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RATES OF CONVERGENCE OF THE HASTINGS AND
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Queensland University of Technology and Colorado State University

We apply recent results in Markov chain theory to Hastings and
Metropolis algorithms with either independent or symmetric candidate
distributions, and provide necessary and sufficient conditions for the
algorithms to converge at a geometric rate to a prescribed distribution p .

Ž k .In the independence case in R these indicate that geometric conver-
gence essentially occurs if and only if the candidate density is bounded

Ž .below by a multiple of p ; in the symmetric case in R only we show
geometric convergence essentially occurs if and only if p has geometric
tails. We also evaluate recently developed computable bounds on the rates
of convergence in this context: examples show that these theoretical
bounds can be inherently extremely conservative, although when the
chain is stochastically monotone the bounds may well be effective.

1. Hastings and Metropolis algorithms and Markov chains. The
w x w xHastings 6 and Metropolis 9 algorithms allow simulation of a probability
Ž . Ž . Ž .density p x which is only known up to a factor, that is, when only p x rp y

is known. This is especially relevant when p is the posterior distribution in a
w x w x w x w x w x w xBayesian context: see 3 , 21 , 20 , 13 , 22 and 4 for a more detailed

introduction.
In this paper we are concerned with the rate of convergence of these

algorithms for distributions on R k, and in particular with finding conditions
under which the convergence is geometrically fast.

In order to describe the Hastings and Metropolis algorithms, we first
Ž . k Ž .consider a candidate transition kernel Q x, A , x g R , A g BB X , satisfying

Q x , A G 0, Q x , R k s 1,Ž . Ž .

which generates potential transitions for a discrete-time Markov chain evolv-
k Ž .ing on X s R equipped with the Borel s-algebra BB X . We usually assume

Ž . Ž .that Q x, ? is absolutely continuous with density q x, y with respect to
Leb Ž � 4.Lebesgue measure m , except perhaps for an atom Q x, x ) 0, although

this is not necessary and the results below will hold in more general contexts
also.
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w xIn the Hastings algorithm, introduced in 6 , a ‘‘candidate transition’’
Ž .generated according to the law Q is then accepted with probability a x, y

given by

¡ p y q y , xŽ . Ž .
min , 1 , p x q x , y ) 0,Ž . Ž .½ 5~ p x q x , yŽ . Ž .1 a x , y sŽ . Ž . ¢1, p x q x , y s 0.Ž . Ž .

Thus actual transitions of the Hastings chain, which we shall denote by
� 4F s F , n g Z , take place according to a law P with transition densityn q

2 p x , y s q x , y a x , y , y / x ,Ž . Ž . Ž . Ž .
and with probability of remaining at the same point given by

Leb� 4 � 43 P x , x s q x , y 1 y a x , y m dy q Q x , x .Ž . Ž . Ž . Ž .Ž . Ž .H
With this choice of a we have that p satisfies

4 p A s p dx P x , A for all A g BB X .Ž . Ž . Ž . Ž . Ž .H
w xThe Metropolis algorithm, which dates back to 9 , is a special case of the

Hastings algorithm, utilizing a symmetric candidate transition Q, that is, one
Ž . Ž .for which q x, y s q y, x .

The questions we address here are whether the n-step transition probabili-
ties of F, defined by

n <P x , A s P F g A F s x , n g Z , x g X, A g BB X ,Ž . Ž .Ž .n 0 q

converge to p at a geometric rate, and if so what bounds can be placed on
that rate.

Ž w x w x w x.As has been observed often cf. 20 , 22 , and 5 , the Hastings algorithms
Žand other algorithms of the Markov chain Monte Carlo type, such as the

.Gibbs sampler can often be analyzed using the theory of w-irreducible
Markov chains; that is, chains for which there exists a measure w such that

5 w A ) 0 « P n x , A ) 0, x g X.Ž . Ž . Ž .Ý
n

Ž . Ž .For chains with the structure 2 and 3 , it is simple to check the following
result.

LEMMA 1.1. The chain F is p-irreducible if

6 p y ) 0 « q x , y ) 0, x g X.Ž . Ž . Ž .

Ž w x w x w xWeaker but less simple conditions are possible see 5 , 13 and 16 ,
.among others .

w xThe theory of w-irreducible chains is described in Nummelin 12 or Meyn
w xand Tweedie 10 . As discussed there, in order to develop criteria for rates of

convergence, we need the concepts of small sets and aperiodicity. It is known
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w x Ž .as in 10 , Chapter 5, that for a w-irreducible chain, any set A with w A ) 0
contains a small set; that is, a set C such that, for some d ) 0 and n ) 0 and
some probability measure n concentrated on C,
7 nŽ . P x , ? G dn ? , x g C.Ž . Ž .

Ž .The chain is called aperiodic if, for some one and then every small set with
Ž . Ž .w C ) 0 the g.c.d. of the n for which 7 holds is 1.
Again, these concepts are easy to verify for Hastings chains under suitable

conditions.

LEMMA 1.2. The Hastings chain F is aperiodic and every compact set C
LebŽ . Ž . Ž .with m C ) 0 is small if p x and q y, x are positive and continuous for

all x, y.

PROOF. Suppose that C is compact and nonempty; by positivity and
Ž . Ž .continuity we have d s sup p x - ` and « s inf q x, y ) 0.x g C x, y g C

Choose B : C. By construction, for fixed x if

p y q y , xŽ . Ž .
R B s y g B : - 1Ž .x ½ 5p x q x , yŽ . Ž .

