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ON THE CONVERGENCE OF THE MARKOV CHAIN
SIMULATION METHOD
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Iowa State University, Ohio State University and
Florida State University

The Markov chain simulation method has been successfully used in
many problems, including some that arise in Bayesian statistics. We give
a self-contained proof of the convergence of this method in general state
spaces under conditions that are easy to verify.

1. Introduction. Let p be a probability distribution on a measurable
Ž .space XX , BB , and suppose that we are interested in estimating characteris-

Ž .tics of it, such as p E or Hf dp , where E g BB and f is a bounded measurable
function. Even when p is fully specified one may have to resort to methods
like Monte Carlo simulation, especially when p is not computationally
tractable. For this, one uses the available huge literature on generation of
random variables from an explicitly or implicitly described probability distri-
bution p . Generally these methods require XX to be the real line or require
that p have special features, such as a structure in terms of independent
real-valued random variables. When one cannot generate random variables
with distribution p one has to be satisfied with looking for a sequence of
random variables X , X , . . . whose distributions converge to p and using X1 2 n
with a large index n as an observation from p . An example is the classical
Markov chain simulation method, discussed further below.

Ž .Let P be a transition probability function on a measurable space XX , BB ,
Ž .that is, P is a function on XX = BB such that, for each x g XX , P x, ? is a

Ž . Ž .probability measure on XX , BB and, for each C g BB, P ?, C is a measurable
Ž . Ž .function on XX , BB . Suppose that p is a probability measure on XX , BB which

is invariant for the Markov chain, that is,

1.1 p C s P x , C p dx for all C g BB.Ž . Ž . Ž . Ž .H
Ž .We fix a starting point x , generate an observation X from P x , ? ,0 1 0

Ž .generate an observation X from P X , ? and so on. This generates the2 1
Markov chain x s X , X , X , . . . . In order to make use of the Markov chain0 0 1 2

Received June 1992; revised March 1995.
1Research supported by NSF Grant DMS-90-07182.
2 Research supported by Air Force Office of Scientific Research Grant F49620-94-1-0028.
3Research supported by Army Research Office Grant DAAL03-90-G-0103.
AMS 1991 subject classifications. Primary 60J05; secondary 65U05, 60B10.
Key words and phrases. Calculation of posterior distributions, ergodic theorem, successive

substitution sampling.

69



K. B. ATHREYA, H. DOSS AND J. SETHURAMAN70

� 4̀X to get some information about p , one needs results of the followingn ns0
form.

Ž . Ž .A Ergodicity For all or for ‘‘most’’ starting values x, the distribution of
X converges to p in a suitable sense, such as the following, for example:n

Ž . < nŽ . Ž . <A1 variation norm ergodicity: sup P x, C y p C ª 0; orC g BB
Ž .A2 variation norm mean ergodicity:

n1
jsup P x , C y p C ª 0.Ž . Ž .ÝnCgBB js0

Ž . Ž .B Law of large numbers For all or for most starting values x, for each
C g BB,

n1
I X ª p C for a.e. realization of the chain,Ž .Ž .Ý C jn js0

< <and, for each f with H f dp - `,
n1

f X ª f dp for a.e. realization of the chain.Ž .Ý Hjn js0

Then we may estimate p , for example, by generating G such chains in
parallel, obtaining independent observations X Ž1., . . . , X ŽG ., or by runningn n

Ž .one or a few very long chains. In Section 3 we make some remarks on the
advantages and disadvantages of these two methods.

Thus our goal is to find conditions on a given Markov chain or rather on its
Ž . Ž . Ž .transition function P ?, ? so that some or all of the conditions A and B

above hold, assuming that P admits an invariant probability measure p . In
applications of Markov chain simulation, the probability measure p of inter-
est is by construction the invariant probability measure of the Markov chain.

� 4 � 4When X is a Markov chain with a countable state space, say, 1, 2, . . . ,n
Ž .and transition probability matrix P s p , the existence of an invarianti, j

probability distribution p and the irreducibility condition that there exists a
state i such that, from any initial state i, there is positive probability that0

Ž . � 4the chain eventually hits i are enough to guarantee that i the chain X is0 n
Ž . Ž . Ž . Ž .recurrent in an appropriate sense, ii conditions B and A2 hold and iii

Ž .when an additional aperiodicity condition also holds, then A1 also holds.
w Ž .xThese facts are well known see, e.g., Hoel, Port and Stone 1972 .

A natural question is whether this is true for general state space Markov
Ž .chains. In particular, when 1.1 holds, is there a form of the irreducibility

Ž . Ž .condition under which some or all of A and B hold?
The Markov chain literature has a number of results in this direction; see

Ž . Ž . Ž .Orey 1971 , Athreya and Ney 1978 and Nummelin 1984 . Under a condi-
Ž .tion known as Harris recurrence see below , the existence of an invariant

w Ž .xdistribution p implies mean ergodicity condition A2 and the laws of large
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w Ž .xnumbers condition B . Unfortunately, Harris recurrence is not an easy
condition to verify in general, and it is much stronger than irreducibility.

Ž .The main point of this paper is to show that when 1.1 holds, a simple
wŽ . x Ž . Ž .irreducibility condition 1.4 below is enough to yield A2 and B . An

Ž .additional aperiodicity condition yields A1 as well. This provides a complete
generalization of the results for the countable case. It is worth noting that

Ž .recurrence emerges as a consequence of 1.1 and the irreducibility condition
Ž .1.4 , and it is not imposed as a hypothesis.

Before stating our main theorems, we will need a few definitions. For any
Ž . n Ž . Ž . ` Ž .set C g BB, let N C s Ý I X g C and N C s Ý I X g C be then ms1 m ms1 m

number of visits to C by time n and the total number of visits to C,
Ž . Ž .respectively. The expectations of N C and N C , when the chain starts atn

Ž . n mŽ . Ž . ` mŽ .x, are given by G x, C s Ý P x, C and G x, C s Ý P x, C , re-n ms1 ms1
Ž . � 4spectively. Define T C s inf n: n ) 0, X g C to be the first time the chainn

Ž Ž . . Ž .hits C, after time 0. Note that P T C - ` ) 0 is equivalent to G x, C ) 0.x
Ž Ž . .The set A g BB is said to be accessible from x if P T A - ` ) 0. Let rx

Ž .be a probability measure on XX , BB . The Markov chain is said to be r-recur-
Ž . Ž .rent or Harris recurrent with respect to r if, for every A with r A ) 0,

Ž Ž . .P T A - ` s 1 for all x g XX . The chain is said to be r-irreducible if everyx
Ž .set A with r A ) 0 is accessible from all x g XX . The set A is said to be
Ž Ž . .recurrent if P T A - ` s 1 for all x g XX .x

For the case where the s-field BB is separable, there is a very useful
equivalent definition of r-irreducibility of a Markov chain. In this case, we

Ž .can deduce from Theorem 2.1 of Orey 1971 , on the existence of ‘‘C-sets,’’ that
r-irreducibility of a Markov chain implies that there exist a set A g BB with
Ž .r A ) 0, an integer n and a number « ) 0 satisfying0

1.2 P T A - ` ) 0 for all x g XX ,Ž . Ž .Ž .x

and
1.3 x g A , C g BB imply P n0 x , C G «r C l A .Ž . Ž . Ž .

Ž . Ž . Ž . Ž .Let r C s r C l A rr A . This is well defined because r A ) 0. The setA
Ž . Ž .function r is a probability measure satisfying r A s 1. Note that 1.2A A

simply states that A is accessible from all x g XX and this condition does not
Ž .make reference to the probability measure r. Condition 1.3 states that,

uniformly in x g A, the n -step transition probabilities from x into subsets0
Ž . Ž .of A are bounded below by « times r. That 1.2 and 1.3 imply r -irreduci-A

bility is, of course, immediate. This alternative definition of r -irreducibility,A
which applies to nonseparable s-fields as well, usually will be much easier to
verify in Markov chain simulation problems. By replacing r by r , we canA
also assume with no loss of generality that r is a probability measure with
Ž . Ž .r A s 1 when verifying condition 1.3 .

We denote the greatest common divisor of any subset MM of integers by
Ž .g.c.d. MM .

The main results of this paper are the following two theorems, which are
stated for general Markov chains. They give sufficient conditions for the
Markov chain simulation method to be successful.
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� 4THEOREM 1. Suppose that the Markov chain X with transition functionn
Ž . Ž .P x, C has an invariant probability measure p , that is, 1.1 holds. Suppose

Ž .that there is a set A g BB, a probability measure r with r A s 1, a constant
« ) 0 and an integer n G 1 such that0

1.4 p x : P T A - ` ) 0 s 1,� 4Ž . Ž .Ž .x

and
1.5 P n0 x , ? G «r ? for each x g A.Ž . Ž . Ž .

Suppose further that

� mŽ . Ž .g.c.d. m: there is an « ) 0 such that P x, ? G « r ?m m1.6Ž . 4for each x g A s 1.

Then there is a set D such that
n1.7 p D s 1 and sup P x , C y p C ª 0 for each x g D.Ž . Ž . Ž . Ž .

CgBB

� 4THEOREM 2. Suppose that the Markov chain X with transition functionn
Ž . Ž . Ž . Ž .P x, C satisfies conditions 1.1 , 1.4 and 1.5 . Then

n y101
m n qr0sup P x , C y p C ª 0Ž . Ž .Ýn1.8Ž . 0CgBB rs0

w xas m ª ` for p -almost all x ,
and hence

n1
jsup P x , C y p C ª 0Ž . Ž .Ýn1.9Ž . CgBB js1

w xas n ª ` for p -almost all x .

