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REML ESTIMATION: ASYMPTOTIC BEHAVIOR
AND RELATED TOPICS
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University of California, Berkeley

The restricted maximum likelihood (REML) estimates of dispersion
parameters (variance components) in a general (non-normal) mixed model
are defined as solutions of the REML equations. In this paper, we show
the REML estimates are consistent if the model is asymptotically identi-
fiable and infinitely informative under the (location) invariant class, and
are asymptotically normal (A.N.) if in addition the model is asymptotically
nondegenerate. The result does not require normality or boundedness of
the rank p of design matrix of fixed effects. Moreover, we give a necessary
and sufficient condition for asymptotic normality of Gaussian maximum
likelihood estimates (MLE) in non-normal cases. As an application, we
show for all unconfounded balanced mixed models of the analysis of
variance the REML (ANOVA) estimates are consistent; and are also A.N.
provided the models are nondegenerate; the MLE are consistent (A.N.) if
and only if certain constraints on p are satisfied.

1. Introduction. The restricted or residual maximum likelihood (REML)
method was proposed by Thompson (1962) as a way of estimating dispersion
parameters associated with linear models. Several authors have given
overviews on REML, which will be given in the sequel.

Although the REML method has been used and studied over the past 30
years, questions remain on how good REML is compared with other esti-
mates. Some of the questions are related to the asymptotic behavior of the
REML estimates, especially when the rank p of design matrix of fixed effects
tends to infinity. In such cases it is well known, by the Neyman-Scott
example [Neyman and Scott (1948)], that the maximum likelihood estimates
(MLE) can be inconsistent. What can we say about the REML estimates? And
under what condition will the MLE be consistent (asymptotically normal)?
Furthermore, can the REML estimates obtained under normality still per-
form well asymptotically in nonnormal cases? In particular, is it true that for
balanced data the ANOVA estimates, which agree with solutions of REML
equations under normality, are always consistent even if normality does not
hold and p — «? These questions, along with others, will be investigated in
this paper.

The REML method was put on a broad basis for unbalanced data by
Patterson and Thompson (1971). Surveys of REML can be found in articles of
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Harville (1977), Khuri and Sahai (1985) and Robinson (1987) and in a recent
book by Searle, Casella and McCulloch (1992). Different derivations of the
REML show it may also be regarded as a method of marginal likelihood
[Harville (1974) and Verbyla (1990)] or modified profile likelihood
[Barndorff-Nielsen (1983)]. Other areas in which REML has been used in-
clude the following: estimating smoothing parameters in penalized estima-
tion [Wahba (1990); see Speed (1991) for discussion]; the estimation of
parameters in ARMA processes and other time series in the presence of fixed
effects [Cooper and Thompson (1977) and Azzalini (1984)]; REML estimation
in spatial models [Green (1985) and Gleeson and Cullis (1987)]; the analysis
of longitudinal data [Laird and Ware (1982)]; and REML estimation in
empirical Bayes smoothing of the census undercount [Cressie (1992)].
Consider a general mixed model

(1) y=XB+Zja,+ - +Z,a, + ¢,

where y is an N X 1 vector of observations; X is an N X p known matrix of
full rank p; B isa p X 1 vector of unknown constants (the fixed effects); Z; is
an N X m; known matrix; «; is an m; X 1 vector of i.i.d. random variables
with mean 0 and variance o;®> (the random effects), i = 1,...,s; and ¢ is an
N X 1 vector of i.i.d. random variables with mean 0 and variance o/ (the
errors).

Asymptotic results for the mixed model (1) are few in number, with or
without normality assumptions. Assuming normality and assuming that the
model has a standard ANOVA structure with the number p = rank(X) fixed,
Miller (1977) considered the MLE for both fixed effects and variance compo-
nents of, of,..., 02 He formulated a set of conditions under which the
consistency and asymptotic normality of a sequence of solutions of the
likelihood equations were proved. He also noted that normalizing sequences
of different orders of magnitude might be required for estimates of different
parameters. Under conditions slightly stronger than those of Miller (in
particular, with normality and p fixed), Das (1979) obtained a similar result
for the REML estimates and found that in his situation the REML estimates
and the MLE are in some sense equivalent. In a quite different direction,
Speed (1986) proved that in the balanced case with p = 1 the usual ANOVA
estimates of variance components are consistent without assuming normality.
Also without normality, Westfall (1986) obtained asymptotic normality of the
ANOVA estimates of variance components for unbalanced mixed models with
a nested structure; Brown (1976) proved asymptotic normality of C. R. Rao’s
MINQUE, and the so-called I-MINQUE [e.g., Rao and Kleffe (1988), Section
9.1] under replicated error structure [e.g., Anderson (1973)]. Recently, asymp-
totic behavior of the REML estimates was discussed by Cressie and Lahiri
(1993) and by Richardson and Welsh (1994). Normality was assumed in the
first paper but not in the second, although the second was restricted to
hierarchical (nested) models. However, p was held fixed in both studies. It
should be pointed out that when p is fixed or bounded, the REML estimates
and the MLE for the variance components are equivalent in the sense that
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their suitably normalized difference converges to zero in probability (and
hence there would be no essential difference asymptotically between the two
estimates). It follows that the boundedness of p is a serious restriction, and
an important and interesting question regarding the (possible) superiority of
REML over straight ML in estimating the variance components is how do the
REML estimates behave asymptotically when p — oo,

Our main goal is to establish a general theorem on the asymptotic behav-
ior of the REML estimates for the dispersion parameters (variance compo-
nents) in model (1) without any assumption on the structure of the model
(such as balancedness, nestedness or ANOVA design), boundedness of p and
normality. This may sound confusing because the REML estimates are
usually, if not always, defined under normality. One obvious approach is to
use the true likelihood of A'y, where A is an N X (N — p) matrix of full rank
with A’X = 0. However, such likelihood may not have a simple closed form.
Furthermore, the estimates thus obtained may depend on A, which will not
occur with the normal likelihood. An alternative is to treat the REML
estimates as a kind of M-estimates [e.g., Huber (1981)], that is, solutions of
the REML equations, taking into account the nonnegativity constraints. We
employed the second definition. Similarly we treat the Gaussian MLE in the
nonnormal cases.

Before we give the general result, we want to take a look at a simple case
of (1), the balanced case. For balanced data the REML solutions are identical
to the ANOVA estimates, and this is true whether normality is assumed or
not [e.g., Searle, Casella and McCulloch (1992), page 253]. It is well known
that for balanced data the ANOVA estimates are best quadratic unbiased
estimates (best unbiased estimates under normality). However, it is not clear
whether in all balanced cases the ANOVA estimates are consistent (asymp-
totically normal) even without normality and possibly with p — o, although
one would expect such a result. Results covering special cases are available
[see Speed (1986) and Westfall (1986)]. It is well known that, with p — «, the
MLE for variance components can be inconsistent, but it is also not clear
under exactly what conditions the MLE will be consistent (asymptotically
normal). In particular, is it true that under normality and with p fixed for all
balanced mixed ANOVA models the MLE are asymptotically normal and
efficient in the sense of attaining the Cramér—Rao lower bound? Such results
are, of course, expectable, and simple examples have been discussed in, for
example, Hartley and Rao (1967) and Miller (1977). We give complete an-
swers to these questions. For all balanced mixed models of the analysis of
variance, the REML (ANOVA) estimates are consistent, provided the models
are not confounded and variance components are positive; they are also
asymptotically normal if, furthermore, the models are nondegenerate. The
MLE are consistent (asymptotically normal) if and only if certain constraints
on p are satisfied. In particular, the answer to the last question on efficiency
is positive.

The general result for model (1) turns out to be the following. The REML
estimates are consistent if the model is asymptotically identifiable and in-
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finitely informative under the invariant class (AI*); they are also asymptoti-
cally normal if, furthermore, the model is asymptotically nondegenerate
(AND). We will make it clear what AI* and AND mean. A necessary and
sufficient condition for asymptotic normality of the MLE is also given.

The proof of the above result is based on a central limit theorem for
quadratic forms of random variables, which seems to be of interest itself in
limit theorems.