Ž . Ž .and A B s A _ R B , we havex x

p y q y , xŽ . Ž .
LebP x , A s q x , y min , 1 m dyŽ . Ž . Ž .H ½ 5p x q x , yŽ . Ž .Ž .R Bx

p y q y , xŽ . Ž .
Lebq q x , y min , 1 m dyŽ . Ž .H ½ 5p x q x , yŽ . Ž .Ž .A Bx

p yŽ .
Leb Lebs q y , x m dy q q x , y m dyŽ . Ž . Ž . Ž .H H

p xŽ .Ž . Ž .R B A Bx x

8Ž .

« p yŽ .
Leb LebG p y m dy q « m dyŽ . Ž . Ž .H Hd dŽ . Ž .R B A Bx x

«
s p A .Ž .

d
Ž .Thus C is small and since 7 holds for n s 1 the chain is automatically

aperiodic. I

Ž .The crucial observation in the Hastings context is now that, from 4 , we
have that the distribution p is invariant for F. Consequently, as discussed

w xin 10 , Chapter 13, it follows immediately that in the w-irreducible aperiodic
case, for p-a.e. initial condition x g X,

n9 P x , ? y p ª 0,Ž . Ž .
5 5where we define the total variation norm of a signed measure m by m s

< Ž . <sup m A .Ag BBŽX .
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w xFrom 10 we now outline two results which will enable us to analyze the
convergence properties of Hastings algorithms. First, we note that, although

Ž .the convergence in 9 is not in general uniform in the starting point of the
chain, there is a useful class of chains for which such uniformity does hold;

Ž .that is, for which there exists a sequence r n ª 0 as n ª ` such that, for
all x,

n10 P x , ? y p F r n .Ž . Ž . Ž .
Such chains are called uniformly ergodic.

w xThe following criteria for uniform ergodicity are taken from 10 , Chapter
16.

THEOREM 1.3. For any Markov chain F the following are equivalent:

Ž .i The chain is aperiodic and Doeblin’s condition holds; that is, there is a
Ž .probability measure f on BB X and « - 1, d ) 0, m g Z such that, when-q

Ž .ever f A ) « ,
11 inf P m x , A ) d .Ž . Ž .

xgX
Ž .ii The whole state space X is small; that is, for some d ) 0 and some

m G 1 and some probability measure n ,
12 P m x , A G dn A , x g X, A g BB X .Ž . Ž . Ž . Ž .
Ž .iii For some small set C we have

w xsup E t - `,x C
xgX

where t is the first return time to C.C
Ž .iv The chain F is uniformly ergodic.

Ž . Ž . Ž .When any of i ] iv hold the convergence in 10 is geometrically fast, and for
Ž .any x we can bound the rate of convergence using 12 by

w xnrmn13 P x , ? y p F 1 y d .Ž . Ž . Ž .

In the next two sections we shall apply this result to the Hastings
algorithm with Q chosen independently of x and to the Metropolis algorithm
in which Q is chosen to be symmetric.

Except on compact spaces, however, most chains are not uniformly ergodic:
Ž .this is intuitively clear from Theorem 1.3 iii . Even so it is possible to find
Ž .conditions under which the convergence in 9 takes place at a geometric rate

even if there is dependence on the initial state F . The following theorem is0
w xtaken from 10 , Chapters 15 and 16.

THEOREM 1.4. Suppose that F is w-irreducible and aperiodic. Then the
following are equivalent:

Ž .i There is a function V G 1, finite at least for one x, and a small set C
such that for some l - 1, b - ` the ‘‘geometric drift condition’’C C

14 PV F l V q b |Ž . C C C

is satisfied.
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Ž . Ž .ii For some small set C with w C ) 0, there exists k ) 1 such that

w t C x15 sup E k - `.Ž . x
xgC

Ž .iii The chain is geometrically ergodic in the sense that there is a function
w Ž .xV G 1, finite p-a.e. which can be taken as the V in i , and constants r ) 1

Ž . Ž .and R - ` such that, for all n g Z and all x such that V x in 14 is finite,q
n yn16 P x , ? y p F RV x r ,Ž . Ž . Ž .V

5 5where for any signed measure m the V-norm is defined as m sV
< Ž . Ž . <sup Hm dy g y .< g < F V

It is valuable to note explicitly that this result shows:

Ž . Ž . Ž .a When 14 holds for an everywhere finite function V, then 16 and thus
Ž .also 9 hold for all rather than almost all x.

Ž .b The theorem covers convergence, not just of total variation norms and
hence of expectations of bounded functions, but also typically of unbounded

w Ž .xmoments: it ensures that for all functions g F V we have E g F ªx n
w Ž .x ŽE g F in a uniform manner, and in very many cases see Section 5 forp n

.example V will be such that this covers higher-order moments in the usual
sense.

We apply both the necessary and sufficient aspects of the drift condition
Ž .14 to the Metropolis algorithm in Theorems 3.2 and 3.3, while the necessity

Ž .of 15 is applied in Theorem 2.1 in the case of Q independent of x. In the
w x Ž .related Gibbs sampling framework, Chan 5 has also recently exploited 14 .

In later sections we also address the question of bounding the rate of
Ž .convergence in a computable way in 16 using some new Markov chain

methods.

2. Convergence of Hastings independence algorithms. We first
Ž .consider the simplest algorithm defined by 2 . This is the independence case

in which
17 q x , y s q y , x , y g X.Ž . Ž . Ž .

Ž . Ž .To avoid complications, we assume p x ) 0 and q x ) 0 for all x so that
the acceptance probabilities here take the form

p y q xŽ . Ž .
18 a x , y s min , 1 .Ž . Ž . ½ 5p x q yŽ . Ž .

We prove, using Theorems 1.3 and 1.4, the following result.