Ž . Ž . Ž . < Ž . <Let f x be a measurable function on XX , BB such that Hp dy f y - `. Then

n1
w x1.10 P f X ª p dy f y s 1 for p -almost all xŽ . Ž . Ž .Ž .Ý Hx j½ 5n js1

and
n1

w x1.11 E f X ª p dy f y for p -almost all x .Ž . Ž . Ž .Ž .Ž .Ý Hx jn js1

Variants of these theorems form a main core of interest in the Markov
chain literature. However, most of this literature makes strong assumptions
such as the existence of a recurrent set A and proves the existence of an

Ž . Ž .invariant probability measure before establishing 1.7 and 1.8 . Theorems 1
Žand 2 exploit the existence of an invariant probability measure which is

.given to us ‘‘for free’’ in the Markov chain simulation context and establish
the ergodicity or mean ergodicity under minimal and easily verifiable as-
sumptions. For example, we have already noted that in the context of the
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Ž . Ž .Markov chain simulation method, we really need to check only 1.4 , 1.5 and
Ž . Ž . Ž Ž . .1.6 . To show 1.4 in most cases, one will establish that P T A - ` ) 0x

Ž .for all x. Condition 1.6 is usually called the aperiodicity condition and is
Ž . Ž .automatically satisfied if 1.5 holds with n s 1. Condition 1.5 holds if, for0

n0Ž .each x g A, P x, ? has a nontrivial absolutely continuous component with
n0Ž .respect to some measure r and the associated density p x, y satisfies

n0Ž . Ž .inf p x, y ) 0 for some A with r A ) 0. In a remark following thex, y g A
proof of Lemma 3 we indicate the critical points where one can use additional
information to obtain results on the rate of the convergence.

In many interesting problems, including those that arise in Bayesian
statistics, described later, the state space XX is not countable. Early results on
ergodicity of Markov chains on general state spaces used a condition known

Ž X. wŽ . xas the Doeblin condition; see Hypothesis D of Doob 1953 , page 197 ,
which can be stated in an equivalent way as follows. There is a probability

Ž .measure f on XX , BB , an integer k and an « ) 0 such that

P k x , C G «f C for all x g XX and all C g BB.Ž . Ž .

This is a very strong condition. It implies that there exists an invariant
probability measure to which the Markov chain converges at a geometric
rate, from any starting point.

THEOREM 3. Suppose that the Markov chain satisfies the Doeblin condi-
tion. Then there exists a unique invariant probability measure p such that,
for all n,

Ž .nrk y1nsup P x , C y p C F 1 y « for all x g XX .Ž . Ž . Ž .
CgBB

wŽ . xA proof of this theorem may be found in Doob 1953 , page 197 . The
Doeblin condition, although easy to state, is very strong and rarely holds in
the problems that appear in the class of applications we are considering. We
note that it is equivalent to the conditions of Theorem 1, with the set A of
Theorem 1 replaced by XX . In its absence, one has to impose the obvious
conditions of irreducibility and aperiodicity and some other extra conditions,
such as recurrence, to obtain ergodicity. Standard references in this area are

Ž . Ž . Ž .Orey 1971 , Revuz 1975 and Nummelin 1984 . An exposition suitable for
Ž .our purposes can be found in Athreya and Ney 1978 . Theorem 4.1 of that

paper may be stated as follows.

THEOREM 4. Suppose that there is a set A g BB, a probability measure r
concentrated on A and an « with 0 - « - 1 such that

P T A - ` s 1 for all x g XXŽ .Ž .x

and

P x , C G «r C for all x g A and all C g BB.Ž . Ž .
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Suppose further that there is an invariant probability measure p . Then
nsup P x , C y p C ª 0 for all x g XX .Ž . Ž .

CgBB

This theorem establishes ergodicity under the assumption of the existence
of an invariant probability measure but also makes the strong assumption of
the existence of a recurrent set A. It is often difficult to check that a set A is
recurrent. Our main results, Theorems 1 and 2, weaken this recurrence

w xcondition to just the accessibility of the set A from p -almost all starting
points x. We believe that this makes it routine to check the conditions of our

wtheorem in Markov chain simulation problems. We remark that our Theo-
w xrems 1 and 2 state only that convergence occurs for p -almost all starting

points. Examples can be given to show that this is the strongest assertion
Ž .that can be made, even if instead of 1.4 the set A is assumed to be

xaccessible from all x.
Ž . Ž .Based on the work of Nummelin 1984 , Tierney 1994 gives sufficient

conditions for convergence of Markov chains to their invariant distribution.
The main part of his Theorem 1 may be stated as follows.

THEOREM 5. Suppose that the chain has invariant probability measure p .
Ž .Assume that the chain is p-irreducible and aperiodic. Then 1.7 holds.

The main difference between Theorems 1 and 5 is that in Theorem 1 the
probability measure with respect to which irreducibility needs to be verified
is not restricted to be the invariant measure. This distinction is more than

Ž .cosmetic. To check p-irreducibility, one has to show that P T - ` ) 0 forx A
Ž .all x g XX and all A for which p A ) 0. For certain Markov chain simula-

tion problems in which the state space is very complicated, it is difficult or
impossible even to identify these sets, since it is difficult to get a handle on
the unknown p . An example of such a situation arose in the context of

Ž .Bayesian nonparametrics in Doss 1994 , where the state space was the set of
all distribution functions. In that paper, the Markov chain simulation method
was proposed as a way to determine p , but the unknown p was sufficiently
complicated that one could not determine the sets to which it gives positive
measure. On the other hand, a convenient choice of r made it possible to

Ž . Ž .check r-irreducibility through the equivalent conditions 1.4 and 1.5 . See
wŽ . xthe discussion in Doss 1994 , Section 4 .

Ž .We point out that Tierney 1994 does not give a detailed definition of
wŽ . xaperiodicity, but refers the reader to Nummelin 1984 , Chapter 2.4 , where

an implicit definition of the period of a Markov chain is given. In the present
Ž .paper, aperiodicity as constructively defined in 1.6 is usually easy to check:

Ž . Ž .if the n appearing in 1.5 is 1, then 1.6 is automatic.0
The statistical applications of the above include the Metropolis algorithm

Ž .and its variants which produce Markov transition functions satisfying 1.1 .
This algorithm was originally developed for estimating certain distributions
and expectations arising in statistical physics, but can also be used in

Ž .Bayesian analysis; see Tierney 1994 for a review.
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However, in the usual problems of Bayesian statistics, currently the most
commonly used Markov chain is one that is used to estimate the unknown

Ž .Ž1. Ž p .joint distribution p s p of the possibly vector-valued randomX , . . . , X
Ž Ž1. Ž p..variables X , . . . , X by updating the coordinates one at a time, as

follows. We suppose that we know the conditional distributions p Ž i . Ž j. ,X <�X , j/ i4
i s 1, . . . , p, or at least that we are able to generate observations from these

Ž Ž1. Ž p..conditional distributions. If X s X , . . . , X is the current state,m m m
Ž Ž1. Ž p. .the next state X s X , . . . , X of the Markov chain is formedmq 1 mq1 mq1

Ž1. Ž Ž2. Ž p..Ž1. Ž j.as follows. Generate X from p ?, X , . . . , X , thenmq 1 X <�X , j/14 m m
Ž2. Ž Ž1. Ž3. Ž p.. Ž p.

Ž2. Ž j.X from p X ,?, X , . . . , X and so on until X ismq 1 X <�X , j/ 24 Žmq1 m m mq1
Ž Ž1. Ž py1. .Ž p . Ž j.generated from p X , . . . , X , ? . If P is the transitionX <�X , j/ p4 Žmq1. Žmq1.

function that produces X from X , then it is easy to see that P satisfiesmq 1 m
Ž .1.1 .

This method is reminiscent of the simulation method described in Geman
Ž .and Geman 1984 . In that paper, p, the number of coordinate indices in the

Ž Ž1. Ž p..vector X , . . . , X , is usually of the order of N = N, where N s 256 or
higher. They assume that these indices form a graph with a meaningful
neighborhood structure and that p is a Gibbs distribution, so that the
conditional distributions p Ž i. Ž j. , i s 1, . . . , p, depend on much fewerX <�X j/ i4
that p y 1 coordinates. They also assume that each random variable Xi
takes only a finite number k of values and that p gives positive mass to all

N 2 Ž .possible k values. Geman and Geman 1984 appeal to the ergodic theorem
for Markov chains with a finite state space and prove that this simulation
method works. They prove other interesting results on how this can be

Žextended when a temperature parameter T which can be incorporated into
.p is allowed to vary. This may be the reason why the method described in

the previous paragraph has come to be known as the Gibbs sampler. We
consider this to be a misnomer, because no Gibbs distribution nor any graph
with a nontrivial neighborhood structure supporting a Gibbs distribution is
involved in this method; we will refer to it simply as successive substitution
sampling.

We note that this algorithm depends on p only through the conditional
distributions p Ž i. Ž j. . Perhaps the first thought that comes to mind whenX <�X j/ i4
considering this method is to ask whether or not, in general, these condition-
als determine the joint distribution p . The answer is that in general they do
not; we give an example at the end of Section 2. A necessary consequence of
convergence of successive substitution sampling is that the joint distribution
is determined by the conditionals. It is therefore clear that any theorem
giving conditions guaranteeing convergence from every starting point also
gives, indirectly, conditions which guarantee that the conditionals determine
the joint distribution p .