In Section 2 we define our estimates. Main results are given and explained
in Section 4. Section 5 develops some central limit theorems for the quadratic
forms. Comments and remarks are made in Section 6 and proofs given in
Section 7.

2. Definitions of the estimates. Following Hartley and Rao (1967) (but
using different notation), we consider the following parameters of variance
components: A = o2, u; = 0.2/0Z,i =1,...,s. Thereis a 1-1 correspondence
between the two sets of parameters A, u;, 1 <i <sand 0?,0 <i < s, and all
results we obtain in this paper for the first set of parameters have analogues
for the second set. Therefore we will focus on the first set of parameters. The
parameter space is

(2) O={0:2>0,u,=>0,i=1,...,s},

where 6 = (A, uq, ..., u,). Basic results such as deriving the REML and the
maximum likelihood (ML) equations can be found in Searle, Casella and
McCulloch (1992), Section 6. The REML equations under normality are
equivalent to

(3) ZV(A, ) 'z= AN - p),

(4 ZV(A,u) TAZZAV(A, p) 'z = Mr(ZjAV(A, p) TAZ),
1<ic<s,

where z = A'y, A is an N X (N — p) matrix with

(5) rank(A) =N — p, AX =0,

and

V(A ) =AA+ Y wAZZA.
i=1

Note that (3) and (4) do not depend on the choice of A so long as (5) is
satisfied.

In general (without assuming normality), the REML estimates for A, u;,
i=1,...,s, are defined as solutions of (3) and (4) that belong to ®, whenever
such solutions exist.

REMARK 2.1. Although the REML equations (3) and (4) are derived by
assuming y ~ N(XB, AV,), where

V,=Iy+ ¥ wZZ

i
i=1
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normal likelihood is not the only one that can lead to the REML equations.
For example, suppose in (1) that y has a multivariate-¢ distribution with
degree of freedom k, y ~ ty(XB,AV,, k), where Y ~¢,(u,2, k) if Y has
density

—(n+k)/2

F((n —+ k)/z)
(7k)"*T(k/2)

Such distributions have been used in multiple linear regression [e.g., Zellner
(1976)]. It can be shown that under the multivariate-t distribution, the
likelihood of A’y again leads to (3) and (4).

Similarly, the MLE for both the fixed effects and A, u;, i = 1,...,s, are
defined as solutions of the ML equations under normality with the same
constraints on the A and u;’s. The ML equations are equivalent to

(6) (X'V,'X)B=X"V, 'y,
(7) ZV(A, ) 'z = AN,
(8) 2V(A,u) 'AZZAV(A,p) 'z=2rtr(ZV,'Z), 1<iss.

p(3) - det() 1+ (v~ w3y~ )

In this paper our interest is the MLE for the parameters of variance compo-
nents, namely, the A and u;’s. So in the following the term MLE will refer to
the MLE for the A and u;’s.

It is seen from (6)—(8) that the MLE belong to the class of (location)
invariant estimates (invariant class)

(9) 7= {estimates which are function of A’y with A satisfying (5)}

[see Rao and Kleffe (1988), Section 4.4]. Other estimates that belong to .7
include the ANOVA estimates for variance components in a mixed model
[Henderson’s method III, (e.g., Searle, Casella and McCulloch (1992), Section
5)] and some of the MINQE'’s [e.g., Rao and Kleffe (1988), Sections 5 and 9.1].
Note that the REML estimates are the MLE based on A’y. From this point of
view, the REML method seems to lose no information in estimating the
parameters of variance components, and there is reason to expect the REML
to behave well asymptotically, as will be seen next.

3. Notation. Let A,B,A,,..., A, be matrices, and let a,,...,a, be
numbers. Define

IAll= A2 (AA),  llAllg = tr'/?(AA),
(A, B)r
(A,B)p = tr(AB), cor(A,B)=————"—| A B=+#0,
lAllzIIBllz

Cor(A,,..., A)) = ((cor(A;, A)) if A,,..., A, # 0, and is 0 otherwise; A, is
the Ith diagonal element of A; diag(e,) is the diagonal matrix with diagonal
elements a;, i =1,...,s; I, and 1, are the n-dimensional identity matrix
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and vector of all 1’s, respectively. Let 6, = (A,, i,) be the true parameter
vector, and let p,(N), i =0,..., s, be sequences of positive numbers; write

b(w) = Uy i, Zy - i, Z),
V() = AV(A, ) A, Vy(p) = b(m)V(m)b(u),
Vilw) =b(w)V(w)Z,ZV(m)b(n)y, i=1,...,s,

I
U, = _N, U=V 1Y2zzVv 2
Ao ! Ko 17 g
Iy
Vo= IZ L Vi =V(A,m) PAZZIAV(A, m) VY, i=1,...,s,
0
o TV w(UY)
Y p(N)p(N)T T p(N)py(N)
1 N+m
K" = ——m—y L (EWy = 3)ViC o) uVi( so)u/Age-" Hom,

pi(N)pj(N) =1

i,j=0,1,...,s,
where m =m, + - +m

s?

!
VAo

QN T N Y o 4+ 1<I<N+ Yom,,l<is<s

VAo Mo; E<i k<i

Define I(8,) = (I&), I;(8,) = (I, Ky(8,)) = (KXN)) and Jy(8,) =
21y(8,) + Ky (6,).

The abbreviation w.p. — 1 refers to “with probability tending to 1”; the
abbreviation v.c., to “variance components.”

1<I<N,
Wy, =

4. Main results. First we note that in considering consistency and
asymptotic normality of our estimates as N — =, each m; can be, w.lo.g,
considered as a function of N. Since such results hold iff they hold for each
sequence with N increasing strictly monotonically, in which case the m,’s can
readily be regarded as functions of N. (Note that the y, X, Z’s, A, etc., also
depend on N.) The following assumptions Al and A2 are made for model (1).
Let oy = ¢ and m, = N.

Al. For each N, «g, a,..., @, are mutually independent;
A2. For 0 < i < s, the common distribution of «;,..., «;

im, may depend on N.
However, it is required that

(10) lim sup max Eajjl;, s . = 0.

x—>® N 0<i<s

Note. If the common distribution of e;y,..., a;, is assumed not to
depend on N, 0 <i < s, as is usually the case, then (10) is equivalent to the
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existence of the fourth moments of «;;, 0 <i <s. In general, (10) implies
supy max, ;. Ea’ < « but not the converse.

DEFINITION 4.1. We say model (1) has positive v.c. (p.v.c.) if the true

parameter vector of v.c. is an interior point of ®; and it is nondegenerate (ND)
if

11 inf min var(a?) > 0.
( ) N 0<i<s ( )
A sequence of estimates {(Ay, fiyg, ..., fiy,)) is called asymptotically nor-

mal (AN) if there are sequences of positive numbers p,(N) - », 0 <i <,
and a sequence of matrices {My(6,)} such that lim sup(|Mxy'(0,) v
”MN(O())”) < o and

MN(GO)(pO(N)(XN - )\o),
(12) AN (s = Hon) s> Po(N) (i, = o))
-, N(0,1I,,,).
Two sequences {py} and {q,} are called equivalent, denoted by py ~ qy, if

0 <liminf(py/qy) < limsup(py/qy) < .

4.1. The balanced case. A general balanced r-factor mixed model (of the
analysis of variance) can be expressed (after possible reparametrization) in
the form (1), where X and the Z’s are Kronecker products [e.g., Searle,
Casella and McCulloch (1992), Section 4.6; Rao and Kleffe (1988), pages
172-173]. By introducing indexes in S,,; = {0,1}"*1, this can be written as

(13) y=XB+ ) Za; + ¢,

iesS
where X = 191 ® -+ ® 191 = ®r+il‘i‘7, with d = (dl,..., d..)ES  1,Z; =
®’+11‘ with l—(ll,...,lr+1)€SCSr+1, =1, and 11 —1 Hence

l_lr+ ¢» P =Tl _on, and m; = l_llq:an, ieSTl,- =

ExXamPLE 4.1. y,=p+a; +b,+c¢;+ey, 1<i<l,1<j<dJ, 1<k
< K, where a, b and c are random effects with ¢ corresponding to the
interaction (between factors associated with a and &). The model can be
written as

y=(1;91,0 1 )p+(;®1,®1x)a+ (1;,®1,® 1,)b
+(L®I;® 1x)c + &.
Thus r=2,ny=Ln,=J,n;=K; N=IJK;d=(111),p=1,8S={01
D,A0D,00 D}, mo,1=1, mygq1 =4, mggq =1IJ. This model was

discussed by Miller (1977), where he showed that under normality and
I, J - o (which implies N — « and m; - «, i € S) the MLE were AN.
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EXAMPLE 4.2. y; = ol + a2 + o) + BV + B + &4, 1<i <a,
1<j<b,1<k<c 1<l<d, where BV and B® are fixed main effects,
a®, a® and a® are random effects corresponding to a random main effect,
a nested random factor and a fixed-by-random interaction. After
reparametrization, namely, letting B,, = 8" + B2, B =(B,,), the model
can be written as (13).