THEOREM 2.1. The independent Hastings algorithm is uniformly ergodic if
there exists b ) 0 such that

q yŽ .
19 G b , y g X,Ž .

p yŽ .
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and then
w xnn20 P x , ? y p F 1 y b .Ž . Ž . Ž .

� Ž . Ž .4Conversely, if ess inf q y rp y s 0 in p-measure, then the algorithm is not
even geometrically ergodic.

Ž . Ž .PROOF. Suppose that 19 holds. For fixed x, we have either a x, y s 1,
Ž . Ž . Ž .in which case p x, y s q y G bp y ; or else

p y q x q xŽ . Ž . Ž .
p x , y s q y s p y G bp y .Ž . Ž . Ž . Ž .

p x q y p xŽ . Ž . Ž .
Ž .In either case 12 holds and the result follows from Theorem 1.3.

Ž . Ž .Suppose now that 19 fails, so that p D ) 0 for all n, wheren

q xŽ . y1D s x : F n .n ½ 5p xŽ .

Suppose the chain is geometrically ergodic, and let C be a small set satisfying
Ž .15 . Since the chain is p-irreducible by construction, for any n there is at
least one x g C and some m g Z such thatn q

21 P F g D , t ) m ) 0.Ž . Ž .x m n Cn

� w Ž . Ž .xw Ž . Ž .x 4 �For fixed x, write A s y: p y rq y q x rp x G 1 and R s y:x x
w Ž . Ž .xw Ž . Ž .x 4p y rq y q x rp x - 1 for the regions where a transition using Q is
accepted and is possibly rejected, respectively. Suppose that x g D . Then wen
have, for y g A ,x

y11 F p y rq y q x rp x F n p y rq yŽ . Ž . Ž . Ž . Ž . Ž .
and so

� 4 Leb y1 Leb y1P x , A _ x s q y m dy F n p y m dy F n .Ž . Ž . Ž . Ž .Ž . H Hx
A Ax x

Similarly, for y g R ,x

LebR x , R s q y p y rq y q x rp x m dyŽ . Ž . Ž . Ž . Ž . Ž . Ž .Hx
R x

F ny1p y mLeb dy F ny1 .Ž . Ž .H
R x

Ž � 4.Thus we have P x, x G 1 y 2rn for every x g D , and so by iteratingn

kP t G k G 1 y 2rn .Ž . Ž .x C

Thus the radius of convergence of

w t C x kE z s P t G k zŽ .Ýx x C
k
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Ž . Ž .is smaller than nr n y 2 . But now from 21 it follows that for x we alson
w t C x Ž .have that E z diverges outside nr n y 2 . Since we can take n arbitrar-x n

Ž .ily large, it follows that 15 cannot hold for any k ) 1. Thus we have a
contradiction and the chain is not geometrically ergodic. I

Ž . w xThe sufficiency of 19 was noted in 22 , but the necessity appears to be
new. The fact that without this bound the chain may tend to ‘‘stick’’ in
regions of low density is of considerable practical importance and is not
merely a curiosity: seemingly sensible procedures give this behavior, as the
following example illustrates.

ŽEXAMPLE 1 Estimating normal densities using independent normal candi-
. Ž .dates . Consider the situation in which p is an N 0, 1 distribution. If we do

not know the true mean, but do know that the underlying distribution is
normal, then one choice for the candidate density might be an independent

Ž .normal density centered at some known fixed value: so, for example, Q x, ?
Ž .might be taken as an N 1, 1 distribution for each x.

The acceptance ratios then follow from the calculation that

xyyp y rp x q x rq y s e .Ž . Ž . Ž . Ž .

Ž .Hence R s x, ` so that moves to the right are possibly rejected, but movesx
to the left are always accepted, due to the relative positions of the means of
the candidate and target distributions.

Ž .Now 19 fails in this example, and we find that the chain moves to the
Ž xnegative axis with positive probability and then leaves the sets y`, yn

more and more slowly if it enters them, and the algorithm cannot converge
geometrically quickly.

If, on the other hand, we know the mean but not the variance of p , then
Ž . Ž 2 . 2we might take Q x, ? to be an N 0, s distribution for some known s ) 1.

Ž . Ž . y1 Ž .Then we have that q x rp x G s and we can use 20 to find that
Ž y1 .nconvergence occurs at rate at least 1 y s , thus quantifying the role of

choosing a s close to the true value.

3. Convergence of Metropolis algorithms. We next consider the algo-
Ž .rithm defined by 2 in the symmetric case where

22 q x , y s q y , x , x , y g X.Ž . Ž . Ž .

Ž w x.The most common usage of such chains occurs cf. 22 if Q is not merely
symmetric but satisfies

23 q x , y s q x y y s q y y xŽ . Ž . Ž . Ž .
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for some fixed density q; that is, the candidate increment distributions are
identical, and the chain would be a random walk if it were not for the
acceptance probabilities, which take the form

¡ p yŽ .
min , 1 , p x q x , y ) 0,Ž . Ž .½ 5~ p xŽ .24 a x , y sŽ . Ž . ¢1, p x q x , y s 0.Ž . Ž .

This Metropolis algorithm typically fails to be uniformly ergodic when the
state space is not bounded. We have the following result.

Ž . kTHEOREM 3.1. If Q satisfies 23 on R , then the Metropolis algorithm is
not uniformly ergodic for any p .