We now give a very brief description of how this method is useful in some
Bayesian problems. We suppose that the parameter u has some prior distri-
bution, that we observe a data point Y whose conditional distribution given u

Ž < . Ž < .is LL Y u and that we wish to obtain LL u Y , the conditional distribution of
Ž .u given Y. It is often the case that if we consider an unobservable auxiliary
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Ž < .random variable Z, then the distribution p s LL u , Z Y has the propertyu , Z
w Ž < .x w Ž < .xthat p s LL u Y, Z and p s LL Z Y, u are easy to calculate. Typicalu < Z Z <u

examples are missing and censored data problems. If we have a conjugate
family of prior distributions on u , then we may take Z to be the missing or
the censored observations, so that p is easy to calculate. Successive substi-u < Z

Žtution sampling then gives a random observation with distribution ap-
. Ž < .proximately LL u , Z Y , and retaining the first coordinate gives an observa-

Ž . Ž < .tion with distribution approximately equal to LL u Y .
Another application arises when the parameter u is high-dimensional and

Ž .we are in a nonconjugate situation. Let us write u s u , . . . , u , so that what1 k
we wish to obtain is p . Direct calculation of the posterior will involveu , . . . , u1 k

the evaluation of a k-dimensional integral, which may be difficult to accom-
plish. On the other hand, application of the successive substitution sampling
algorithm involves the generation of one-dimensional random variables from
p , which is available in closed form, except for a normalizing constant.u <�u , j/ i4i j wThere exist very efficient algorithms for doing this see Gilks and Wild
Ž .x1992 , and the use of these algorithms is made routine by the computer

w Ž .xlanguage BUGS Thomas, Spiegelhalter and Gilks 1992 .
Results which give not only convergence of the Markov chain to its

invariant distribution but also convergence at a geometric rate are obviously
extremely desirable. General results establishing that the convergence rate is

wŽ . xgeometric are given in Schervish and Carlin 1992 , Theorem 1 and in Chan
wŽ . x1993 , Theorem 2.1 . For certain models it is possible to give actual bounds

Ž .for the geometric rate of convergence; see Goodman and Sokal 1989 and
Ž .Amit 1991 for examples involving continuous state spaces. It is, however,

important to keep in mind that for most problems arising in Bayesian
statistics, checking conditions that ensure convergence at a geometric rate is
an order of magnitude more difficult than checking the conditions needed for
simple convergence, for example Theorems 1 and 5 in the present paper. This
is because in cases where the dimension of the state space of the Markov
chain is very high, it is usually extremely difficult to check the integrability
conditions needed. This situation arises in Bayesian nonparametrics, for

Ž .example; see Doss 1994 for an illustration.
In addition, the Markov chain may converge but not at a geometric rate.

This can happen even in very simple situations. An illustration is provided in
the example below, which is due to T. Sellke. Let U be a random variable on
R with distribution n , which we take to be the standard Cauchy distribution.
Let the conditional distribution of V given U be the Beta distribution with

Ž .parameters 2 and 2, shifted so that it is centered at U, and let X s U, V . If
Ž .we start successive substitution sampling at X s 0, 0 , then it is easy to see0

Ž .that U must be in the interval y1, 1 , and in fact the value of U can change1
by at most one unit at each iteration. Thus, the distribution of U isn

Ž .concentrated in the interval yn, n . In particular,

2 1
<sup P U g C U s 0 y n C G n y`, yn j n , ` ; ,� 4Ž . Ž . Ž .Ž .n 0 ž /p nCgBB
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so that the rate of convergence cannot be geometric. The distribution n could
have been taken to be any distribution whose tails are ‘‘thicker than those of
the exponential distribution,’’ and in fact we can make the rate of conver-
gence arbitrarily slow by taking the tails of n to be sufficiently thick.

It is not difficult to see that if we select the starting point at random from a
bounded density concentrated in a neighborhood of the origin, then this
example provides a simple counterexample to Theorem 3 of Tanner and Wong
Ž .1987 , which asserts convergence at a geometric rate.

This paper is organized as follows. Section 2 gives the proofs of Theorems 1
and 2. Section 3 discusses briefly some issues to consider when deciding how
to use the output of the Markov chain to estimate p and functionals of p .

2. Ergodic theorems for Markov chains on general state spaces.
The proofs of Theorems 1 and 2 rest on the familiar technique of regenerative

Ž .events in a Markov chain. See, for instance, Athreya and Ney 1978 . In
Section 2.1, we prove Proposition 1, in which we assume that the set A is a

� 4singleton a , so that r is the degenerate probability measure on a . We also
assume that the singleton a is an aperiodic state, a condition which is stated

Ž .more fully as condition c in Proposition 1. Under these simplified assump-
tions we establish ergodicity and some laws of large numbers for the Markov
chain.

In Section 2.2 we establish Theorem 1 as follows. In Proposition 2 we show
that, when n s 1, under the conditions of Theorem 1, a general Markov0
chain can be reduced to one satisfying the above simplified assumptions of
Proposition 1. This is done by enlarging the state space with an extra point D
and extending the Markov chain to the enlarged space. We then show that

� 4this singleton set D satisfies the simplified assumptions of Proposition 1.
From this it follows that the extended chain is ergodic. After this step we
deduce that the original chain is also ergodic. Finally, we show how the

Ž .condition n s 1 can be relaxed under the aperiodicity condition 1.6 .0
In Section 2.3 we prove Theorem 2, which asserts convergence of averages

of transition functions and averages of functions of the Markov chain, with-
Ž .out the aperiodicity assumption 1.6 . The key step in the proof is to recognize

that the Markov chain observed at time points which are multiples of n is0
an embedded Markov chain satisfying the conditions of Proposition 2 and
with an invariant probability distribution p which is the restriction of p to0

Ž .the set A defined by 2.29 . In the Markov chain literature, mean ergodicity0
is usually obtained as an elementary consequence of ergodicity in the aperi-
odic case and the existence of a well-defined period and cyclically moving
disjoint subclasses. Our proof circumvents, in a way which we believe is new,
the need for well-defined periodicity and cyclically moving disjoint subclasses.

Ž .2.1. State spaces with a distinguished point. Let XX , BB be a measurable
� 4̀space and let X be a Markov chain with a probability transition functionn 0

Ž .P ?, ? . Fix a point a in XX . For convenience, we will refer to this point as the
� 4distinguished point. We will often write just a for the singleton set a . The
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Ž� 4. Ž� 4.number of visits to a , N a and N a , will be denoted simply by N andn n
Ž� 4.N, respectively. The first time the chain visits a after time 0, namely, T a ,

will be denoted simply by T. Let

2.1 C s x : P T - ` s 1 s x : P T s ` s 0� 4 � 4Ž . Ž . Ž .0 x x

and

2.2 XX s x : P T - ` ) 0� 4Ž . Ž .0 x

be the set of all states from which a can be reached with probability 1 and
the set of all states from which a is accessible, respectively.

Ž .DEFINITION 1. The state a is said to be transient if P T - ` - 1 anda

Ž .recurrent if P T - ` s 1. The state a is said to be positive recurrent ifa

Ž .E T - `.a

All the results of this section are part of the applied probability literature
w Ž .xsee, e.g., Asmussen 1987 . We present the results below, with proofs, to
make the paper self-contained.

Ž .PROPOSITION 1. Suppose that the transition function P x, C satisfies the
following conditions:

Ž .a p is an invariant probability measure for P.
Ž . � Ž . 4b p x: P T - ` ) 0 s 1.x

Then

n1
jp C s 1 and sup P x , C y p C ª 0Ž . Ž . Ž .Ý0 n2.3Ž . CgBB js0

for each x g C .0

Suppose in addition that:
Ž . � nŽ . 4c g.c.d. n: P a , a ) 0 s 1.

Then
n2.4 sup P x , C y p C ª 0 for each x g C .Ž . Ž . Ž . 0

CgBB

The proof of this proposition is given after the remark following the proof
of Lemma 3.

Ž . Ž . Ž .LEMMA 1. If conditions a and b of Proposition 1 hold, then p a ) 0
and a is positive recurrent.

Ž . Ž .PROOF. We first establish that p a ) 0. From condition a it follows
Ž . Ž . nŽ .that p a s Hp dx P x, a , for n s 1, 2, . . . , and hence

2.5 np a s p dx G x , a ,Ž . Ž . Ž . Ž .H n
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Ž .for all n. The monotone convergence theorem and condition b imply that

2.6 lim np a s p dx G x , a ) 0,Ž . Ž . Ž . Ž .H
Ž .and hence p a ) 0.

Let the Markov chain start at some x g XX . Let T s T and T s1 k
� 4inf n: n ) T , X s a for k s 2, 3, . . . , with the usual convention that theky1 n

infimum of the empty set is `. If N - `, then only finitely many T ’s arek
finite. If N s `, then all the T ’s are finite. In the latter case, the Markovk
chain starts afresh from a at time T , and hence T y T , k s 2, 3, . . . , arek k ky1

Ž .independent and identically distributed with distribution H, where H n s
Ž .P T F n . These facts, the strong law of large numbers and the inequalitya

N N Nn n n
2.7 F FŽ .