ExaMPLE 4.3 (Neyman—Scott problem). y,, =u; + &, 1<i<n,j=12.
This corresponds to (13) with S =, X =1, ® 1,, p = n. It was shown by
Neyman and Scott (1948) that as p — « the MLE for o> is inconsistent.
However, the REML estimates are known to be AN [Hammerstrom (1978)].

ExaMPLE 4.4 (Random model). When p =1, (13) is called a balanced
random (effects) model. Speed (1986) proved the consistency of the ANOVA
estimates in such a model without assuming normality.

ExampLE 4.5 (Nested design). A balanced nested or hierarchical model is
(13) with {d} U S being a completely ordered subset of S, ; (u <v iff
u, <v,, 1 <q <r+1gives a partial order in S, , ;). Westfall (1986) showed
that under certain conditions the ANOVA estimates are AN. The result did
not require normality or balancedness, although p was assumed to satisfy
p/N — 0 (therefore it did not cover Example 4.3).

The above examples are special cases of two general theorems which we
will state in the sequel.

DEFINITION 4.2. A general mixed ANOVA model (not necessarily bal-
anced) is called unconfounded if (i) the fixed effects are not confounded with
the random effects and errors [i.e., rank(X, Z,) > p, Vi and X # Iy] and (i)
the random effects and errors are not confounded [i.e., the matrices Iy and
Z.Z!,1 € S, are linearly independent [e.g., Miller (1977)].

12 124

THEOREM 4.1. Let the balanced model (13) be unconfounded and have
p.v.c. AsN —» wand m; - », i € S, the following hold:

() There exist w.p.— 1 REML estimates Ay and fiy;, i € S, which are

consistent, and the sequence {(/N — p (Ay — o), Ymy Cluyy — po)icg)} is
bounded in probability.

(ii) If, moreover, the model is ND, then the REML estimates in (i) are AN
with po(N) =N —p and p(N) = m;, i €8S, and My(0,) =
Iyt 2(0) Iy (0,).

REMARK 4.1. The conclusions are also true for the ANOVA estimates [e.g.
Searle, Casella and McCulloch (1992), page 253].
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REMARK 4.2. There is no restriction on p in Theorem 4.1. For example, in
Example 4.3, N — o« iff p — o,

Let u,vesS,,; define u Vv=(u; Vvy,...,u,,;Vu,,q), S,={ves:
v<u},m,=1II, on,and m, g =min,.g m, if S, # Jand 1if S, = .
q ’ u

THEOREM 4.2. Let the balanced model (13) be unconfounded and have
p.v.c. AsN — wand m; — », i € S, the following hold:

(i) There exist w.p. > 1 MLE which are consistent if and only if

b m;yqMiva,s
14 — -0, _
(14) N m?

12

-0, 1€ 8.

(1) If, moreover, the model is ND, then there exist w.p.» 1 MLE which
are AN if and only if

(15) Po(N) ~yN —-p, pi(N) ~ym,;, 1 €S,
and

m;yqm; .
(16) %—)0, %—)O, ieS.

When (16) is satisfied, the MLE are AN with the same p,(N), i € {0} U S,
and My (6,) as for the REML estimates.

4.2. The general case. The assumption of a mixed ANOVA model not
being confounded is a natural requirement for the v.c. to be “identifiable.”
More generally we have the following.

DEFINITION 4.3. A v.c. model
(17) Y=(Y,....Yy) =XB+ e,

where Ee = 0 and Var(e) = 3(6) = 6,3, + --- + 6.2, is said to be identifi-
able of its v.c. (ID) if the matrices X,..., X, are linearly independent.

Note that our definition of identifiability is equivalent to requiring that
every parameter 6,, 1 <i < r, be identifiable in the sense of Rao and Kleffe
[(1988), Section 4.2]. Let A be a matrix. Then

(18) AY = AXB + Ae

is again a v.c. model like (17).

DEFINITION 4.4. Model (17) is said to be identifiable of its v.c. under the
invariant class (IDI) if model (18) is ID for some N X (N — p) matrix A
[ p = rank(X)] such that (5).
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It is clear that model (17) is IDI iff (18) is ID for every A satisfying (5) iff
A3 A,..., A3 A are linearly independent for every A (or some A) satisfy-
ing (5).

Now consider the general mixed model (1).

LEMMA 4.1.  Model (1) is IDI iff A,,;(Cor(V,, V,, ..., V.) > 0.

Note Cor(V,, Vy,...,V,) does not depend on the choice of A so long as (5).

In considering the asymptotic behavior of our estimates, we need model (1)
to be IDI in the asymptotic sense. Lemma 4.1 inspires the following defini-
tion.

DEFINITION 4.5. We say model (1) is asymptotically identifiable (of its
v.c.) under the invariant class, abbreviated by AI* at 6, if
liminf A, (Cor(V,,V,,...,V.)) > 0.

We now take another look at the property AIZ2. We now return to (12). The
feature of this definition is that different normalizing sequences (NS) are
used for estimates of different parameters. The necessity of this was noted by
Miller (1977). Harville (1977) described Miller’'s NS as “the effective number
of levels for the ith random factor (i = 1, ..., ¢).” Searle, Casella and McCul-
loch [(1992), page 240] questioned how in general the NS should be chosen
and asked “what is meant by ‘sample size tending to infinity’.” We have seen
that in the balanced case there is virtually no other choice of NS (see
Theorem 4.2). Now we consider the problem from another point of view.

Let 0y €.7 in (9) and let it satisfy (12). The asymptotic covariance matrix
of 0y is

. 1
Vi, = dlag( (V) )

If we want our estimates to be efficient in some sense, we would like to see
V;, to be not too far from the Cramér—Rao lower bound / MN(9,)"1, where
3%Ly

I(N)(eo) = - (Eeo{ a0, agj 90})

(Ly is the log-likelihood of A'y); that is, there exist bounds 6, M > 0 such
that 81N(0,) < V; ! < MI"V)(6,), which, under normality, leads to the fol-
lowing requirement on the NS p,(N)s:

! -1 5.
p,»<N>)(MN“’°>MN(00)) dlag(

(19) 0 < liminf A, (Iy(6y)) < limsup A, (Iy(6,)) < =,

where I (6,) is as in Section 3 [see Miller (1977), Assumption 3.5].
That (19) is closely related to the AI? is seen in the following lemma.
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LEMMA 4.2. The following are equivalent:

(1) There are sequences of positive numbers p,(N) - «, 0 <i <s, such
that (19);

Gi) IVllg > », 0 <i <s, and the model is AI” at 0,.

In fact, whenever (i) holds, we must have p,(N) ~||[V,|lz, 0 <i < s.

The quantities ||V;|lz can be interpreted intuitively. Under normality,

b
bo

which is the information that A’y contains about the true parameter 6,,,
0 < i < s. This leads to the following definition.

ZLN

1 2
§||Vi||R = —E,, TﬁQ

DEFINITION 4.6. Model (1) is called infinitely informative (about is v.c.)
under the invariant class at 6, if lim||V,[[g = ©, 0 <i < s.

The main theorem is now stated as follows.

THEOREM 4.3. Consider a general mixed model (1) having p.v.c.