Ž .PROOF. It is easiest to see this through the necessity of 12 . Suppose the
chain is uniformly ergodic. It is obvious by considering rejected moves that,
for any A not containing x,

m
m jP x , A F Q x , A .Ž . Ž .Ý

js1

Ž .Considering the j-step densities with respect to Lebesgue measure , we thus
Ž .have from 12 that we can find some bounded nonempty set C9, and d 9 ) 0,

such that we would have

m
jq x , y G d 9Ž .Ý

js1

for y g C9 and for every x not in C9. But then, by the symmetry of Q and its
m jŽ .iterates, we would have for y g C9 that Ý q y, x G d 9 for every x not injs1

C9, which is impossible since the space is not bounded. I

This result holds for many asymmetric candidate distributions also. To see
Ž .this intuitively, consider the condition in Theorem 1.3 iii . Note that the

Hastings algorithm will often move more slowly to hit a set C in the ‘‘center’’
Ž .due to moves ‘‘away’’ than a random walk that rejects all moves ‘‘away’’: it

w xis well known 10 that for all random walks the number of steps needed to
reach the center of the space is essentially linear in the distance from the
center, and so the number of steps needed for the Hastings algorithm to

Ž .reach the center of the space is also unbounded. Therefore, Theorem 1.3 iii
cannot hold for such algorithms.
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Although, as just shown, symmetric or Metropolis algorithms are not
uniformly ergodic in general, Theorem 1.4 can provide useful criteria for
geometric ergodicity under some widely used conditions. In the remainder of
this section we shall consider only distributions on R. Some of the results can
be extended, although not simply, to higher dimensions, and this has been

w xdone recently in 16 .
Ž .Let us define the class MM of densities with the properties that p x is

Ž .continuous and p x ) 0 for all x g R. Call such a density p log-concave in
the tails if there exists a ) 0 and some x such that, for all y G x G x ,1 1

25 log p x y log p y G a y y x ,Ž . Ž . Ž . Ž .

and similarly, all y F x F yx ,1

26 log p x y log p y G a x y y .Ž . Ž . Ž . Ž .

Ž .THEOREM 3.2. Suppose p x g MM is log-concave in the tails and symmet-
Ž . Ž .ric. Then for any Q which satisfies 23 with continuous density q x ) 0 the

Metropolis algorithm is geometrically ergodic, with

n ynP x , ? y p F Rr V xŽ . Ž .V

Ž . s < x < Ž .for some R - `, r ) 1 and V x s e for any s - a , where a is as in 25
Ž .and 26 .

If p is not symmetric, then the same conclusion holds provided that the
Ž . ya < x <candidate density satisfies also q x F b e for some finite b.

PROOF. The positivity and continuity conditions on p and q ensure that
Lemmas 1.1 and 1.2 hold. Hence every compact set of positive measure is

Ž . w xsmall and so it suffices to check 14 with C s yx, x for some x ) 0.
For each x define again the sets

A s y : p x F p y , R s y : p x ) p y� 4 � 4Ž . Ž . Ž . Ž .x x

Ž .for the acceptance and possible rejection regions for the chain started from
x. If p g MM and is log-concave in the tails, these sets are relatively simple. We
have immediately from the construction of the algorithm that when p is

� < < < <4 < <symmetric then there exists x such that A s y F x for x ) x , while0 x 0
in the nonsymmetric case there exists x such that for x ) x the set0 0
Ž . Ž . Žx, ` : R and the set yx, x : A ; similarly for x - yx the set y`,x x 0
. Ž .x : R and the set x, yx : A .x x

Let us choose a suitably large x* G x k x , where x is the point at which0 1 1
log-concavity begins; the other properties of x* become apparent below. We

Ž .first consider the case of symmetric p . We will apply Theorem 1.3 ii using
Ž . s < x <the test function V x s e for any s - a .
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� 4Identifying moves to A , R and x separately, we have, for x G x*,x x

l [ P x , dy V y rV xŽ . Ž . Ž .Hx

< <s Q x , dy exp s y y xŽ . Ž .Ž .H
< <y Fx

< <q Q x , dy exp s y y x p y rp xŽ . Ž . Ž .Ž .Ž .H
< <y )x

q Q x , dy 1 y p y rp xŽ . Ž . Ž .H
< <y )x

27Ž .

< <s 1 q Q x , dy exp s y y x y 1Ž . Ž .Ž .H
< <y Fx

< <q Q x , dy exp s y y x y 1 p y rp x .Ž . Ž . Ž .Ž .Ž .H
< <y )x

Now, using the fact that log-concavity implies, for y G x G x*,

p yŽ . ya Ž yyx .28 F e ,Ž .
p xŽ .

we have, for x G x* and s - a ,
x

l F 1 q Q x , dy exp s y y x y 1Ž . Ž .Ž .Hx
0

2 x
q Q x , dy exp ya y y x exp s y y x y 1Ž . Ž . Ž .Ž . Ž .H

x

29Ž .

q Q x , 2 x , ` q Q x , y`, 0 .Ž . Ž .Ž . Ž .
Ž . ` Ž . LebŽ .The last two terms in 29 total less than 2H q z m dz and so for large x*x

can be made arbitrarily small. Thus by symmetry we will have drift toward
Ž . Ž .C s yx*, x* as in 14 if we have the sum of the second and third terms in

Ž . Ž .29 strictly bounded below 0 for all x ) x*. Using 23 , we can write these
terms as

x
ys z yŽays. z ya z Lebw xq z e y 1 q e y e m dzŽ . Ž .H

0

x
ys z yŽays. z Lebw x w xs y q z 1 y e 1 y e m dzŽ . Ž .H

0

and since the integrand on the right is positive and increasing as z increases,
Ž .we find that, for suitably large x*, l in 29 is strictly less than 1 asx

required.
Ž .For 0 F x F x*, the right-hand side of 27 is similarly less than

` x*Leb Leb1 q 2 q z m dz q 2 exp sx* q z m dz .Ž . Ž . Ž . Ž . Ž .H H
x* 0
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Ž .For negative x the same calculations are valid by symmetry, and so 14
holds and the result is proved.

