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EFFICIENT MAXIMUM LIKELIHOOD ESTIMATION IN
SEMIPARAMETRIC MIXTURE MODELS

BY AAD VAN DER VAART

Vrije Universiteit Amsterdam

We consider maximum likelihood estimation in several examples of
semiparametric mixture models, including the exponential frailty model
and the errors-in-variables model. The observations consist of a sample of

Ž < . Ž .size n from the mixture density Hp x z dh z . The mixing distribution isu
ˆcompletely unknown. We show that the first component u of the jointn

ˆŽ .maximum likelihood estimator u , h is asymptotically normal andˆn n
asymptotically efficient in the semiparametric sense.

1. Introduction. In a semiparametric mixture model one observes a
sample X , . . . , X from a density of the type1 n

<p x s p s z dh z .Ž . Ž . Ž .Hu , h u

Here the mixing distribution h is a completely unknown probability distribu-
Ž .tion on a measurable space ZZ, CC and the kernel or mixture density x ª

Ž < .p x z is a family of probability densities with respect to a measure m on au

Ž .measurable space XX , AA , which is known up to a parameter u ranging over
an open subset Q of Euclidean space.

ˆŽ .The maximum likelihood estimator u , h maximizes the likelihood func-ˆn n
tion

n

u , h ª lik u , n s p X .Ž . Ž . Ž .Ł u , h i
is1

Ž .Using Wald’s approach, Kiefer and Wolfowitz 1956 show that in many cases
the maximum likelihood estimator is consistent with respect to the product of
the Euclidean and weak topology. In this paper we derive for several exam-

ˆples of kernels that the sequence u is asymptotically normal and asymptoti-n
cally efficient in the semiparametric sense. The approach does apply to other
examples as well, but is based on a property that must be established for
particular examples. Since the examples are among the most frequently
studied mixture models in the literature and nothing is known about the rate
of convergence and asymptotic distribution of the maximum likelihood esti-
mator, the present study appears worthwhile, even though it is not com-
pletely general.
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The first example is a frailty model studied by, among others, Lindsay
Ž . Ž . Ž .1985 , Kumon and Amari 1984 , Heckman and Singer 1984 , Van der Vaart
Ž . Ž .1988a and Pfanzagl 1990 . Alternatively to the frailty model considered by

Ž .Murphy 1995 , the survival times are modelled parametrically, while inho-
mogeneity of the hazards is modelled nonparametrically. The second example
is a version of the errors-in-variables model in which the errors are modelled
by a Gaussian distribution. Efficient estimators for this model, but not the

Ž .maximum likelihood estimator, are studied by Bickel and Ritov 1987 . See
Ž .this paper and Anderson 1984 for an introduction to the large literature on

the errors-in-variables problem. As a third example, we consider scale mix-
tures over symmetric densities.

Though the efficiency of the maximum likelihood estimator has been an
open problem for many years, several other methods which yield efficient
estimators of u have been proposed during the last decade. In particular,

Ž . Ž . Ž .Bickel and Ritov 1987 , Van der Vaart 1988a, b and Pfanzagl 1990
construct one-step estimators based on an estimated score function. Lindsay
Ž . Ž .1985 considers inefficient estimators based on specifying a parametric
form of h.

Ž .We refer to Severini and Wong 1992 for an alternative method to prove
asymptotic efficiency of maximum likelihood estimators, based on profile
likelihood. In this paper we do not use profile likelihood, but follow a different
route based on the efficient influence function.

For the computation of the maximum likelihood estimator the results of
Ž .Lindsay 1983b are of interest. These imply that for every fixed u the

likelihood is maximized with respect to h by at least one discrete distribution
Ž .h u with at most n support points. The characterizations of the support ofˆn
Ž . Ž .h u by Lindsay 1983b in combination with a conjugate gradient algorithmˆn

Ž .or the concave majorant algorithm of Groeneboom 1991 to calculate the
Ž .weights make feasible the efficient computation of h u . The maximumˆn

ˆlikelihood estimator u can be calculated by maximizing the profile likelihoodn
Ž Ž ..u ª lik u , h u or, preferably, by building an updating procedure for initialˆn

estimators for u into the iteration steps.
In Section 2 we give the main result of the paper. This is formulated in

terms of empirical process theory reviewed in Section 3. Sections 4, 5 and 6
are concerned with the three examples mentioned previously.