() If the model is asymptotically identifiable and infinitely informative
under the invariant class at 6, then there exist w.p. — 1 REML estimates Ay
and py;, 1 <i < s, which are consistent, and the sequence

(V=5 (Ay = %), IVillr( s = 102) -5 IVilla( o, = 120, ) }

is bounded in probability.

(i) If, moreover, the model is ND, then the REML estimates in (1) are AN
with po(N) =N —p, p,(N) being any sequence ~ |[V/llg, 1 <i<s, and
My (6,) = Iyt 2(0,) 15 (6,).

ABBREVIATION. We use AI* for “asymptotically identifiable and infinitely
informative under the invariant class.”

NOTE. A necessary and sufficient condition for AI* is given by Lemma
4.2(i). In particular, all balanced mixed models (13) are AI*, provided the
models are unconfounded, have p.v.c., and N = o, m; - ©, i € S (see the
proof of Theorem 4.1).

THEOREM 4.4. Consider a general mixed model (1) having p.v.c.

(i) For the MLE to exist w.p.— 1 and be consistent, it is necessary that
p tr(C( 1))

— =0, _—_—
N m*

where Ci(uy) = Z(V, ' — V(u)Z;, m* = max,_,_, m,.

13

(20) 0, l1<ic<s,
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(i) If, moreover, the model is ND, then the following are equivalent:
(a) There exist w.p.— 1 MLE Xy, and [Y,;, 1 <i <s, which are AN with
p;(N), 0 <i <s, satisfying

(21) 0 < liminf A (I} (6,)) < limsup A, (I35(60y)) < ;
(b) The model is AI* at 6, and
p tr(Cy( 1))
22 — — 0, —= >0, l<ic<s.
(22) v Wils

In either case, the MLE and the REML estimates in Theorem 4.3 are
equivalent in the sense that they are AN for the same p,(N), 0 <i < s, and
My (6,) as in Theorem 4.3(i1), and

(23) (VN -p ()Aﬁfv - )A\N),P1(N)(IAL*N1 - ﬂNl)""’ps(N)(:aﬁlifs - :a’Ns)), -0

in probability.

Condition (21) is implied, for example, by Miller [(1977), Assumption 3.5],
which also shows the dependence of Miller’s NS on 6,, and the relation
between the two sets of parameters. See also Das (1979).

The assumption ND in Theorems 4.3(ii) and 4.4(ii) can be weakened to the
following (24) called asymptotically nondegenerate (AND)

(24) lim inf A, (Jy(60)) > 0,

where Jy(6,) is given in Section 3 with p,(N) =[V/lz, 0 <i < s.
It can also been shown that under a condition weaker than (22) the MLE
exist w.p.— 1 and are consistent.

5. Some central limit theorems for quadratic forms. The proof of
our main theorem is based on a central limit theorem for quadratic forms of
random variables (r.v.’s). For each n, let X,,,..., X,;, be independent with
mean 0, and let A, = (a,;;);.; j<; be symmetric. There have been studies
on the central (noncentral) limit theorems of the quadratic form 2'A %,
where 2, = (X,,,..., X, ). Some of the results are either for special kind of
r.v.’s [e.g., Guttorp and Lockhart (1988)] or for A, with a special structure
[e.g., Fox and Taqqu (1985)], or with the assumption that a;;, = 0,1 <i <k,
[e.g., de Jong (1987)].

A general theorem was given in Schmidt and Thrum (1981) and was
extended by Rao and Kleffe [(1988), Theorem 2.5.2]. However, as was pointed
out by Rao and Kleffe [(1988), page 51], “the application of (the theorem)
might be limited as it is essentially based on the assumption that the off
diagonal blocks of A, tend to zero.” Such results could be used for models
with replicated error structure [e.g., Anderson (1973) and Brown (1976)], but
not for general model (1).

We will state two theorems. The first removes the unpleasant restriction
noted by Rao and Kleffe. The second extends the first. The results can be
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extended to the vector case considered by Schmidt and Thrum (1981) and Rao
and Kleffe (1988). Extension to the case where X,,; are martingale differences
is also possible. We begin with some simple examples.

Exampie 5.1. If X,,,..., X,, are N(0,1) distributed, then a necessary
and sufficient condition for

A7, - EZAZ,

) [var(Z,A,2,)]"* —#N(0,1)
is that
N Nl 42)
(26) w(aZ) %
ExampLE 5.2. Let A, =1, P(X,,=-1)=P(X,;,=1=1/2 - 1/n,

P(X, = —/2)=P(X,,=V2)=1/2n) and P(X,,=0=1/n, 1 <i<n.
By the Lindeberg—Feller theorem it is easy to show that (25) does not hold,
although (26) is satisfied.

The situation in Example 5.2 is extreme because the random variables are
“asymptotically degenerate.” Such cases must be excluded if one attempts to
generalize the result of Example 5.1. Let A% = A — diag(a,;,), &, ={1 <
i<k, a,;+ 0.

THEOREM 5.1. Suppose

27 inf(mi X)) A (minvar(x2)) > o,
(27) inf| min var(X,,) grel}é:var( )
(28) sup(lrsnia;)}(e EX,?il(ani‘>x)) % (Q;XEX:il(\mex)) -0,

as x — . Then (26) implies (25).

Let{L,;,1 <i <k,, n > 1} be numbers; define

1) _ 4 2) _ 2 4
Vi’ = BX0lx <0, ne = E(X7 = 1) Lix, <1,
1 _ 2 2) _ 2 2 .
87 = EXJ i lx, > Ly OnF = E(X3 — 1) 1ix 51,

1 1 . . .
Vv i i #J,
Ynij =

Yt ifi =,
3(8P +8%), ifi#,
Onij = | 8@, ifi=jeu,

0, otherwise.
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THEOREM 5.2. Suppose EX?% = 1,1 <i < k,, and there are numbers {L

ni»

1<i<k,, n=>1}such that
1
(29) 3 aiij‘snij -0,
On i, j=1
1 k, k, 2
(30) —| X afzijynij + ) ( ) a?zij) Yrg)] -0,
no |, j=1 i=1\j#i

where a2 = var(Z/A,Z,). Then (25) is true provided

n

2
Amax((A2)7)
(31) ‘T—nz - 0.
In particular, with a,;; =0, 1 <i < k,, we get Theorem 5.2 in de Jong

(1987) under slightly weaker assumption.
The following lemma plays a crucial role in the proof of Theorem 5.2 and
hence of Theorem 5.1.

LEMMA 5.1 (A lemma of linear algebra). Let B = (b;;1. ;) be a lower
triangular matrix. Then

(32) tr((B'B)?) < 2Anae((B' + B)*)tr(B'B).

6. Discussion.

6.1. As in many maximum-likelihood-related problems the solution or
root of the REML (ML) equations sometimes presents difficulties. Theorems
4.1 and 4.3 ensure the existence of a consistent sequence of roots (CSR) of the
REML equations and asymptotic normality of any sequence of roots such that
{(po(N XAy = Ag), PAN fiyy — po1)s- -, AN fiy, = mo,))} is bounded in
probability (see the proofs of the theorems). However, the theorems do not
provide a way of identifying such a sequence when the roots are not unique.
In other words, the established theorems are results of Cramér type [e.g.,
Miller (1977)].

Some methods were proposed in the literature to overcome this difficulty
[e.g., Lehmann (1983)]. These methods basically require that some sequence
of consistent (but not necessarily AN) estimates be available. A candidate of
such estimates in our cases is Rao’s MINQE, asymptotic properties of which
are discussed in Rao and Kleffe [(1988), Section 10].

In some cases, the uniqueness of the roots can be ensured. For example,
under certain conditions the ANOVA estimates are uniquely defined [e.g.,
Westfall (1986)]. Since in the balanced case solutions of the REML equations
are identical to the ANOVA estimates, these conditions also guarantee the
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uniqueness of the REML estimates in the balanced case. Necessary and
sufficient conditions for existence of (unique) explicit solution of the ML
equations in a balanced mixed model of the analysis of variance are given by
Szatrowski and Miller (1980). General sufficient conditions for the unique-
ness of solutions of ML equations can be found in Makeldinen, Schmidt and
Styan (1981).