T n TN Nnq 1 n

imply that
1 1

2.8 N ª I N s ` ,Ž . Ž .nn E TŽ .a

w xP -a.e., for each x g XX . From the bounded convergence theorem, it followsx
that

1 1 1
2.9 G x , a s E N ª P N s ` for each x g XX .Ž . Ž . Ž .n x n xž /n n E TŽ .a

Ž .Divide both sides of 2.5 by n, take limits and compare with the above. By
using the fact that p is a probability measure and applying the bounded
convergence theorem, we obtain

1
2.10 p a s p dx P N s ` .Ž . Ž . Ž . Ž .H xE TŽ .a

Ž . Ž . Ž . Ž .Since p a ) 0, it follows that Hp dx P N s ` ) 0 and E T - `, andx a

hence a is positive recurrent. I

Ž .The arguments leading to the conclusion p a ) 0 in the above lemma,
Ž . Ž . Ž .which were based on 2.5 and 2.6 , did not use the full force of condition b .

The following corollary records that fact and will be used later in the proof of
Lemma 6.

Ž .COROLLARY 1. Let p satisfy condition a of Proposition 1, and let E g BB
be such that

p x : G x , E ) 0 ) 0.� 4Ž .Ž .
Ž .Then p E ) 0.

The fact that a is positive recurrent gives us a way of obtaining an explicit
form for a finite invariant measure n and showing that it must be a multiple
of p .
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LEMMA 2. Let a be recurrent. Let
Ty1 `

2.11 n C s E I X g C s P X g C , T ) nŽ . Ž . Ž .Ž .Ý Ýa j a nž /js0 ns0

be the expected number of visits to C between consecutive visits to a , beginning
Ž . Ž c.from a . Then n is an invariant measure for P ?, ? with n XX s 0 and is0

unique up to a multiplicative constant; more precisely,

n ? s P x , ? n dx ,Ž . Ž . Ž .H
X XŽ c.and if n is any other invariant measure with n XX s 0, then0

n X C s n X a n C for all C g BB.Ž . Ž . Ž .
The measure n also has the property

n C c s 0.Ž .0

Ž . Ž .Suppose that conditions a and b of Proposition 1 hold, so that a is positive
Ž . Ž c.recurrent and p is an invariant probability measure for P ?, ? with p XX s 0.0

Then
n XX s E T - `Ž . Ž .a

and
n CŽ .

p C sŽ .
E TŽ .a

Ž .is the unique invariant probability measure with p C s 1.0

Ty1 Ž . Ž . Ž .PROOF. Since Ý I X s a s 1, we have n a s 1 s P T - ` . Tons0 n a

Ž c.show that n C s 0, notice that, for all n,0

<0 s P T s ` s E P T s ` X , X , . . . , XŽ . Ž .Ž .a a a 1 2 n

s E P T s ` I T ) n .Ž . Ž .Ž .a X n

From this it follows that

0 s P P T s ` I T ) n ) 0 s P X g C c , T ) n ,� 4Ž . Ž .� 4a X a n 0n

Ž . Ž c.for each n. From the definition of n in 2.11 it now follows that n C s 0.0
Ž .We now show that n is an invariant measure. Let f x be a bounded

Ž .measurable function on XX , BB . Then
`

n dx f x s E f X I T ) nŽ . Ž . Ž . Ž .Ž .ÝH a n
ns0

`

s f a q E f X I T ) n y1 y E f X I T s nŽ . Ž . Ž . Ž . Ž .Ž . Ž .Ž .Ý a n a n
ns1

`

<s f a q E E f X I T ) n y 1 X , X , . . . , XŽ . Ž . Ž .Ž .Ž .Ý a a n 0 1 ny1
ns1

`

y E f X I T s nŽ . Ž .Ž .Ý a n
ns1
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`

s f a y f a P T - ` q E E f X I T ) n y1Ž . Ž . Ž . Ž . Ž .Ž .Ž .Ýa a X nny 1
ns1

`

s E P X , dy f y I T ) n y 1Ž . Ž . Ž .Ý Ha ny1ž /
ns1

`

s E P X , dy f y I T ) nŽ . Ž . Ž .Ý Ha nž /
ns0

s n dx P x , dy f y ,Ž . Ž . Ž .H Hž /ygXX xgXX

where the fourth equality in the above follows from the Markov property.
This shows that n is an invariant measure.

X Ž . XŽ c.Let n be any other invariant measure for P ?, ? satisfying n XX s 0. Fix0
C g BB. Then, for C such that a f C,

n X C s n X dx P x , CŽ . Ž . Ž .H

s n X a P X g C q n X dx P X g CŽ . Ž . Ž . Ž .Ha 1 x 1
x/a

s n X a P X g C q n X dy P y , dx P X g CŽ . Ž . Ž . Ž . Ž .H Ha 1 x 1
ygXX x/a

s n X a P X g C q n X dy P X g C , T ) 1Ž . Ž . Ž . Ž .Ha 1 y 2

...
n

X Xs n a P X g C , T ) m y 1 q n dy P X g C , T ) nŽ . Ž . Ž . Ž .Ý Ha m y nq1
ms1

n
XG n a P X g C , T ) m y 1Ž . Ž .Ý a m

ms1
n

XG n a P X g C , T ) m ,Ž . Ž .Ý a m
ms1

� 4for each n. In the last line above we used the fact that X g C, T ) m y 1m
� 4 XŽ . XŽ . Ž .s X g C, T ) m , since a f C. Thus n C G n a n C for all C sincem

Ž . Ž . XŽ . XŽ . Ž .n a s 1. Let l C s n C y n a n C . Then l is an invariant nonnegative
Ž . Ž .measure and l a s 0 since n a s 1. Thus

0 s l a s G x , a l dx ª G x , a l dx ,Ž . Ž . Ž . Ž . Ž .H Hn

� Ž . 4by the monotone convergence theorem. Since XX s x: G x, a ) 0 , this0
Ž .implies that l XX s 0. This proves that0

2.12 n X C s n X a n C ,Ž . Ž . Ž . Ž .
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Ž c.which shows that n is the unique invariant measure satisfying n CC s 0, up0
to a multiplicative constant.

Ty1 Ž .We now assume that a is positive recurrent. Since Ý I X g XX s T,ns0 n
Ž . Ž .we have n XX s E T - `. Let p be an invariant probability measurea

Ž c. Ž .satisfying p XX s 0. From 2.12 , we have the equality0

p C s p a n C .Ž . Ž . Ž .

From the earlier part of this proof it now follows that p is the unique
invariant probability measure. I

Ž .In the following, we consider general measurable functions f x with
< Ž . < Ž . Ž .H f y p dy - `, instead of I x s a as was done in Lemmas 1 and 2.

Ž . Ž . Ž .COROLLARY 2. Let conditions a and b of Proposition 1 hold. Let f x be
Ž . < Ž . < Ž . Ž .a measurable function on XX , BB with H f y p dy - `. Then p A s 1,f

where

n1
A s x : P f X ª f x dp x s 1;Ž . Ž .Ž .Ý Hf x j½ 5½ n js1

n1
E f X ª f x dp x .Ž . Ž .Ž .Ý Hx j 5ž /n js1

PROOF. By considering positive and negative parts, we can assume that
Ž . � 4̀f ? G 0. Let T and N be as in Lemma 1. Definek ks1 n

Ž .min n , T y1 T y11 rq1

U s f X and V s f X .Ž . Ž .Ý Ýn j r j
js1 jsTr

Ž . Ž . Ž . Ž .Note that V , V , . . . are i.i.d. and, from Lemma 2, E V s Hf x p dx E T .1 2 1 a 1
Ž .Since f x G 0, we have the inequality

N Nnny1 n

V F f X F U q V .Ž .Ý Ý Ýr j n r
rs1 js1 rs1

w Ž .x Ž .For x g C defined in 2.1 , P T - ` for all k G 1 s 1 and hence, from0 x k
Ž .2.9 and the law of large numbers,

NnN 1 1 E VŽ .n a 1ª and V ª s f x p dx ,Ž . Ž .Ý Hrn E T n E TŽ . Ž .a 1 a 1rs1

w xP -a.e. From Fatou’s lemma, this yieldsx

n1
lim inf E f X G f x p dx ,Ž . Ž .Ž .Ý Hx jž /n js1
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w xp -a.e. To obtain the reverse inequality

n1
2.13 lim sup E f X F f x p dx ,Ž . Ž . Ž .Ž .Ý Hx jž /n js1

Ž Nn . Ž . Ž .we begin by using Wald’s identity E Ý V s E V E N , to obtainrs1 r a 1 a n

T y1n 11 1 Nn
E f X F E f X q E V E .Ž .Ž . Ž .Ý Ýx j x j a 1 a ž /ž / ž /n n njs1 js1

We have already seen that the second term on the right-hand side of the
Ž . Ž . Ž T1y1 Ž ..above converges to Hf x dp x . We now prove that E Ý f X - ` withx js1 j

w x Ž .p -probability 1, and this will establish the inequality 2.13 . Note that, for
r s 0, 1, . . . ,

T y11

` ) E f XŽ .Ýa jž /js0

T y1 T y11 1

G E E f X I T ) r s E E f X I T ) r ,Ž . Ž .Ž . Ž .Ý Ýa x j 1 a X j 1rž / ž /ž / ž /js0 js0

Ž . � 4since I T ) r is measurable with respect to X , . . . , X . Thus,1 1 r
Ž T1y1 Ž .. Ž .E Ý f X - ` for almost all x with respect to P X g ?; T ) r . Fromx js0 j a r 1

` Ž . Ž . Ž .Lemma 2 we conclude that Ý P X g C; T ) r s E T p C . Thusrs0 a r a 1
Ž T1y1 Ž .. w xE Ý f X - ` with p -probability 1. This completes the proof of Corol-x rs0 j

lary 2. I

Ž . Ž .To get the convergence assertions 2.3 and 2.4 of Proposition 1, we need
the following lemma from renewal theory.

