior density p z , h y is approximatelyˆ
Ž .Gaussian with mean and covariance given in A.1 .

To compute the componentwise Bayesian confidence intervals in the non-
Ž .Gaussian case we need to calculate the posterior covariances as in A.1 ; W is

taken as the converged value of W and l and u are taken as the convergedy
estimates; s 2 s 1 if there is no nuisance variance parameter and b s s 2rnl.
The computational algorithm in RKPACK accommodates this calculation
since

y1y1 y1d s S9M S S9M y ,Ž .
A.4Ž .

y1y1 y1 y1 y1c s M y M S S9M S S9M yŽ .
is the solution to the system Mc q Sd s y, S9c s 0, which is solved by

Ž .RKPACK. Thus, by making the right substitutions in A.4 , that is, by
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replacing y by

u R t , t 1Ž .Ž .b b

.. ,.� 0u R t , t nŽ .Ž .b b

Ž . Ž .the numerical methods in RKPACK can be exploited to obtain d t and c tb b
1r2 1r2 1r2 Ž Ž ..in the W s I case. Let Q s W Q W , S s W S, R t, t iW , u u W W , b

Ž Ž ..s w R t, t i and M s Q q nl I. We can then calculate' i b W W , u

Ž X y1 .y1 Ž . Ž . y1r2 Ž .S M S , d t and c t s W c t exactly the same way as inW W W b W , b b

Ž .Gu and Wahba 1993b by replacing R there by R . We then haveb W , b

Ž y1 .y1 Ž X y1 .y1 Ž . Ž . 1r2 Ž .S9M S s S M S , d t and c t s W c t .W W W b b W , b

B. RK’s used in the WESDR example. In the analysis of the WESDR
data, all of the predictor variables were considered as continuous variables on

w xthe real line, and each variable was rescaled to 0, 1 by mapping the smallest
Ža . w xand largest values to 0 and 1, respectively. Thus, TT s 0, 1 , all a . The
w x Ža .measures m were all taken as Lebesgue measure on 0, 1 , HH was takena

� 1 Ž .as the reproducing kernel space g: g, g 9 abs. cont., H g u du s 0,0
1w Ž .x2 4 Ža .H g 0 u du - ` , HH was taken as the one-dimensional space of multi-0 p

Ž . Ža .ples of u y 1r2 i.e., linear functions averaging to 0 and HH was thes
Ža . Ž . Ž . 1w Ž .x2subspace of HH of functions satisfying g 0 y g 1 s 0; H g 0 u du is0

then a square norm on HH Ža .. With this norm, the reproducing kernels fors
HH Ža . and HH Ža ., respectively, are given byp s

R Ža . u , v s u y 1r2 v y 1r2 ,Ž . Ž . Ž .HHp

w xŽa .R u , v s k u k v y k u y v ,Ž . Ž . Ž . Ž .HH 2 2 4s

B.1Ž .

Ž . w xwhere l!k u is the lth Bernoulli polynomial and x is the fractional partl
of x; HH Ža . and HH Ža . will be orthogonal subspaces of HH Ža . if HH Ža . is endowedp s

5 5 2 w Ž . Ž .x2 1w Ž .x2with the square norm g s g 1 y g 0 q H g 0 u du. Further details0
wŽ . xmay be found in Wahba 1990 , Chapter 10 . In a preliminary conference pro-

wceedings study of non-Gaussian SS-ANOVA Wahba, Gu, Wang and
Ž .x 0Chappell 1995 , a categorical variable was included in HH .
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