The identification of a CSR is a problem of both theoretical and practical
interests not only in mixed model analysis but also in a wide range of areas
where M-estimates [Huber (1981)] are involved. Questions can always be
asked such as whether solutions that maximize the Gaussian likelihood form
a CSR, although the Gaussian likelihood is not necessarily the true likeli-
hood. Note that all the REML estimates proved to exist in this paper are
actually at least local maxima of the Gaussian likelihood of A'y.

Finally, Theorems 4.2 and 4.4 give necessary and sufficient conditions for
existence of a CSR of the ML equations (and asymptotic normality of such a
sequence). When these conditions are violated, no sequence of roots of the ML
equations can be consistent (AN).

6.2. From Theorems 4.3 and 4.4 we see the asymptotic covariance matrix
of both 6y = (Ay, fiyy,..., Ay,) and 6y = (Ay, iy, ..., Ay,) is V(6,) =
Iy(00)~ 'y (0)Iy(6))" ", where Iy(6,)) = tr(V,V)), Jy(8y) = 2Iy(6,) +
Ky(6,) with Ky(6,) = (S (EWy, — 3V, (1), Vi o)/ Age-»*1o-0). Thus
one can construct approximate confidence intervals for the parameters of
variance components. It is seen that under normality [in which case V(6,) =
21,(0,)" !, which is the inverse of the restricted information matrix] and the
condition that p/N — 0, tr(C,( ,LLO))/IIViII% — 0, 1 <i<s [which implies
21y(6,)" ~ 21}5(0,)" 1, the inverse of the (unrestricted) information matrix;
see, e.g., Searle, Casella and McCulloch (1992), Section 6], the REML esti-
mates are efficient in the sense of attaining asymptotically the Cramér—Rao
lower bound [i.e., Miller (1977)]. By Theorem 4.4(ii) and similar discussion as
for (19), the MLE are efficient in the same sense if and only if (22) holds. In
particular, with p fixed for all balanced mixed models of the analysis of
variance, both the REML estimates and the MLE are efficient.

However, efficiency in the non-i.i.d. case, especially in the presence of a
large number of nuisance parameters, ought to be defined in a stricter sense
[see Bickel (1993) and Pfanzagl (1993)]. Further work is needed before a
conclusion is made about whether the REML estimates are the asymptoti-
cally best.

6.3. In all theorems in this paper, we assume the model has p.v.c. [e.g.,
Miller (1977)]. It can be shown that even without this assumption but with
the assumption supy max;_;_; A, (Z/V(uy)Z;) < », a sequence of solu-
tions to the REML equations can still be consistent and AN. However, the
solutions are not guaranteed to fall into ® asymptotically and therefore not
the REML estimates by our definition.



270 J. JIANG
7. Proofs

ProOOF OF LEMMA 5.1. Forany 1l <i < n, let

0 b21 bil : bt+11 bnl
. I .
b Lo
. ! .
. | .
bi 0 | bi ; bni
A=B +B = ___1_________________:__f_l __________________
bt+11 o bl+1i : O e bni+1
: o :
bnl bni i bni+1 bnn—l 0
A, A
Ay Ax

= (0x+'Y and b = (¥'0), where * = (b,,4;,...,b,;), ¥ =
(X1 5040415+ Ly ;0,;04;) . Then it is easy to check that

%1% = oAb < || Alllal 6] = || Al |# ] ||
2
= T(Tbuby) <14l ok

J<i “k>i k>i

Thus

tr((B'B)*) = Z(%bkibkjl(k>iVJ'))2 = 2; E« ( )» bkibkj)2

i,J j<i ‘k>i
<21AIPY. Y b2, = 21, (A?)tr( B'B). i
i k>i
Proor or THEOREM 5.2. We have
1 k, k,
_(%/An% - E%IAn%) = Z fni + Z nni’
i=1 =1

n

where
1
gni = anLLUm + 2 Z anljunj)uni ’
0- Jj<i
1
Mhi = al’llanl +2 Z anijvnj)uni + 2( Z aninnj)Uni ’
Op j<i j<i
— 2 2 _ 2
Unz - ( ni 1(|X <Ly E(Xni - 1)1(|Xni|gLM)’ Vni - Xni -1- Uni’
= Xuilox,< 0 — EXnilox, < 1,00 Ui = Xy = Uy
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Condition (29) implies Y% ,7,; =2 0. So it is enough to check that the array
of martingale difference ¢,;, 1 <i < k,, satisfies conditions (3.18)—(3.20) of

ni’ n»

Hall and Heyde [(1980), Theorem 3.2] (see the remarks after that theorem):

1
—4E{ max (a,,U,; } Zan”EU4 S0,

nii nl
q, 1<i<k,

n nLl

by (30); and, by Rosenthal’s inequality [see Hall and Heyde (1980)],

4 2
E(Zanijunj) SC{(Zaiij) + ZaiijEuﬁj
Jj<i

j<i j<i

for some constant c. So, by a similar argument and (30),

4
max ( Zanijunj)uni - 0.
1<i<k, P

J<i

! E
al

Thus max, _; ., |£,;|is bounded in L? and goes to 0 in probability. We have
the following:

ky 3 3
i=1 i=1 i=1
where
k,
Uy =0,% ¥ a;(Us — EUY),
i=1
kn
U2=40-n_2 Za (Zanu nj)( nilni EUnlunl)
i=1 Jj<i
n 2
U, = 40}:2 Z ( Z anijunj) (u?u - Eu?zi)’
i=1\j<i

Vl = 72 Z anuEUz

nt’

kVL
V2=40-n_2 a, (Zanu nJ)EUnlunl’

i=1 Jj<i

2
o, ? Z ( Zanijunj) Euy;.
J<i
It follows from (30) that U, —;: 0, i = 1,2, 3 (using Rosenthal’s inequality
for U,).
Also, V, = 0, *%,  , as; var(X}) + o(1) by (29) and the fact that

(33) ol = ) ai;var(X2) +2) a2

ies, i+j
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Let B, = (a,;;1;- ), I, = (a,;EU,;u,;) and A, = 160, *. Then, by Lemma
5.1, (31) and (33),
R,
)

Jj=1

2
( Z anuanuEUnzunz)
i>j

YL 2
= Z ( Z nljannEUnLunL) Eurzzj
j=1\i>j

2
nl

< An|B;Lln|2 < /\n/\max(Bn‘B;L)lln|2 = /\”[tr((B;‘B”)z)]l/Qll

6 r ((AO) ) 11/2
max —92 2 2
< _\/E —Unz a, igynan” var(Xm)
r q1/2
16 [ A (42)°) |
%l e | 7

Also

kn 2
(29) and (33) = V,=40,% ) ( Y am-junj) +0,(1)

i=1\j<i

=%,C, %, + op(l),

where %, = (u,,;) and C, = 40, 2B, B,,. It follows from (30) that

k, k, 2
¥ e var(u) = 4, X [ Tt ) var(uz,) - 0
i=1 i=1\j>i

and, by Lemma 5.1, (31) and (33),

AO
Y. 2 Eul,Eul; chu < /\—tr((B’B ) ) M - 0.
J<i l#] Op

Thus, by Lemma 7.1 in the following, we have #%,C,%, — E#,C,%, —» O.
Finally,

(29) and (33) = E#,C,%, = 20,% Y a%, +o(1).

i#]

Thus we conclude, using (33), that X}, &2 =1 + 0,(1). O

Lemma 7.1, Let X,,,..., X, be independent with EX,; = 0, EX? = o2,

and EX! < o, and let A, be symmetric. Then ZAZ, — EZ/A,Z, — 20
provzded ZL a’ var(XZ) - 0and X, 252 50,

nii j<L m] ni“nj



REML ESTIMATION 273

COROLLARY 7.1. If, in Lemma 7.1, sup, ; EX, <, then 2,A,Z, —
EZ'A,2 —;> 0 provided tr(A2) — 0.

PROOF OF THEOREM 5.1. First we assume EX? = 1. Then
(27),(28) and (33) = o ~ tr(A}).