� 4LEMMA 3. Let p , n s 0, 1, . . . be a probability distribution with p s 0,n 0
` � 4and let m s Ý np - `. Let h , i s 1, 2, . . . be a sequence of i.i.d. randomns1 n i

� 4 kvariables with distribution p . Let S s 0, S s Ý h for n G 1. Definen 0 k js1 j
� Žk . 4 Ž1. Žk .p , n s 1, 2, . . . , k s 1, 2, . . . , recursively by p s p , p sn n n n

Žky1. Ž .Ý p p s P S s n . For n s 0, 1, . . . , define0 F jF n j nyj k

`
Žk .2.14 r s p .Ž . Ýn n

ks0

Then, the following holds:

Ž .a r is the unique solution of the so-called renewal equationsn

n

r s 1, r s r p , n s 1, 2, . . . .Ý0 n nyj j
js1



K. B. ATHREYA, H. DOSS AND J. SETHURAMAN84

Furthermore, we have the following:
n1 1

b r ª as n ª `.Ž . Ý jn mjs0

� 4If the additional condition g.c.d n: p ) 0 s 1 holds, then we have then
following:

1
c r ª as n ª `.Ž . n m

Ž . Ž .PROOF. It is easy to establish a by direct verification. To prove part b ,
n ` Ž . Ž Ž .. Ž . �we note that Ý r s Ý P S F n s E N n , where N n s sup k: S Fjs0 j ks0 k k

4n . By the strong law of large numbers and the inequalities

S F n - S ,N Žn. N Žn.q1

it follows that
N n 1Ž .

ª w.p.1.
n m

Ž . Ž . nSince N rn F 1, it follows that E N rn s 1rn Ý r ª 1rm, which estab-n n js0 j
Ž .lishes b .
Ž .Part c is the well-known discrete renewal theorem, for which there are

wmany proofs in standard texts, some of which are purely analytic see, e.g.,
Ž . x wFeller 1950 , Chapter XIII.10 and others are probabilistic see, e.g., Hoel,

Ž . xPort and Stone 1972 , Chapter 2 . I

REMARK. The proofs given in this paper require only the convergence of rn
Ž .to 1rm asserted in part c of Lemma 3. In fact, geometric bounds on the tail

� 4behavior of the probability distribution p can be used to obtain geometricn
w Ž .xbounds on the rate of convergence of r to 1rm Stone 1965 . These can inn

turn can be used to obtain results on geometric convergence in the ergodic
w Ž .theorem for Markov chains see Athreya, Doss and Sethuraman 1992 ,

xSection 2.4 .

PROOF OF PROPOSITION 1. Let D be the collection of all measurable
Ž . < Ž . <functions f on XX , BB with sup f y F 1. Let f g D. Then, for any x g XX ,y

E f X s E f X I T ) nŽ . Ž . Ž .Ž . Ž .x n x n

n

q P T s k E f X , n s 0, 1, . . . .Ž . Ž .Ž .Ý x a nyk
ks0

2.15Ž .

Ž Ž .. Ž Ž . Ž .. Ž .Let v s E f X , a s E f X I T ) n and p s P T s n , n sn a n n a n n a

0, 1, . . . . Note that v and a depend on the function f , while p does not.n n n
Ž .Setting x s a in 2.15 , we get the important identity

n

2.16 v s a q p v .Ž . Ýn n k nyk
ks0
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It is not difficult to check that v s Ýn a r is the unique solution ton ks0 k nyk
Ž . Ž .2.16 , where r is as defined in 2.14 . Thusn

jn n n `1 1 1 Rnyk
v s a r s a R s a I k F n ,Ž .Ý Ý Ý Ý Ýj k jyk k nyk kn n n njs0 js0 ks0 ks0 ks0

where R s Ýn r . Also,n js0 j

` Ty11 E Ý f X Hf dnŽ .Ž .a js0 j
a s s s f dp .Ý Hjm E T E TŽ . Ž .a ajs0

Thus, for f g D,
n `1 R 1nyk

< <v y f dp F a I k F n yŽ .Ý ÝHj kn n mjs0 ks0

` ` R 1k
< < < <F 2 a q a sup yÝ Ýj jž / n mnymFkFnjsm js0

` R 1kF 2 P T ) j q E T sup y ,Ž . Ž .Ž .Ý a a n mnymFkFnjsm

for any positive integer m. Note that, for fixed m,

R 1k
sup y ª 0 as n ª `

n mnymFkFn

Ž . ` Ž .from part b of Lemma 3, and Ý P T ) j ª 0 as m ª `, since a isjsm a

positive recurrent. By first fixing m and letting n ª `, and then letting
m ª `, we get

n1
2.17 v y f dp ª 0 uniformly in f as n ª `.Ž . Ý Hjn js0

Ž Ž .. Ž Ž . Ž .. ŽLet x g C . Let w s E f X , b s E f X I T ) n and g s P T s0 n x n n x n n x
.n . Note that, for a fixed x, b ª 0 as n ª `, uniformly in f , and that g is an n

Ž .probability sequence which does not depend on f. Using equation 2.15 once
again, we see that w satisfies the equationn

n

2.18 w s b q g v , n s 0, 1, . . . .Ž . Ýn n k nyk
ks0

Ž .Using 2.17 , we conclude that
n n n nyk1 1 1

w s b q g v ª f dpÝ Ý Ý Ý Hj j k jn n njs0 js0 ks0 js0

Ž .uniformly in f as n ª `. This establishes 2.3 of Proposition 1.
Ž . � nŽ . 4We now use condition c . Under this assumption, g.c.d. n: P a , a ) 0 s

� 4 w Ž .1, and thus g.c.d. n: p ) 0 s 1 see, e.g., the lemma in Chung 1967 , pagen
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x Ž .29 . Thus, from part c of Lemma 3 we have r ª 1rm. Repeating then
Ž . Ž .arguments leading to 2.17 and 2.18 with this stronger result on r , we seen

Ž .that v ª Hf dp and w ª Hf dp uniformly in f g D. This proves 2.4 andn n
completes the proof of Proposition 1. I

2.2. Proof of Theorem 1 for general Markov chains. We will now establish
Ž .Theorem 1 under the condition that the n appearing in 1.5 is 1. This is0

stated as Proposition 2 and although it is technically weaker, its proof
contains the heart of the arguments needed to establish Theorem 1.

PROPOSITION 2. Suppose that A g BB and let r be a probability measure on
Ž . Ž . Ž .XX , BB with r A s 1. Suppose that the transition function P x, C of the

� 4 Ž . Ž . Ž .Markov chain X satisfies 1.1 , 1.4 and 1.5 , where the n appearing inn 0
Ž .1.5 is equal to 1. Then there is a set D such that0

n2.19 p D s 1 and sup P x , C y p C ª 0 for each x g D .Ž . Ž . Ž . Ž .0 0
CgBB

PROOF. The proof consists of adding a point D to XX , defining a transition
function on the enlarged space and appealing to Proposition 1.

Ž . � 4Consider the space XX , BB , where XX s XX j D and BB is the smallest
U� 4 Ž .s-field containing BB and D . Let « s «r2, and define the function P x, C

Ž .on XX , BB by

¡P x , C , if x g XX _ A , C g BB,Ž .
UP x , C y « r C , if x g A , C g BB,Ž . Ž .

U~2.20 P x , C s � 4Ž . Ž . « , if x g A , C s D ,

r dz P z , C , if x s D , C g BB.Ž . Ž .H¢
A

Ž .Also, define the set function p on XX , BB by

p C y «Ur C p A , if C g BB,Ž . Ž . Ž .
2.21 p C sŽ . Ž . U½ � 4« p A , if C s D .Ž .

Ž . Ž .It is easy to verify that P x, C and p C extend to BB as a transition
probability function and probability measure, respectively.

Ž .We will now show that the transition probability function P x, C together
Ž . Ž . Ž .with p and the distinguished point D satisfy conditions a , b and c of

Proposition 1.
UŽ . Ž .Clearly P D, D s « ) 0, so that condition c of Proposition 1 is satisfied.

� Ž . 4 � Ž . 4Recall that XX s x g XX : G x, A ) 0 . Let XX s x g XX : G x, D ) 0 . If0 0
UŽ . Ž . Ž . Ž .x g XX _ A, then G x, D G H G x, dy P y, D G « G x, A ) 0. This shows0 A

UŽ . Ž .that XX ; XX . Since G D, D G P D, D s « ) 0, we also have D g XX , that is,0 0 0
� 4 Ž . Ž . Ž . Ž .XX > XX j D . Since p XX s 1 by 1.4 , it follows that p XX s 1 by 2.21 .0 0 0 0

Ž .Thus, condition b of Proposition 1 is satisfied.
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Next, for C g BB, we have

Up dx P x , C s p dx y « r dx p A P x , CŽ . Ž . Ž . Ž . Ž . Ž .Ž .H H
XX XX

Uq « p A r dx P x , CŽ . Ž . Ž .H
XX

s p dx P x , CŽ . Ž .H
XX

s p dx P x , C y «Ur C I x g AŽ . Ž . Ž . Ž .Ž .H
XX

s p C y «Ur C p AŽ . Ž . Ž .
s p C .Ž .

� 4When C s D , we have

U Up dx P x , D s p dx y « r dx p A « I x g AŽ . Ž . Ž . Ž . Ž . Ž .Ž . Ž .H H
XX XX

q «Up A r dx «UI x g AŽ . Ž . Ž .H
XX

s «Up AŽ .
s p D .Ž .