In the case of nonsymmetric p , the proof is similar. We need now, however,
Ž .to control the term for x ) 0

< <Q x , dy exp s y y x y 1 1 k p y rp xŽ . Ž . Ž .Ž .Ž .H
yFyx

Ž . Ž . Ž < <.in 27 , and this is guaranteed to be negligible if q x F b exp ya x as we
have assumed. I

This theorem shows that a criterion for geometric ergodicity in R is that
the target distribution p have exponentially decreasing tails. In higher

w xdimensions this also seems plausible, but in 16 we show that if indeed p
decreases exponentially as one moves away from the origin, then the
Metropolis algorithm is geometrically ergodic, provided also that p has
smooth contours in an explicit way. Without the extra contour condition, the
chain can fail to be geometrically ergodic.

We now show in R, geometric convergence essentially only occurs if the
tails of p decrease exponentially.

Ž .THEOREM 3.3. Suppose that p g MM and that Q satisfies 23 and also has
< < Ž . LebŽ .finite absolute first moment H z q z m dz s g - `.

If the Metropolis algorithm is geometrically ergodic, then there exists some
Ž . s < y <s ) 0 such that Hp dy e - `.

Ž .PROOF. Since p g MM, as in the previous proof all sets yx, x are small.
Ž .Thus for any x ) 0 by Theorem 1.4 ii there exists a function V G 1 and

Ž . Ž .l - 1 such that PV y F lV y for y G x, so that by Jensen’s inequality

E log V F rV y F log E V F rV y F log l - 0.Ž . Ž . Ž . Ž .Ž . Ž .y 1 y 1

Thus we have

30 E log V F F log V y q log l, y G x ;Ž . Ž . Ž .Ž .Ž .y 1

Ž .that is, log V is itself a Foster]Lyapunov function for simple ergodicity.
w x Ž .From Theorem 11.3.4 of 10 it follows from 30 that, for « s ylog l,

w x31 log V y G E t r« ,Ž . Ž . y x

Ž .where t denotes the first hitting time of F on y`, x .x
ˆNow let Q denote the transition law of the one-sided random walk with

ˆ ˆ� 432 Q 0 s 1r2, Q A s Q A , A : y`, 0 ,Ž . Ž . Ž . Ž .Ž .
Ž .and let t denote the first hitting times on y`, x of the one-sided randomx̂

walk. Then we have

33 P t F m F P t F mŽ . Ž . Ž .ˆy x y x
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by a stochastic monotonicity argument since, starting from y ) x, the
Ž .Metropolis chain is always in distribution stochastically larger than the

one-sided random walk.
Ž .The one-sided random walk with law 32 has mean increment gr2. By a

standard random walk argument we have that, for large y,
g

E t ; y y x .Ž .ˆy x 2
Ž . w x w xThe stochastic ordering 33 implies that E t G E t , and so it followsˆy x y x

Ž .from 31 that, for all large y and some h ) 0,
g

V y G exp y y x .Ž . Ž .ž /2« q h

A symmetric argument for the left tail shows that for large values of yy we
also have

g
V y G exp yy q x .Ž . Ž .ž /2« q h

Ž .Finally, we use the fact that, since V satisfies the drift condition 14 , then
w x Ž . Ž .from Theorem 14.0.1 of 10 , we must have Hp dy V y - `, and the result is

proved. I

Note that this necessity result demands no monotonicity properties on p
at all.

Ž .If the density p x is sufficiently regular, then we have an elegant di-
chotomy into geometrically and nongeometrically ergodic chains. Let MMq

Ž . Ž . Ž Ž ..denote those symmetric densities in MM such that u x [ drdx log p x is
defined for all sufficiently large x, and for which

lim u x s uŽ . `
xª`

Ž .is defined although possibly y` . Then we have the following result.

q Ž .THEOREM 3.4. Suppose p g MM and Q satisfies 23 , with q continuous
and with finite absolute first moment. Then the Metropolis algorithm is
geometrically ergodic if and only if u - 0.`

PROOF. To see sufficiency, note that for all sufficiently large x - y we
have

y ù
Leb34 log p y y log p x s u z m dz F y y x ,Ž . Ž . Ž . Ž . Ž . Ž .H 2x

Ž .so that 25 holds, and by symmetry of the left tail we have that Theorem 3.2
holds.

Conversely, if u s 0, then, for any d ) 0, for large x and all z ) 0, as in`

Ž .34 ,
log p x q z y log p x G yd z ,Ž . Ž .



CONVERGENCE OF HASTINGS ALGORITHMS 113

so that we have

p x q z exp d z G p x .Ž . Ž . Ž .
` Ž . Ž Ž .. LebŽ .Integrating both sides shows that H p y exp d y m dy s `; and since dx

is arbitrary we have from Theorem 3.3 that the chain cannot be geometrically
ergodic. I

Note, in particular, that we have shown that if the tails of p are at least
exponentially decreasing, then the Metropolis algorithm is geometrically

Ž . ynergodic; but if the tails are only polynomial, with say p x A x , then since
Ž .u x A nrx the Metropolis algorithm is not geometrically ergodic. Thus if p

is normal we have geometric convergence, but if p is a t-distribution this will
not occur.

We conjecture that convergence rates in the case of polynomial tails of
order n will be polynomial of order n y 1; this is plausible based on similar

w xresults in 23 .

4. Computable rates of convergence: chains with atoms. Unlike
Ž .13 , there exist no simple conditions in general for rates of convergence in

w x w x w xthe nonuniform case. However, recent results in 11 , 7 and 19 enable us to
derive bounds on the rate of convergence which are actually computable.