The result now follows by letting L,; =L, = (6,2 /A, (A2)°, 1 <i <k,
with 0 < 8 < 1 being fixed, and checking the conditions of Theorem 5.2. The
general case is proved by making the transformation X,; = X,,/0,; (0,2 =

~

EX?2), A, = diag(o,;)A, diag(a,,). O
The proof of Theorem 4.3 requires the following lemma.

LEMMA 7.2. Let Ly = Ly(6,%,), where 6 = (64,...,0,) € OCR*® and %y,
N > 1, are random vectors, be continuously differentiable w.r.t. 6. Suppose
there are sequences of positive numbers p,(N) and q,(N), 1 <i < s, such that
p(N) > =, p(N)g(N) - »,1<i<s,

1 %Ly
pi(N)pj(N) d9; 96, 0

= Iy(6,) + 0,(1) with liminf A, (Iy(6,)) > O,

and
1
(NP, (N)Ps(N) p2o,
where Oy ={0: 16, — 0,1 < q(N), 1 <i <s}. Let
1 oLy
pi(N) 6,

33Ly
d9; 39; 96,

-, 0, 1<i,j,k <s,

An(0o) = s D(N)(0— 0y) = (pi(N)(ei - 00;‘))'

o

@) If {|AN(0 )} is bounded in probability, then w.p.— 1 the equations
dLy /36, = =1,...,s, have a solution ON = (6y,) such that {| p(N)6y —
0)l} is bounded in probabzlzty, therefore 0N is consistent.

(i) If, furthermore, there is a sequence of symmetric matrices {Jy(6,)}
such that liminf A (Jy(6,)) > 0 and Jy'/?(6,)Ay(6,) =, N(O,1,), then
JIn 201y (0)p(N X6y — 6,) =4 NO, I).

The proof of (i) is similar to Weiss (1971). Namely, let 6y be defined by
P(NX Oy — 6,) = —I5'(0,)Ay(6,), where
1 d?Ly
pi(N)p;(N) 39, 36 0
one has Ly(0) — Ly(8y) = 2(p(NX6 — 0, Iy (0,)(p(NX6 — 6y) +
Ry(0,6,)) — Ry(6y, 6,), and the R’s are uniformly ignorable compared with

the ﬁrst term as 6 varies on the ellipsoid {6: | p(N)(6 — 6y)I = 1}. Part (ii)
follows from the relation —Ay(60,) = Iy (6, )p(N Xy — 6 o) + 0, (D).

jN(GO) =
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It is sometime convenient to denote A, wq,..., u, by 0, 64, ..., 6,. To avoid
confusion, we use from now on the symbol 6, for the true parameter vector.
Let G, =AZ Z;A,1<i<s, H =V(A, w) L

PRrROOF OF THEOREM 4.3. (i) By Lemma 4.2 there are sequences of positive
numbers p,(N) — «, 0 <i < s, such that (19) holds, and we can assume,
w.lo.g., that p,(N) =N —p.

See notation in Sections 2 and 3. Let Ly = (N —p)logh + 1og|HI;1| +
(1/Mz'H,z, where z = A'y = \/)TOA’b( wo)Zy with 7y = Wy )1 o< nim- BY
Corollary 7.1 we have

1 9%Ly
po(N) a?

1 2
= + _[%]\,ZBNWN - tr(BN)] = 2

= — +0,(1)
AN o

8o

with By = V(o) /(N — p). Similarly,

1 d%Ly
=I{ +o0,(1),
(M) po(N) g an |, 0 o)
1 3%Ly

=IM +o0,(1), 1<i,j<s.

pi(N)pj(N) I; ‘9,U«j

8o
Also
9°Ly 6
It F(N_p) - FZHMZ’
d°Ly ,
(MQ—(‘)/J/' - _FZ HMGiHMZ’
d°Ly ,
m A H“GiH#GjH/.LZ$
t J
d°Ly B
Oy oy Oy Tijp + Ting — A (Sije + Sjri + Shij + Sinj + Skji + Sjin)
i O Ok

13

let A;;,, 1 <j<m,; be the eigenvalues of Z;Py.Z,. Then [e.g.,, Chan and
Kwong (1985), Lemma 3] we have

with T,;, = to(H,G,H,G,H,G}), S, = 2'H,G;H,G;H,G,H,z. For 1 <i <,

||H[}0/2A,Zi||2 = /\max(Z;V( /‘LO)Zl) < )\max(Z;A( A,A + /“LOiGi)_lA,Zi)
(34) A

lj -1
max —————— < g, -
1<j<m; 1+ po; Ay !
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Now let

1/2

(minlsvss pv(N))
pi(N) ’

Ao
qo(N) = 9 q;(N) =

and
My = {m I = ol <qi(N),1<i<s},
={0=(A W) 1A = Al < qo(N), n ey}
Then for large N, 2I—I <H, <2H,, p €4#y. Thus by (34) and the identity
H,=H, + Z (mor — m)H, GH,,
-0

it can be shown that, for any b € RV »,

S
6'H/2G,H, 2| < |b||V2|HY2G,H, 2| + ¥ 2p07q,(N) I HY*G,H,zl|,
=1

which implies

sup |H)/?G,H,z| < V2|H}/*G;H, z| + ¥ 2poi'q;(N) sup |H!/*G,H,z|,
nely =1 nely
1<ic<s.
It follows by solving the inequalities that there exist N, and {e,,(N)}, 1 < i,
I < s, not depending on z such that {e; ~(N )} are bounded and, for N > N,,

sup |H)/*G,H,z| < e;(N)HY*G H, z|
(35) " o
+ Yey(N)ay(N)IH/*GH, 2, 1l<i<s

l+#1

for all z. Thus it is not hard to conclude that
1 3L

Pi(N)p;(N)p,(N) oeo 36; 90; 96,

Finally, an analogue of Corollary 7.1 which says for any symmetric
By, 73 By7y — tr(By) is L? bounded provided tr(B%) is bounded implies

1 4L
An(80)i = —+ al ) 0<ic<s,
0 pi(N) a9, |,

are bounded in L2

The result now follows from Lemma 7.2(1) and Lemma 4.2.

(i1) First we note that any such sequences p,(N), 0 <i < s, can play the
same role as those in the proof of (i), and

liminf A, (Iy(6,)) > O plusND = liminf A (Jy(6,)) > 0.

(36)

-5 0, 0<i,j,k <s.
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For any a € R*"1\ {0}, let by = Jy'/?(8,)a. Then
a'dy'?(80) Ax(8) = —[7yByZy — EZyBy7y],
where By = By(by) with

s

b, b,
XoPo(N) Vo( ko) + igl P(N) Vil o).

Since, for any b € R**1,
by (6)b = var(#y By (b)) < M tr(BZ (b)),

by (33), where M = 2 V supy max; _; . y, var(Wy,) < « by Assumption A2,
we have

By(b) =

lal?

1 1
tr(By) = Mvar(Wz\//BNWN) = Mb}VJN(_GO)bN YA

and

l |al?
Aax B2) < | A;2%py2(N) + _izpi_2 N)| ————,
(By) o Po () i§1 o () Anin(In (80))
by (34). The result now follows from Theorem 5.1 and Lemma 7.2(Gi). It is seen
from the proof that the ND condition can be weaked to (24). O

_Proor oF THEOREM 4.4. (i) The consistency of the MLE 6y =
Ay, 051, ..., &Y,) implies p < N at least for large N (otherwise the model is
not IDD. Let Ly = Nlog A + log|V,| + (1/M)z'H, 2. Simple relations exist
between derivatives of L% and L, (see the proof of Theorem 4.3). For
example,

aLl%, p  JdLy L% dLy 9%L%, d%Ly
= —+ ) = tr(cl([.,b)) + 5 = R
9%L%, , o B
o~ H(ZV(0Z) (2V(0)2) - u((2V,2,) (2,7)
i J
J2L
il , etc.
Op; I

Let ¢;,(N) - 0,1 <i < s, be such that

N Ao )
Pyl 1A = A0l < ?,l/.lf’]i,i—uol«|<qi(N),1$L£s) - 1.