Ž .This verifies condition a of Proposition 1.
Let

D s x : x g XX , P T - ` s 1 .Ž .½ 50 x D

From Proposition 1 it follows that
n2.22 p D s 1 and sup P x , C y p C ª 0 for each x g D .Ž . Ž . Ž .Ž .0 0

CgBB

Ž . nŽ . Ž .To translate 2.22 into a result for P x, C , we define a function v x, C
on XX = BB by

I x g C , if x g XX ,Ž .
v x , C sŽ . ½ r C , if x s D .Ž .

Ž .We may view v x, C as a transition function from XX into XX . The following
n nŽ . Ž .lemma shows how one can go from P x, C to P x, C and back. The proof

of Proposition 2 is continued after Lemma 5.

Ž . Ž . Ž .LEMMA 4. The transition functions P x, C , P x, C and v x, C and the
probability measures p and p are related as follows:

P x , C s P x , dy v y , C s P x , C q P x , D r CŽ . Ž . Ž . Ž . Ž . Ž .H2.23Ž . XX

for x g XX , C g BB;

2.24 P x , C s v x , dy P y , C for x g XX , C g BB;Ž . Ž . Ž . Ž .H
XX



K. B. ATHREYA, H. DOSS AND J. SETHURAMAN88

n n n nP x , C s P x , dy v y , C s P x , C q P x , D r CŽ . Ž . Ž . Ž . Ž . Ž .H2.25Ž . XX

for x g XX , C g BB;

and

2.26 p C s p dx v x , C s p C q p D r C for C g BB.Ž . Ž . Ž . Ž . Ž . Ž . Ž .H
XX

PROOF. These are proved by direct verification. For x g XX , C g BB, we
have

UP x , dy v y , C s P x , dy I y g C q « I x g A r CŽ . Ž . Ž . Ž . Ž . Ž .H H
XX XX

s P x , C y «UI x g A r C q «UI x g A r CŽ . Ž . Ž . Ž . Ž .
s P x , C .Ž .

Similarly, for x g XX , C g BB, we get

¡P x , C , if x g XX ,Ž .~v x , dy P y , C sŽ . Ž .H
r dy P y , C s P D , C , if x s D .Ž . Ž . Ž .XX ¢H

Ž . Ž .We prove 2.25 by induction on n. For n s 1, this is just 2.23 . Assume that
Ž .2.25 has been proved for n y 1.

For x g XX , C g BB, we have

n ny1P x , dy v y , C s P x , dz P z , dy v y , CŽ . Ž . Ž . Ž . Ž .H H
XX z , ygXX

ny1s P x , dz v z , dw P w , dy v y , CŽ . Ž . Ž . Ž .H
z , ygXX , wgXX

ny1s P x , dz v z , dw P w , CŽ . Ž . Ž .H
zgXX , wgXX

s P ny1 x , dw P w , CŽ . Ž .H
wgXX

s P n x , C ,Ž .
Ž . Ž .where the second inequality follows from 2.24 , the third follows from 2.23

and the fourth from the induction step.
Finally, for C g BB, we notice that

p dx v x , CŽ . Ž .H
XX

s p dx y «Up A r dx v x , C q «Up A r C s p C .Ž . Ž . Ž . Ž . Ž . Ž . Ž .Ž .H
XX

This completes the proof of the lemma. I
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The next lemma shows that p dominates r.

LEMMA 5. Let C g BB. Then

2.27 p C s 0 implies r C s 0.Ž . Ž . Ž .
U Ž .PROOF. From the careful choice of « s «r2 used to define P x, C in

Ž .definition 2.20 , we have
U2.28 P x , C s P x , C y « r C ) «*r C whenever x g A and C g BB.Ž . Ž . Ž . Ž . Ž .

Ž .Since p is an invariant probability measure for P ?, ? ,

p C s P x , C p dx G P x , C p dxŽ . Ž . Ž . Ž . Ž .H H
XX A
U U UG « r C p A s « r C p A 1 y «Ž . Ž . Ž . Ž . Ž .

Us p D r C 1 y « ,Ž . Ž . Ž .
UŽ . Ž .by using the identity p D s « p A . From Lemma 1 applied to the Markov

Ž . Ž .chain with transition probability function P ?, ? on XX , BB and distinguished
Ž . Ž .point D, we find that p D ) 0. This establishes 2.27 . I

COMPLETION OF THE PROOF OF PROPOSITION 2. Let D s D y D. From0 0
Ž . Ž . Ž . Ž .2.22 , 2.25 and 2.26 , we have p D s 1, and0

n nsup P x , C y p C s sup P x , dy v y , C y p dy v y , C ª 0Ž . Ž . Ž . Ž . Ž . Ž .H H
XX XXCgBB CgBB

for each x g D .0

This means that

p XX y D s p XX y D s 0.Ž . Ž .0 0

From Lemma 5, it follows that

r XX y D s 0.Ž .0

Ž . Ž .Now, from the definition of p ? in 2.21 ,
Up XX y D s p XX y D q « r XX y D p A s 0.Ž . Ž . Ž . Ž .0 0 0

Ž .This completes the proof that p D s 1 and0
nsup P x , C y p C ª 0 for all x g D . IŽ . Ž . 0

CgBB

We now drop the condition n s 1 and prove Theorem 1.0

PROOF OF THEOREM 1. Let

MM s m: there is an « ) 0 such that inf P m x , ? G « r ? .Ž . Ž .½ 5m m
xgA

Ž .Then g.c.d. MM s 1. Let m , m g MM. Then, for x g A and C g BB,1 2

P m1qm 2 x , C G P m2 y , C P m1 x , dy G« r C « r A s« « r C .Ž . Ž . Ž . Ž . Ž . Ž .H m m m m2 1 1 2
A
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Ž .Thus m q m g MM. Since g.c.d. MM s 1, there is an integer L such that1 2
Ž . w xm G L implies that m g MM. Now, from 1.4 , for p -a.e. x, there is an s

Ž . sŽ .which may depend on x such that P x, A ) 0. Fix an m g MM. For
k m Ž .any integer k , such that km y s G L, we have P x , A G

k mysŽ . sŽ . Ž . sŽ . w xH P y, A P x, dy G « r A P x, A ) 0. Thus, for p -a.e. x,A k mys
k mŽ . �P x, A ) 0 for all large k. This means that the Markov chain X ,nm

4 Ž . Ž . Ž .m s 0, 1, . . . satisfies 1.1 , 1.4 and 1.5 with n s 1. From Proposition 2,0
def

Ž . Ž .there is a D such that p D s 1 and, for each x g D , D x s0 0 0 k m
< k mŽ . Ž . < rŽ c .sup P x, C y p C ª 0 as k ª `. We also have P y, D s 0 forC g BB 0

w x Ž c . rŽ c . Ž .0 F r F m y 1 for p -a.e. y, since 0 s p D s HP y, D p dy for 0 F r F0 0
�m y 1. For any n, write n s km q r for 0 F r F m y 1. Let D s x:1

rŽ c . 4 Ž .P x, D s 0, 0 F r F m y 1 . Then p D s 1 and, for x g D ,0 1 1

k m rD x F sup P y , C y p C P x , dyŽ . Ž . Ž . Ž .Hn
D CgBB0

my1
k m rF sup P y , C y p C P x , dy ,Ž . Ž . Ž .ÝH

D CgBB0 rs0

which goes to zero as k ª ` by the bounded convergence theorem. Since
Ž . Ž .n ª ` implies k ª `, this proves that D x ª 0 for x g D , where p D sn 1 1

0. I

2.3. Proof of Theorem 2 for general Markov chains. As mentioned earlier,
the key to the proof of Theorem 2 is to recognize an embedded Markov chain
which satisfies the conditions of Theorem 1. The proof of Theorem 2 is
completed after Lemma 9.

Ž . n0Ž .Let Y s X , m s 0, 1, . . . , and set Q x, C s P x, C for x g XX andm m n0
� 4C g BB. The subsequence Y , Y , . . . is a Markov chain with transition0 1

Ž .probability function Q x, C and we will call it the embedded Markov chain.
Define

`
m n yr02.29 A s x : P x , A ) 0 , r s 0, 1, . . . , n y 1.Ž . Ž .Ýr 0½ 5

ms1

n0Ž .Since P x, A G « for all x g A, one can also define A byr

`
m n yr0A s x : P x , A ) 0 for any k G 1,Ž .Ýr ½ 5

msk

that is, A is the set of all points from which A is accessible at time pointsr
which are of the form mn y r for all large m, and A is the set of all points0 0
from which A is accessible in the embedded Markov chain.

Lemma 6 shows that the embedded Markov chain satisfies the conditions
of Theorem 1 with the normalized restriction of p to A as its invariant0
probability measure.
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LEMMA 6. Under the conditions of Theorem 2,

p A ) 0.Ž .0

Let

p C l AŽ .0
p C s .Ž .0 p AŽ .0

� 4 Ž . Ž .The embedded Markov chain Y , Y , . . . satisfies conditions 1.4 and 1.5 of0 1
Theorem 1 with p as an invariant probability measure and with the n0 0

Ž .appearing in 1.5 equal to 1.

Ž . Ž� Ž Ž . . 4.PROOF. Condition 1.4 states that p x: P T A - ` ) 0 s 1. Just thex
Ž .fact that this probability is positive and condition 1.1 allow us to use

Ž . Ž .Corollary 1 to conclude that p A ) 0. Condition 1.5 implies that A ; A .0
Ž .Thus p A ) 0 and hence p is a well-defined probability measure. Clearly,0 0

2.30 p C s p dx Q x , C for all C g BB,Ž . Ž . Ž . Ž .H
2.31 p A s 1Ž . Ž .0 0

and
2.32 Q x , ? G «r ? for all x g A.Ž . Ž . Ž .