The bounds are simpler when the state space is countable or in some other
way admits a reachable atom in the space, that is, essentially, when there is

Ž .a single point a such that p a ) 0. They are even simpler for chains
possessing a stochastic monotonicity property, that is, where we have a chain

w . kon 0, ` rather than on R , and where, for all z G 0,

w x w x35 P x , 0, z G P y , 0, z , x F y.Ž . Ž . Ž .

The next theorem gives the explicit form for these bounds which we can use
when conditions permit.

Ž .THEOREM 4.1. Suppose that for some atom a g BB X we have l - 1, b - `
and a function V G 1 such that

36 P x , dy V y F lV x q b| xŽ . Ž . Ž . Ž . Ž .H a

and also that the atom is strongly aperiodic, that is, for some d ,

37 P a , a ) d .Ž . Ž .

Ž . w Ž .xy1i For any r - q j ,

1
n yn5 538 P y p F V x r , n g Z ,Ž . Ž .V q1 y rq jŽ .
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Ž . Ž .y1where q j s 1 y M j , and, for each j s 1, 2, 3,

1
2 239 M j s 1 y l q b q b q z j b 1 y l q b ;Ž . Ž . Ž . Ž .Ž .a21 y lŽ .

here the three bounds

z 1 G z 2 G z 3Ž . Ž . Ž .a a a

are given by
2232 y 8d b

40 z 1 s ,Ž . Ž .a 3 ž /1 y ld

2b 1
41 z 2 s y 1,Ž . Ž .a ž /1 y l 2d p 2Ž .

Ž . Ž .where p 2 s P t s 2 , anda a

1
42 z 3 s y 1.Ž . Ž .a 22 p a d p 2Ž . Ž .
Ž . w . Ž . Ž .ii If the chain is stochastically monotone on 0, ` , as in 35 , and 36

� 4 y1holds for the atom 0 and monotone V, then, for any r F l ,

2 b
n yn43 P x , ? y p F V x q r , n g Z .Ž . Ž . Ž .V q1 y rl 1 y l

Ž . w xThe result using z 1 is in Theorems 2.1 and 2.2 of 11 , and requires onlya

Ž . Ž . Ž .that we know l, b and d ; the results using z 2 or z 3 follow from 42 ofa a

w x Ž . Ž .11 , and require that we know at least a lower bound on p 2 , and for z 3a

Ž .that we also know p a . This will sometimes be the case, but in general we
Ž .have only the coarse bound in 40 available.

The stochastic monotonicity result holds also for nonmonotone V with the
same rate ln, but the constant is slightly messier. This version is from

w xTheorem 2.3 of 19 : the main thrust of the result is proved in Theorem 3.1 of
w x7 . The value of l as a bound on the rate of convergence is in many cases

w xbest possible, as is also shown in 7 .
There have recently been a number of other results for rates of conver-

w xgence of Markov chains. Rosenthal 17 uses an elegant coupling method to
give bounds on the total variation norm, although they do not cover conver-

w xgence of unbounded functions of the chain. Baxendale 2 has similar bounds,
w xusing methods related to those in 11 . Neither of these seem to be uniformly

w x w xbetter than those we will apply here 14 . Amit 1 considers quite different
w xapproaches in an L setting, as do Schervish and Carlin 18 , but these2

appear rather more specialized in implementation.
We illustrate Theorem 4.1 with an application to a distribution concen-

trated on the nonnegative integers Z . This gives some idea of the differenceq
Ž . Ž .in effectiveness of the two bounds given by 43 and 39 .
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ŽEXAMPLE 2 Estimating a geometric distribution using a symmetric candi-
.date . Suppose that p is the geometric distribution given by

j � 4p j s 1 y p p , j s 0, 1, 2, . . . ,Ž . Ž .
and that we use as a candidate distribution the simple random walk with
transitions given by

q i , i y 1 s q i , i q 1 s 1r2, i ) 0; q 0, 1 s q 0, 0 s 1r2.Ž . Ž . Ž . Ž .
It is easily verified that this is a symmetric candidate and so the acceptance

Ž .probabilities are given by a 0, 1 s p and

a i , i y 1 s 1, a i , i q 1 s p , i G 1.Ž . Ž .
For this Metropolis algorithm we then find the transition law is given by

p i , i y 1 s 1r2, p i , i q 1 s pr2,Ž . Ž .
p i , i s 1 y p r2, i ) 0;Ž . Ž .44Ž .
p 0, 0 s 1 y pr2, p 0, 1 s pr2.Ž . Ž .

It is clear by construction that this is stochastically monotone chain. In order
to verify geometric ergodicity and to compare the bounds in Theorem 4.1 for

Ž . Ž . jthe rate of convergence, we use 36 and the drift function V j s b , where
the value of b is to be determined. We have, for j ) 0, that the drift constant

Ž .in 36 for each b is given by

45 l [ p i , j V j rV i s 1r2b q 1 y p r2 q pbr2.Ž . Ž . Ž . Ž . Ž .Ýb
j

Ž . 'To use Theorem 4.1 ii , we need to minimize l and this occurs at b s 1r p ,b

Ž .'which gives a value of l s p q 1 y p r2.min
Ž . ŽFrom Theorem 4.1 ii , l gives a best value for this choice of geometricmin

.function V of the bound on the rate of convergence.
Ž . Ž .'At 0, we then get the value of b in 36 given by b s 1 y p r2, and we

Ž .can also use 39 to get upper bounds on the rate of convergence, ignoring the
Ž .stochastic monotonicity structure, since we know d s p 0, 0 in this case; we

Ž . Ž .also know that p 0 s 1 y p and p 2 s pr4, so that we can use the version
Ž . Ž . Ž . Ž .of the bounds with q 2 and q 3 using 41 and 42 .