With such ¢,(N), the same inequality as (35) can be established. Similarly,
we obtain

sup |Z;AH,z| < e;(N)|Z;AH, z| + Zeil(N)ql(N)lZ}AHle,
weMy 1+
1<i<s,N=N,,
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for all z. Using those inequalities and the fact that, by (34),

A
I1Z;AH, 2115 = Ao tr(Z}V( o) Z;) < M—Omi A (N - p),
0;

i

it is seen that

1

su
N A m* 96@?]\]

1
and —— sup

*
m €0y

9*Ly
I I

2

1<i,j<s,

are bounded in L?

By the relations between derivatives of L* and L, it is easy to see that the
above assertion of L? boundedness also holds with L, replaced by L%,. Note
that we have, in addition to (34), A (Z;V,:OIZL») < ,ugil. Then, by Taylor

max

expansions,
2 2
S e +&L>§V (A% = xo) + XSZ o L (AR — moj)
N o9r lg, X% oz, T1 0y A |, J J
0 1 [ oL%, d%L%, (X* A)+ Y Ly (% )
= % N~ o KN — Moj) >
m* | du; 4 I\ du; 0% j=1 I I ot J Jj

where 60y ; is between 0, and 6y, 0 <i <s, we see that

1 9L%
N a\

1 oL%
_)Peo 0 and ﬁ

PQOO, l1<ic<s.

9 (9“1

9

Thus, by the last part of the proof of Theorem 4.3(1) (note that ||V[z <

p,al_l‘/mi , 1 <i<s),itis easy to conclude that

1 oL, aL%
0 Em

N oA

0 ! E
- _
4 ’ m* 0o

The result thus follows.

(i1) [(a) = (b)] Condition (21) implies, as in Lemma 4.2, that p,(N) ~ ||U,||z,
0 < i < s. By the proof of Theorem 4.3 and the relations between derivatives
of L, and Ly, we have (36) with L, replaced by L% [same ¢,(N)s as in
(386)] and that

i 10,

1 J%L%,
Pi(N)Pj(N) b fwj

Li(8,) = =0(1) +0,(1).

9
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It follows by Taylor-expanding JL} /3d6;l4; at 6, that

1 oL%;
pi(N) 96,

AN () = — = (0(1) + 0,(1)) P(N)(65 ~ 6,),

N

which is bounded in probability. On the other hand, by the proof of Theorem

4.3,
ﬁo)

is bounded in L? [note that the r.h.s. of (21) implies the r.h.s. of (19)]; thus
A%(8,) — Ax(8,) is bounded in probability and hence in L? since it is
nonrandom. So A%(6,) is bounded in L. Thus E, A%(6,) — 0 by Corollary
8.1.7 in Chow and Teicher (1978) and by an argument of subsequences (a.0.s.)
[note that O(1) is not random], which implies I}5(8,) — Iy(68,) — 0 and hence
AI*, and (22) by Lemma 4.2.

[(b) = (a)] AI* implies the existence of p,(N) - », 0 <i <s, such that
(19) holds; so p,(N) ~ [[Villz, 0 < i < s, by Lemma 4.2, and hence (21) by (22).
That the MLE are AN with such p,(N)s follows from (22), the relations
between derivatives of L% and L,, the proof of Theorems 4.3, and Lemma
7.2.

Finally, the equivalence of the REML estimates and the MLE is easy to
prove, given the equivalence of (a) and (b) [use Taylor expansion for both
estimates and (22)]. O

1 Ly
AN(_GO) - p,(N) 070L

To prove Theorem 4.1 we need the following.

LEMMA 7.3. For the balanced mixed model (13),

N
tr(H,G,) = (Z) YCLTT (ng = D1gyay

u>1i uq:()

tr(H,G,H,G,) =

N N
E)(—)ZC 1 (= Dy

m; u>iVvj

i,j €S, where C, , =1+ X, .gu,m,;'N1,_,, and u ¥ v means u is not
= V.

PrOOF. Choose A such that A'A =1Iy_,, so that AA’ . Let T, be
(n, X n,) orthogonal such that T,J, T, = diag(n,, 0) Where J =
1q1’ l<qe<r+1 T~ ®*!T,, B'= AT = (by - bN) Then T'Z,Z/T
diag(/\lk) T'XX'T = dlag()\dk) Where s oo Ayd =TT L A, 1<
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k,<n, l<qg<r+1} with A, ,=1-i, +n, q8w1, ieSu{d}; and

TAAT = diag(y,) with v, = 1 — (p/N)Ay,, 1 < k < N. It follows that

-1
Z )‘lk(l + 2 Ay | bby.

teS

So

N -1
tr(H,G,) = ) 7k(1 + ) Mt/\tk) Air
k=1

teS
ny n,.iq r+1 r+1 -1 .41
= ) > (1—_1_[/\qu 1+Z/"Lt1_[/\tqk) l_lf\iqk
k1=1 kpi1=1 teS gq=1 g=1
= — ZC! w T (ng = Dlgya)
m; i l,=0
using the formula that, for any functions f(x,,...,x,,;) and g (x), 1 <gq <
r+1,
ny LY r+1

)IEETEEDY f(5k1,1’---’5k,+1,1) l_Ilgq(Skq,l)
q=

ki=1 k=1
1 1 r+1

= Lo X Sl T =)' g (1),

1,=0  1,,,=0
Similarly we obtain the equations for tr(HMGi HMGj). O

Proor oF THEOREM 4.1. We can assume w.lo.g. that n, > 2, 1<q <r
(since if n, = 1, factor q is not really a factor and the model is not really an
r-factor model). The nonconfounding assumption implies d £ i, d # 0, i # 0,
ieSandn, ;=2whenever (0---0 1) €{d}US.

(i) By Theorem 4.3 and Lemma 4.2 it is enough to show (19) with
po(N) =N —p, p(N)=/m;, i € S.The r.hs. of (19) is obvious by (34), so
we can focus on the Lh.s.

First we assume the following limits exist as N — «: f, =lim n, l1<gqg
<r+1, and ¢, =limc, ieS8={0uUS, ujzd where c(N)—

127200

(ml-Cu)’lNl(iS uy? Cu = C, ,,- Then we have

Ug=

B [(1 - dgofq)l(ugofq)(ugo (1 _fq))ll/z’

1/2
a;N>=[(N—p)1 I (nq—l)} - a,
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with £, a0l =limE, , ,(a")? =1; b =allle)) = b, =a;,c;, 12, i €
S, u # d. So, by Lemma 7.3,
tr(H,,G:)
(N) — Mo "t = (N)Bp(N)
Yi - Z ay biu - Z aubiu
po(N)p;(N) uid utd
tr(H, G.H,G,)
(N) — Mo "t Mo (N) (N) i
yl - Zb b - szu u = Yij» l,JES-
’ pi(N)p;(N) ud ud ’ ’
Therefore I(6,) — I1(8,), where I(8,), = 1/A2, I(8,); = I1(8:);0 = V;»

I(8)i; = vij» 1,J € S.

It is easy to see that, for any x = (x, (x,);c o), x'I(0y)x = X, 4 sla,(x,/A)
+ Y, csb;, %1% So x'I(H Yx =0 = a,(xo/A) + Z;cgbiux; =0, u*d. Let
i, =0if f,,, < 1and(0 -0 1) if f,,; = 1, then it is easy to see that i, < i,
in2d, i, #i,i€S and a; > (1/2)(”’1)/2 > 0. So we have by the above
equation that a; (x,/A,) = 0 = %y = 0. Thus X, ¢b;,x;, = 0, u € S, which
implies x, = 0, u € S; note b,, > (1/2)/*(1 + L, 5 Mv) >0,u€ES.

In general since {1 / n,V's and {c(;)}’s are bounded, “the result follows from
an a.o.s.

(i1) This follows from Theorem 4.3 and Lemma 4.2. O

The following simple lemma tells a basic idea for the proof of Theorem
4.2G).