Notice that

Qm x , A s Q x , dy Qm y , AŽ . Ž . Ž .Ý ÝH
XX2Fm-` 1Fm-`

s Q x , dy Qm y , A .Ž . Ž .ÝH
A0 1Fm-`

Ž . mŽ .Hence Q x, A ) 0 implies that Ý Q x, A ) 0, that is, x g A . In0 2 F m-` 0
other words,

2.33 x f A implies Q x , A s 0.Ž . Ž .0 0

Ž . Ž .From 2.30 and 2.33 we have the equality

p A s p dx Q x , A s p dx Q x , A ,Ž . Ž . Ž . Ž . Ž .H H0 0 0
XX A0

Ž . w xwhich implies that Q x, A s 1 for p -almost all x g A . Hence0 0

1
p dx Q x , C s p dx Q x , CŽ . Ž . Ž . Ž .H H0 p AŽ .XX A0 0

1
s p dx Q x , C l A s p C .Ž . Ž . Ž .H 0 0p AŽ . XX0

2.34Ž .

Ž . Ž . Ž .Equations 2.34 , 2.31 and 2.32 establish the lemma. I
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Define

p C s p dx P r x , C ,Ž . Ž . Ž .Hr 0
A0

for r s 1, 2, . . . , n y 1, and0

n y101
p C s p C .Ž . Ž .˜ Ý rn0 rs0

Note that p is the distribution of X when Y s X has initial distributionr r 0 0
p . The next lemma shows that averages of the n successive transition0 0

Ž . w xfunctions of the chain converge to p C for p -almost all x.˜ 0

LEMMA 7. Define

m n02.35 B s x : x g A , sup P x , C y p C ª 0 as m ª ` .Ž . Ž . Ž .½ 50 0 0
CgBB

Under the conditions of Theorem 2,

2.36 p B s 1.Ž . Ž .0 0

Moreover, for each x g B ,0

m n qr0sup P x , C y p C ª 0Ž . Ž .r
CgBB2.37Ž .

as m ª ` for r s 0, 1, . . . , n y 1,0

and hence
n y101

m n qr02.38 sup P x , C y p C ª 0 as m ª `.Ž . Ž . Ž .˜Ýn0CgBB rs0

PROOF. From Lemma 6 the embedded Markov chain satisfies the condi-
Ž .tions of Theorem 1 with the n appearing in 1.5 equal to 1. From Proposi-0

tion 2 it follows that
m n0sup P x , C y p C ª 0 as m ª `,Ž . Ž .0

CgBB

w x Ž .for p -almost all x. This establishes 2.36 . For r s 0, 1, . . . , n y 1 and0 0
x g B ,0

m n qr m n r0 0sup P x , C y p C s sup P x , dy y p dy P y , CŽ . Ž . Ž . Ž . Ž .Ž .Hr 0
XXCgBB CgBB

m n0F sup P x , D y p D ª 0Ž . Ž .0
DgBB

Ž .as m ª `, establishing 2.37 . I

The next lemma shows that the conclusions of the previous lemma hold
w xp -almost everywhere.˜
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LEMMA 8. Under the conditions of Theorem 2,

p A s 1 for r s 1, . . . , n y 1,Ž .r r 0

Ž . w xand 2.38 holds for p -almost all x.˜

PROOF. Consider the original Markov chain X , X , . . . . Let E g BB and0 1
Ž .let p E s 1. Then0

p dx P n0y1 x , E s p dy P y , dx P n0y1 x , EŽ . Ž . Ž . Ž . Ž .H H H1 0
XX xgXX ygA0

s p dy P n0 y , EŽ . Ž .H 0
A0

s p E s 1,Ž .0

n0y1 Ž . w xand hence P x, E s 1 for p -almost all x. In particular, we take1
Ž .E s B and rewrite the conclusion as p B s 1, where the sets B are0 1 1 r

defined by

B s x : P n0yr x , B s 1 , r s 1, 2, . . . , n y 1.� 4Ž .r 0 0

Let x g B . Then1

P m n0y1 x , A G P n0y1 x , dy P Žmy1.n0 y , A ) 0,Ž . Ž . Ž .Ý ÝH
B0mG2 mG2

Ž .and hence x g A . Thus B ; A . Similarly, p B s 1 and B ; A for all r.1 1 1 r r r r
Notice that, for x g B ,1

m n qrqn y10 0sup P x , C y p CŽ . Ž .r
CgBB

m n qr n y10 0F sup P y , C y p C P x , dyŽ . Ž . Ž .H r
ygXX CgBB

m n qr n y10 0s sup P y , C y p C P x , dy .Ž . Ž . Ž .H r
ygB CgBB0

Ž .From 2.37 it follows that
m n qrqn y10 0sup P x , C y p C ª 0Ž . Ž .r

CgBB2.39Ž .
w xas m ª ` for p -almost all x .1

As a consequence, as m ª `

n y101
m n qr0sup P x , C y p CŽ . Ž .˜Ýn0CgBB rs0

2.40Ž . n y101
m n qr0 w xs sup P x , C y p C ª 0 for p -a.e. x .Ž . Ž .Ž .Ý rq1 1n0CgBB rs0

Ž . w xA similar argument shows that 2.38 holds for p -almost all x and all r andr
w xhence for p -almost all x. I˜
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Ž .We now establish that p s p by using the full force of condition 1.4 .˜

LEMMA 9. Under the conditions of Theorem 2, p is the restriction of p tor
A , for r s 1, 2, . . . , n y 1 andr 0

p s p .˜
Ž .PROOF. We have already shown that p A s 1, r s 1, 2, . . . , n y 1. Wer r 0

will now show that A , . . . , A act like cyclically moving subsets in the0 n y10

sense that
x g Ac implies P x , A s 0.Ž .0 1

Ž .Suppose that P x, A ) 0. Then1

P m n0 x , A G P x , dy P m n0y1 y , A ) 0,Ž . Ž . Ž .Ý ÝH
A1mG1 mG1

c Ž .which implies that x g A . Thus x g A implies that P x, A s 0. Now, for0 0 1
C g BB,

p C s p C l AŽ . Ž .1 1 1

1
s p dx P x , C l AŽ . Ž .H 1p AŽ . A0 0

1
s p dx P x , C l AŽ . Ž .H 1p AŽ . XX0

p C l AŽ .1s .
p AŽ .0

Ž . Ž . Ž .Since p A s 1, this implies that p A s p A and that p is the1 1 1 0 1
restriction of p to A . A similar conclusion holds for p for other values of r.1 r

Ž .We now use the full force of condition 1.4 , which can be restated as
Ž n0y1 .p D A s 1. This together with the fact that p is the restriction of p tors0 r r

A , r s 0, 1, . . . , n y 1, implies that the probability measures p and p are˜r 0
absolutely continuous with respect to each other. From this observation and
Lemma 8, for any C g BB,

mn01
jH x , C s P x , C ª p C ,Ž . Ž . Ž .˜Ým n0 mn0 js1

w xfor p -almost all x. Now,

p C s p dx H x , C ª p dx p C s p C .Ž . Ž . Ž . Ž . Ž . Ž .˜ ˜H Hm n mª`0
XX XX

This shows that p s p . I˜

We now complete the proof of Theorem 2.

PROOF OF THEOREM 2. It is clear that Lemmas 8 and 9 establish conclu-
Ž . Ž . Ž .sions 1.8 and 1.9 of Theorem 2. Let f x be a measurable function
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< Ž . < Ž .satisfying H f x p dx - `. From a slight extension of Corollary 2 as applied
Ž .to the embedded Markov chain for the averages of f ? over the whole chain,

we obtain

p B s 1,Ž .0 f

where

n1
B s x : P f X ª f x dp x s 1;Ž . Ž .˜Ž .Ý Hf x j½ 5½ n js1

n1
E f X ª f x dp x .Ž . Ž .˜Ž .Ý Hx j 5ž /n js1

From the argument at the beginning of the proof of Lemma 8, we have
n0y1 Ž .P x, B s 1 for p -almost all x. The definition of B is such that iff 1 f
n0y1 Ž . Ž . Ž .P x, B s 1, then x g B . Hence p B s 1, and similarly p B s 1f f 1 f r f

Ž .for r s 2, 3, . . . . This together with the fact that p s p establishes 1.10 and˜
Ž .1.11 . I

2.4. Remarks on successive substitution sampling. Theorems 1 and 2
pertain to arbitrary Markov chains. We now give a result that facilitates the
use of our theorems when the Markov chain used is the one obtained from the
successive substitution sampling algorithm, which is the most commonly
used Markov chain in Bayesian statistics. We assume that, for each i, the
conditional distributions p Ž i. Ž j. have densities, say p Ž i. Ž j. , withX <�X , j/ i4 X <�X , j/ i4
respect to some dominating measure r .i

THEOREM 6. Consider the successive substitution sampling algorithm for
Ž Ž1. Ž p..generating observations from the joint distribution p of X , . . . , X as

described in Section 1. Suppose that, for each i s 1, . . . , p, there is a set A ,i
Ž .with r A ) 0, and a d ) 0 such that, for each i s 1, . . . , p,i i

2.41 p Ž i. Ž j. x Ž1. , . . . , x Ž p. ) 0Ž . Ž .X <�X , j/ i4

whenever

x Ž1. g A , . . . , x Ž i. g A , and x Ž iq1. , . . . , x Ž p. are arbitrary,1 i

and

2.42 p Ž i. Ž j. x Ž1. , . . . , x Ž p. ) d whenever x Ž j. g A , j s 1, . . . , p.Ž . Ž .X <�X , j/ i4 j

Ž . Ž . Ž .Then conditions 1.4 and 1.5 are satisfied with n s 1. Thus, 1.6 is also0
satisfied, and the conclusions of Theorems 1 and 2 hold.
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PROOF. Let p s p Ž i. Ž j. and A s A = ??? = A . The transition func-i X <�X , j/ i4 1 p
tion used in successive substitution sampling is given by

P x , AŽ .

s p yŽ1. , x Ž2. , . . . , x Ž p.Ž .H 1
A

=p yŽ1. , yŽ2. , x Ž3. , . . . , x Ž p. ??? p yŽ1. , . . . , yŽ p. dr yŽ1. ??? dr yŽ p. .Ž . Ž . Ž . Ž .2 p 1 p

Ž . Ž .It is now easy to see that condition 2.41 verifies 1.4 for all starting points x
Ž . Ž .and that 2.42 verifies 1.5 with n s 1. I0

Ž . Ž Ž1. Ž p..We note that condition 2.41 is often checked for all x , . . . , x .