Table 1 shows the calculation of bounds for various values of the parame-
ter p of the target geometric distribution. Note from the converse results of

TABLE 1

( ) ( ) ( )p l q 3 q 2 q 1min

0.8 0.99 0.99992 0.99997 0.999999
0.6 0.97 0.99892 0.99960 0.999974
0.4 0.93 0.99562 0.99808 0.999750
0.2 0.85 0.99046 0.99503 0.998344
0.1 0.77 0.99026 0.99416 0.995750
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w x7 that this is a case where the exact rate of convergence is indeed l . It ismin
Ž .now obvious that the bounds from Theorem 4.1 i are much worse than l ;min

for example, at p s 0.4 we know that the algorithm converges at rate
Ž . Ž . Ž .l s 0.93, but the bounds from 39 range from q 3 s 0.9956 to q 1 s
w x Ž .0.99975. This is due, as noted in 11 , largely to the large value of z j , anda

more work needs to be done to improve this if the bounds are to be of value in
practice in evaluating Hastings]Metropolis algorithms.

Ž .One can also look at this effect by defining N r to be the number of steps«

needed to bring the total variation distance below a given specified « , that is,
by setting r N«Ž r . s « . This is tabulated in Table 2 for the three bounds and
for values of « s 0.01 and « s 0.001. The techniques illustrated by this
example extend to more general monotone decreasing p , since the stochastic

Ž . Ž .monotonicity will continue to hold provided that also p i q 1 rp i is nonin-
Ž .creasing. Thus the effective rate of convergence results using Theorem 4.1 ii

can be applied to a reasonable class of target distributions, and for these
realistic and usable bounds can be found.

5. Rates of convergence: general case. Even when there is no atom in
w x w x w xthe space, it is shown in 11 , 2 and 17 that under very general conditions

it is still possible to get analytical bounds on the rates of convergence which
are actually computable and which are applicable to general Hastings algo-
rithms where only ratios of densities are known. These extend those of

Ž . w xTheorem 4.1 i : from Theorem 2.3 of 11 we have the following result.

Ž . Ž .THEOREM 5.1. Suppose that in 14 the set C satisfies 7 with n s 1 so
that
46 P x , ? G d n ? , x g C ,Ž . Ž . Ž .C

and assume
47 h [ inf P x , C y d ) 0, v s sup V x - `.Ž . Ž . Ž .C C

xgC xgC

Define the constants
y1U w xb s 1 y d b q d l v y n V ,Ž .Ž .C C C C C C

y1 U Uw x w xg s d h 1 y d b , b s n V y l ,Ž .C C C C a C48Ž .
ˇ ˇ Uw x w xl s l q g r 1 q g - 1, b s b q g - `.C C C a C

TABLE 2

( ) ( ( )) ( ( )) ( ( )) ( ) ( ( )) ( ( )) ( ( ))p N l N q 3 N q 2 N q 1 N l N q 3 N q 2 N q 1a min a a a a min a a a

« s 0.01 « s 0.001

0.8 824 56192 179379 5534447 1236 84287 269068 8301671
0.6 179 4269 11373 180046 268 6403 17060 270070
0.4 66 1048 2396 18403 99 1572 3594 27605
0.2 28 480 925 2778 42 720 1387 4168
0.1 17 471 786 1081 26 706 1179 1622
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If we now define q s 1 y My1, whereC

1
2 2ˇ ˇ ˇ ˇ ˇ ˇ49 M s 1 y l q b q b q z b 1 y l q bŽ . Ž .Ž .C C2ˇ1 y lŽ .

and
221 y h bC

50 z s ,Ž . C 4 ž /1 y l2d h CC

Ž .then, for any r g q , 1 and all x g X,
r

n n51 P x , ? y p F V x 1 q g r , n g Z .Ž . Ž . Ž . Ž .V C qr y q

The value z could be improved with more knowledge of the model in aC
Ž . Ž .similar manner to the improvement through using z 2 or z 3 in place ofa a

Ž .z 1 in Theorem 4.1, but this requires considerable extra work and alsoa

requires information not readily available in many models.
We now apply Theorem 5.1 to assess bounds on the rate of convergence of

Ž .two Metropolis algorithms, in which p is again an N 0, 1 distribution. These
examples do indicate that, as in Example 2, the bounds are not in general yet
of practical value: they do, however, give an indication of how to construct the
drift inequalities that are used in all of the bounds such as those of Theorem

w x w x5.1 and 2 and 17 .

Ž .EXAMPLE 3 Estimating normal densities using normal candidates . If p
Ž .is N 0, 1 , then we first choose as a symmetric candidate distribution the

normal centered on the current value x with unit variance. Such a model
satisfies all the conditions of Theorem 3.2 above, and hence is geometrically

Ž .ergodic. We now calculate the constants in 48 in order to bound the rate of
convergence. This illustrates strikingly the different emphases between prac-
tical calculation of the constants and the steps in the existence proof in
Theorem 3.2, and the loss of effectiveness without existence of an atom.