LEMMA 7.4. Let f(x) = f(x4,..., x,) be a differentiable function, let S be a
closed convex set in R® and let x, be a point in the interior of S. Suppose for
each point x on the boundary of S there is a set of index {iy, ..., 1,} depending
on x such that

r 0’;](‘
=Xy ) — > 0.
jgl(xlj x()lj) ﬁxl](x)

Then f(x) attains its minimum value over S at an interior point x* € S,
therefore (9f/dx x*)=0,i=1,...,s

By Lemma 7.3, it is easy to show the following.
LEMMA 7.5. Assuming that py; > 0,1 € S, then, fori € S,

1 m;vaMiva,s
—tr(C. S0 i ;_)0’
mi ( l(lu"o)) ff mlg
m;yqMmiva,s

1
N tr(Ci( o)) = 0 iff 0
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ProOF OF THEOREM 4.2. First we note in the balanced case Z,Z; Py . Z;Z;
=Z,Z;Px. Z,Z;, Vi,j, which implies that, for any z=A'y and i}, k%,
2’H,G;H,z, 2’H,G;H,G;H, z and z'H,G;H,G,H,G, H,z are nonnegative and
decreasing functions of u. As a direct consequence, now it is easy to show
that

9°LY (1
su =m./\ m: ,
sup 7 L =m; Am; Am,0,(1)
0 9 0 | T j k )

i,j,keS={0US, where 0, ={A> 1,/2, (1/2uy; < u; < B/ puy;,
i €8}

(1) The “only if” part not follows as in the proof of Theorem 4.4(i), using the
above result for the second derivatives.

We now show the “if” part. Without loss of generality, we can assume the
limits lim(m;/m J-), i,j €S, exist as N — c, which can be positive numbers, 0
or », since the general case is then dealt with by an a.o.s. Divide m;, i € S, by
groups
387 {m,0<u<s),im,s; +1<u<sy),....,\m,,s._.; +1<u<sl,

where my = N, s, = s = |S|, such that within each {---} the m’s are of same
order, and the { -:- }’s are of decreasing order. Note now the indexes of the m’s
are integers. With such ordering the parameters are ordered correspondingly

as 0o, 0,..., 6, with 6, = A. Also, we have the partition of matrix
a2k,
"= 90 90 = (Iab)ISa,bSc?
u U180/ 0<u,v<s

where

d2LY

Iab - d0, d0, ’ Sog = —1.
u Vl00) sq1+1<u<s,,sp_1+1<v<s,

Condition (14) implies I%(6,) = Iy(8,) + o(1), where I%(8,) =
diag(m'/*)H* diag(m; /%), I,(8,) is I}(8,) with L% replaced by L,. Thus
by the proof of Theorem 4.1, there exists & > 0 such that

(38) P(Ayin(T3i(60)) 2 5) > 1.

Let the order of the a-th group in (37) be m(®, that is, there are positive
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numbers p, and ¢, such that p,m“ <m, <q,m?, s, ;+1<u<s,
1<a <c. Let 9, = (6,,). Define, for any 0 < ¢ < 27'(1 A min,_,_, 0,,),

sa
S, = { Y (8- 0,,) <& D 1<ax c},
u

=S,.1+1

sa
ase,f{ Y (6,—6p,)" =¥,
u

=5, 1+1

Sp

Yy (Hu—00u)2sgz(c_b”),b#a}, l<ac<ec;

u=s,_ 1+1
Sq 9];\,
(//a 0 Z 390 (eu - BOu)’
u=s,_1+1 U 18
Sq 2 TV
lptiuz? = Z (Bu - 00u)(0v - 0011)’
w1 96,90, |,
Sq (?3L>§v
d’a(vewé) = Z n a0 ap (eu - 0014)(01) - 001})(01,0 - 00w)
u=s, 1+1 l99u &HU aaw ]

u

We have by Taylor-expanding JL%; /36, that on 4S, ,

S L%,
u=s, 1+1 u
Sq sy,
gt X <v>+z( X oun]+ T
v=s, 1+1 b<a \v=s,_;+1 b>a

1 Sa
+§{z ol B %
b<a d<

v=s,_ 1t1lw=s;_1+1

ZZ )+ X X (- )+ZZ('“)}

b<a d>a b>a d<a b>a d>a
1
=1+ +I, + 5(15 + - +1Q)
(éu is between 0, and 0,s,_; + 1 <u < sa).
It follows from Lemma 7.5 and the proof of Theorem 4.1 and 4.3 that

LY/ 3d6,lp, = m,0,(1) = m@o,(1), s, +1<u<s, So |[[|]<
m(”)ec_a”op(l). By the notes we made at the beginning of this proof, it is
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easy to show

|1'3| < m(a)82(cfa+l)+ 1Op(1), |I4| < m(a)gcfa+20p(1)’
3(c— 1
|1, < m@g3e-atDQ (1),
L] < m@ecme* V¥l (1),  j=6,7, |If<m®@e "% (1),

and (38) implies that w.p.—> 1 I, = (0 — ,)1,,(0 — 8,) = m®8p, e e+ D,
Note that the O,(1)s and 0,(1)’s do not depend on &. Thus it is easy to
conclude that

| 2 oL
Pﬁo inf Z (Hu—oou)w >0 -1, l<ac<ec.

0€dS, , —s, q+1 '

The result now follows from Lemma 7.4.

(i1) Suppose the MLE 65 exist w.p. = 1 and are AN. Let the parameters A
and u;, i €S, be ordered as 6,,60,,...,0, and N —p,m;, i €S, ordered
correspondingly as my, mq,..., m,. Let Iy(8,) and J5(6,) be as in Section 3
with p,(N) = 0<z<s

The cons1stency of 0N implies, by (i), p/N — 0 and I;‘,(H ) =1Iy(8y) + 0,(1)
(see the proof of previous theorems). By Taylor expansion and the note made
at the beginning of this proof

R
N,u m &gu

s ym, |- 1 s 1 93L%,
I:(0 +—
vgo pU(N)lN(—O)uU Z

2 w=0 \/mumv aeu (900 ‘90141

(0% Oow)}

oN,u

Xp (N)(é]ﬂ\;v - 001})

where 6y , is between 6, and 63, 0 < u < s. Let ay = max {p,(N)"'m}/?},
eno =Po(N)"1mY 2 /ay, my = (p(NX 8, — 6,,)), then the above equations
give —Y]\}k = ay Xy, where Xy = (Iy(6,) + o,(1)diag(cy ,Iny-

First we assume Iy(6, )—> I1(6y), Jy(8y) — J(8,), My(6,) — M(6,) and
¢y, 2 ¢, 0<v<s Then Xy -, N(, V(O )), where V(O ) =
I(O )dlag(c N M6, M(6,)]t diag(c,)I(8,); V(8,) # 0 (since that will imply
1 = max, ¢, = 0), therefore V(§,),, # 0 for some u, and Xy k6 —o

On the other hand, Yy = Yy + 8y, where

1 JLy p tr(C, (o))
Yy=|——— |, Sy 0= , Oy y=—F7—, # 0.
N ym, 90, .0 Agymg N, Vm, ,

So we have —Yy , =ayXy , + 8y ,. By the proof of Theorem 4.3 and 4.1,
~Yy = N(0, J(6,)); thus, in particular, — Yy .~ NQ, J(8,y),,)
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Now we can apply Theorem 8.2.3 in Chow and Teicher (1978) to conclude
that ay = (J(8),u/ V(80,2 so {p,(N)'ml/?}, 0 < v < s, are bounded.
Thus we can rewrite —Y3 = (Iy(6,) + 0,(1)diag(p,(N)"'m}/*)ny to get
ny = diag(m,'/?p (N)é&y — by, where &y =Iy(0,) '(=Yy +0,(1), by =
diag(mu_1/2pU(N))IN(_90)_15N-

Since we have &y —. N(0,U(8,)), my — N(0,W(8,)), where U(§,) =
I1(8,) " *J(8,)1(0,) ! > 0, W(8,) = [M(8,)M(8,)]"* > 0. By considering each
component and applying again Theorem 8.2.3 in Chow and Teicher (1978), we
get p,(N)"'my/? = (U(8),,./W(8y),,)"/? € (0,°) and by, > 0,0 <u <s,
which implies &y — 0.

Now we drop the assumption that the limits exist. The result then follows
by an a.o.s.; note that cy , < 1. This completes the proof of the “only if” part
(use Lemma 7.5).

The “if” part follows from Theorem 4.4(ii) and Lemma 7.5 (see the proof of
Theorem 4.1). O
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