Conditional distributions need not determine the joint distribution. In
Section 1, we described how to form a transition function from the two
conditional distributions p and p obtained from a bivariate distribu-X < X X < X1 2 2 1

tion p . We mentioned that for a Markov chain with such a transition function
to converge in distribution to p it is necessary that p and pX < X X < X1 2 2 1

determine p . Some researchers have pondered over the question of when do
Ž .the conditional distributions determine the joint distribution. Besag 1974

noted that uniqueness is guaranteed if the distributions are discrete and give
positive probability to a rectangle set.

One can give a simple nondegenerate example to show that, in general, the
two conditional distributions do not determine the joint distribution. Let X1

Ž .have a density function p x such that

p m q r s c - ` for each r g 0, 1 .Ž . .Ý r
y`-m-`

1Ž . Ž < <.The density function p x s exp y x , for instance, satisfies this condition.2

Let p be the distribution that puts massesX < X2 1

1 at x q 1,12
2.43Ž .

1 at x y 1.12

This determines the other conditional distribution p . This puts massesX < X1 2

p x q 1Ž .2
at x q 1 and2p x q 1 q p x y 1Ž . Ž .2 2

2.44Ž .
p x y 1Ž .2

at x y 1.2p x q 1 q p x y 1Ž . Ž .2 2

Ž . Ž .It can be seen that the two conditional distributions 2.44 and 2.43 do not
Ž . w .uniquely determine a joint distribution for X , X . Fix r g 0, 1 and con-1 2

sider the discrete distribution p on the points m q r, m s . . . , y1, 0, 1, . . . ,r
Ž . Ž . Ž . Ž .defined by p m q r s 1rc p m q r . Let Y r be distributed according tor r 1

Ž . Ž .p , and let the conditional distribution of Y r given Y r be the distribu-r 2 1
Ž . Ž .tion defined in 2.43 . It is easy to see that the distribution of Y r given1
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Ž . Ž . Ž Ž . Ž ..Y r is that given in 2.44 , and the joint distribution of Y r , Y r has the2 1 2
Ž .same conditional distributions as X , X .1 2

It is even possible to find joint distributions with continuous marginals for
Ž . Ž . Ž .which the conditionals are given by 2.44 and 2.43 . Let f r be any

w . Ž .probability density on 0, 1 . Let R have density function f r and set
Ž . Ž Ž . Ž .. Ž .Z , Z s Y R , Y R . Clearly the conditional distributions of Z , Z are1 2 1 2 1 2

Ž . Ž .as in 2.44 and 2.43 . The marginal distribution function of Z is given by1

w xx p y f y y yŽ . Ž .
P Z F x s p m q r f r dr s dy.Ž . Ž . Ž .ÝH H1 rž / cw .0, 1 y` yyw y xm; mqrFx

A similar expression can be written down for the distribution function of Z .2
Notice that Z and Z have density functions.1 2

3. Remarks on the sampling plan. In Section 1 we mentioned that
there are a number of ways of using the Markov chain to estimate p or some
aspect of p . One can generate G independent chains, each of length n, and
retain the last observation from each chain, obtaining a sample
X w1 x, X w2 x, . . . , X w G x of independent variables. At another extreme, one cann n n
generate a very long sample X , X , X , . . . , X and use X , X , . . . , X ,0 1 2 nG n 2 n G n
which form a nearly i.i.d. sequence from p . This is at approximately the same

Ž .cost in CPU time. Clearly intermediate solutions are possible. If the objec-
Ž . Ž .tive is to estimate an expectation Hf x p dx , then there is no reason to

discard the intermediate values from a long chain, and one can use
nG1

3.1 f X .Ž . Ž .Ý in G y 1Ž . isnq1

Ž .The almost-sure convergence of 3.1 follows from Theorem 2 under the
Ž . Ž . wassumption Hf x p dx - ` note that we do not need the aperiodicity condi-

Ž .xtion 1.6 . Thus, from the point of view of estimating a particular expectation
Ž . Ž . Ž .Hf x p dx or probability, it is clear that use of 3.1 is preferable, and so it is

Ž .natural to ask why one should bother to prove results such as 1.7 . In the
Bayesian framework, there is another aspect that must be considered, which
is that generally, in the exploratory stage, one is interested in calculating
posterior distributions and densities for a large number of prior distributions.
It will usually not be feasible to run a separate Markov chain for each prior of

Žinterest the time needed is often on the order of several minutes for each
.prior . Instead, one will want to get a sequence of random variables X , . . . , X1 r

distributed according to the posterior distribution with respect to some fixed
prior, and then use that same sequence to estimate the posterior with respect

Žto many other priors. We discuss how this may be done in the next para-
.graph. The important point here is that if there are a large number of priors

involved, then the minipulations of the sequence X , . . . , X to produce the1 r
posterior for each prior must be done very quickly. This restricts the size of r,
and so one will generally want the sequence X , . . . , X to be independent.1 r
This precludes running a very long chain and taking sample averages as in
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Ž .3.1 . Instead, one will want to generate independent chains and retain the
last random variable in each chain or take a long chain and retain only
random variables at equally spaced intervals.

We now discuss in more detail how one might use one sequence X , . . . , X1 r
to calculate posteriors with respect to many priors. We depart from the
notation of the paper and switch to the notation usually used in Bayesian
analysis. Suppose that n is a family of priors for the parameter u . Here, hh
lies in some interval and we think of it as a hyperparameter for the prior.
Suppose that we are in the dominated case, that is, there is a likelihood

Ž .function l u , where X now represents the data.X
Let n be the posterior distribution of u when the prior is n . We knowh, X h

that n is dominated by n andh, X h

dnh , X
u s c X l u ,Ž . Ž . Ž .h Xdnh

Ž .where c X is a normalizing constant.h
Consider the case where we can generate observations u , u , . . . , u from1 2 r

Ž . Ž . Ž . r Ž .n and therefore estimate Hf u dn u by 1rr Ý f u . We will indi-0, X 0, X is1 i
Ž . Ž .cate now how we can obtain estimates of Hf u dn u for h / 0.h, X

Suppose that n is dominated by n . Then it is clear that n is domi-h 0 h, X
nated by n and0, X

dn c X dnŽ .h , X h h
u s u ,Ž . Ž .

dn c X dnŽ .0, X 0 0

Ž .since the likelihood l u cancels. We may writeX

dnh , X
f u dn u s f u u dn uŽ . Ž . Ž . Ž . Ž .H Hh , X 0, Xdn 0, X

c X dnŽ .h hs f u u dn u .Ž . Ž . Ž .H 0, Xc X dnŽ .0 0

Ž . Ž . Ž .Substituting f u ' 1 in the above, we can obtain the constant c X rc Xh 0
and write

Hf u dn rdn u dn uŽ . Ž . Ž . Ž .h 0 0, X
f u dn u s .Ž . Ž .H h , X H dn rdn u dn uŽ . Ž . Ž .h 0 0, X

Ž . Ž .Thus, we may estimate Hf u dn u byh, X

r dn rdn uŽ . Ž .h 0 i
f u w where w s .Ž .Ý i h , i h , i rÝ dn rdn uŽ . Ž .is1 h 0 iis1

This is the well-known ‘‘ratio estimate’’ in importance sampling theory. The
key here is that its calculation requires only knowledge of the ratio

w Ž . xdn rdn up to a multiplicative constant. See Hastings 1970 .h, X 0, X
Now in some Bayesian problems, for instance, problems with missing or

Ž .censored data, the likelihood function l u is either extremely difficult orX
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w Ž . ximpossible to calculate. An example of this arises in Doss 1994 . The fact
that this likelihood cancels means that the estimation of the expectation
under the prior n requires only the recomputation of r weights, and this canh
be done very quickly.

It will often be the case that we wish to consider not just one function, but
rather a family of functions. As a simple example, if we wish to estimate the

Ž .entire posterior distribution of u , then in effect we wish to consider f u st
Ž .I u F t for a fine grid of values of t. For some applications we have been able

to do the computations quickly enough to display dynamically the estimates
Ž . Ž .of the posterior distributions HI u F t dn u as h varies, using the pro-h, X

Ž .gram Lisp-Stat described in Tierney 1990 , for r as large as 500 on a
wworkstation doing about 1.5 million floating point operations per second. See

Ž . xDoss and Narasimhan 1994 .
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