Ž . Ž .We will apply 14 for the small set C s yx , x for some x ) 0 to beD D D D

Ž .chosen. The size of the bound 49 may be best controlled by first specifying
x , which determines d and h, which give dominant terms in M . If oneD C C
were interested only in establishing the existence of geometric ergodicity, n

Ž 2 .could be chosen to be Lebesgue so that d would be given by exp y2 x . AC D

considerable improvement is obtained by choosing the minorizing distribution
with density

n x s | x eyx 2rN ,Ž . Ž .C DD

with N the normalizing constant N s H xD eyx 2
dx. This givesD D yxD

y1r2 2w xd s 2p N exp yx .Ž .C D D

The infimum h occurs at x s x , so thatD

y1r2 2w xh s 1r2 y F y2 x y 2p N exp yx .Ž . Ž .D D D
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With the small set and its constants calculated, we will consider the test
Ž . s < y < Ž .function V y s e for some s to be chosen also. Then, following 27 ,

K x , s [ P x , y V y rV x dyŽ . Ž . Ž . Ž .H
s2

s exp F ys y F yx y sŽ . Ž .Žž /2

qexp y2 xs F yx q s y F y2 x q sŽ . Ž . Ž .Ž . .
2 21 x y 6 xs q s 'q exp F y3x q s r 2Ž .Ž .ž /' ž 42

2x y s 1Ž . 'qexp F yx q s r 2 qŽ .Ž .ž / /4 2

21 x ' 'q F y2 x y exp F y3xr 2 q F yxr 2 .Ž . Ž . Ž .Ž .ž /' 42

Now, instead of specifying s and calculating l , it is more effective to specifyC
l and then determine s which then gives the remaining constants.C

Ž .cWe find s by equating sup K x, s to l , which is straightforwardx g C CD

Ž . Ž . Ž Ž .since the supremum occurs at x ; since PV x F l V x q K x, s yD C
. Ž .l V x for all x g C , we then findC D

b s sup e s < x < K x , s y l ,Ž .Ž .C C
xgCD

which has a supremum at 0 given by

2s' ' 'b s 2 F sr 2 exp q 1 y 1r 2 y l .Ž .C Cž /4

We then have

2s
U ' ' 'b s 2 exp rN F 2 x y sr2 q F sr 2 y 1 y l .Ž . Ž .Ž .Ž .a D D Cž /ž /ž /4

U ˇ ˇ Ž . Ž . Ž .The terms b , l , l, b, z , M then follow as in 48 , 49 and 50 .c c C
Using these computations, we found a minimum value of M s 6.29 = 107,C

obtained for x s 1.20, l s 0.99999 and s s 2.9 = 10y5, that is, for a veryD c
flat V. This leads to a value of q s 0.999999984, and, in the notation above,

Ž .N q s 289,665,203. The corresponding values for other terms in this0.01
calculation are as follows:

d b bU bU
C C a C

y5 y5 y50.15 2.6 = 10 2.9 = 10 3.4 = 10

ˇ ˇh l b z
y5 y4 40.34 1 y 10 5.9 = 10 1.6 = 10
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The symmetric model just considered is based on a zero-mean random
walk candidate. We conclude by considering a modified or adaptive chain
which moves relatively quickly to the center of the space; this is similar to a

w xmodel analyzed by Schervish and Carlin 18 , which was shown to converge
at rate 1r2, and we might hope to find a faster theoretical rate of convergence
here.

Ž .Again, take p as N 0, 1 , and now let us choose the candidate density by
Ž . Ž .Q x, ? s N xr2, 1 . It is straightforward to calculate that the acceptance

< < < <region A is again y F x , and that the acceptance probabilities for transi-x
tions outside this region are given by

x 2 y y2

a x , y s exp .Ž . ž /8

We now consider the same steps for calculating M , and use the two testC
functions

< <V y s 1 q s y ,Ž .1

V y s exp sy2Ž . Ž .2

in order to see whether a steeper or slower choice of V gives a tighter bound.
Using V , a best value of M s 2.4 = 106 was obtained at x s 1.55,1 C D

l s 0.98. As expected, this was improved using V , for which the minimumC 2
value of M was 7.6 = 105 at x s 1.70, l s 0.98. These give, respectively,C D C

Ž .values of q s 0.99999958 and N q s 11,052,406 for V , and q s0.01 1
Ž .0.9999986 and N q s 3,499,927 for V .0.01 2

6. Value of bounds on rates. Clearly, at the moment the bounds
developed in the last two sections are not useful for practical purposes, except
in the stochastically monotone case. It is possible to construct variants of
standard algorithms that are stochastically monotone in some specialized

w xcases, but these are rather artificial 8 . The bounds found in Section 5 are
also unfortunately relatively close to the best that can be expected using this
method of bounding, as can be seen by consideration of the role of d and h inC

w xthe expressions concerned; more details are in 8 .
By carrying out the computations above, we are able to indicate the type of

function V which provides an indicator of the ‘‘moments’’ that will converge
Ž .in the sense of 16 . In the case of Example 2, we had an obvious choice of V

Ž .and of l, but this is not always the case when using 39 : it is perhaps
counterintuitive that one chooses a value of l so close to unity in the firstC
part of Example 3, but this ensures a very low value of b and the interplayC

Ž .between the values of b and l in 39 give the ‘‘best’’ values above. These
computations indicate the approach to using the bounds: all methods we
know of require similar computation.

It is hard to assess how accurate bounds of this nature may be. We saw in
Example 2 that they are likely to be inaccurate by several orders of magni-

w xtude, and numerical work in 8 shows that the convergence of specific
moments may well be much faster. An alternative approach to convergence,

Žgiving nongeometric but apparently more effective bounds in practice at
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. w xleast on the total variation norm , has recently been developed in 15 , where
the authors give an application to the examples in Section 5, indicating that
the total variation norm distance is likely to decrease more quickly than
10y3rn in these cases.

Nonetheless, they do have the virtue that they are ‘‘honest’’ bounds. If we
can improve the theoretical methods in ways that use the structure of
individual models a little more, as was done in constructing the rather more

Ž . Ž .accurate constants q 2 and q 3 in Theorem 4.1, then we can expect to give
some insight into the amount of iteration that really is needed to achieve
convergence in the Hastings]Metropolis algorithm.
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