2. A general result. The examples treated in this paper admit a ‘‘statis-
Ž .tic’’ c X which is sufficient for h given a fixed value of u . In every case theu

Žefficient score function for u the score for u minus its projection on the set of
.nuisance scores is given by

˜ ˙ ˙ <2.1 l x s l x y E l X c X s c x ,Ž . Ž . Ž . Ž . Ž . Ž .ž /u , h u , h u u , h u u

˙ Ž .where l x is the score function for u : the vector of partial derivatives ofu , h

Ž . Ž .the logarithm of the density p x with respect to u . See Lindsay 1983a oru , h
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Ž .Van der Vaart 1988a, c . As a consequence we have that

˜2.2 E l X s 0 for every u , h , h .Ž . Ž .u , h u , h 00

This unbiasedness of the efficient score function plays an important role in
the analysis of efficient one-step estimators in earlier papers. It will also be
crucial for the study of the maximum likelihood estimator in the present
paper. As a result of the convexity of the model in the parameter the

Ž .unbiasedness is true for general mixture models. The explicit expression 2.1
for the efficient score function will be used in order to check technical
conditions.

A second special property of the examples in this paper is that the efficient
Ž .score function is an actual score function, in the sense that for every u , h

Ž .there exist finite-dimensional submodels t ª h u , h indexed by a parametert
t of the same dimension as u ranging over a neighbourhood of the origin such

Ž .that h u , h s h and0

­˜2.3 l x s log p x for every x .Ž . Ž . Ž .u , h uqt , h Žu , h .t­ t ts0

This is not true for mixture models in general, not even the ones admitting a
˙ Ž .sufficient statistic studied here. Though l x is an actual score function byu , h

˙Ž Ž . < Ž . Ž ..its definition, its conditional expectation E l X c X s c x may failu u , h u

to have this property. In general the conditional expectation is in the closure
of the linear span of the score functions for the nuisance parameter, but the
score functions for the nuisance parameter may form a convex cone rather

Ž .than a linear space. This is true in particular at u , h for which h is a
Ž . Ž .discrete distribution. See Lindsay 1983a or Van der Vaart 1988a, c . Since

often discrete distributions are the only maximizers of the likelihood, this is
relevant for the approach of this paper, since it is the maximum likelihood
estimator that we wish to perturb in the given manner.

˜ ˆŽ . Ž . Ž .If l x is a score function at u , h in the sense of 2.3 , then it followsˆû , h n nˆn n

that
n

˜2.4 l X s 0.Ž . Ž .ˆÝ u , h iˆn n
is1

Indeed, by definition of the maximum likelihood estimator the map t ª
ˆ ˆŽ Ž ..lik u q t, h u , h is maximal at the point t s 0, whence its derivative atˆn t n n

Ž .t s 0 vanishes. We refer to 2.4 as the efficient score equation.
The argument may now proceed by a classical linearization scheme. If the

efficient score function is smooth in u we obtain

˙˜ ˜ ˜ ˆ0 s l X s l X q l X u y u ,Ž . Ž . Ž . Ž .ˆ ˜Ý Ý Ýu , h i u , h i u , h i n 0ˆ ˆ ˆn n 0 n n n

˜ ˆfor a point u between u and u . Thusn 0 n

y11 1˙ˆ ˜ ˜'n u y u s y l X l X .Ž . Ž .Ž . ˜Ý Ýn 0 u , h i u , h iˆ ˆn n 0 nž / 'n n
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This differs from the classical expansion of the maximum likelihood equa-
Ž .tions in that the efficient score function depends on the random nuisance

parameter h . This difficulty may be overcome by application of empiricalˆn
Ž .process theory. Here the unbiasedness 2.2 ensures that the right-hand side

ˆ' Ž .is properly centered. The final conclusion is that n u y u is asymptoti-n 0
cally normal with covariance equal to the inverse of the efficient information

˜ ˜ XŽ . Ž . Ž .matrix E l X l X evaluated at u , h . Throughout we assume thatu , h u , h u , h 0 0
this is nonsingular.

To minimize regularity conditions the derivation of the preceding para-
graph may be replaced by an approach that does not use the second deriva-

˙̃tive l . We impose the following regularity conditions:u , h

2X 211r2 1r2 1r2˙ 5 52.5 p y p y u y u l p dm s o u y u ,Ž . Ž . Ž .H u , h u , h 0 u , h u , h 020 0 0 0 0 0 0

˜ ˜2.6 l ª l , P -a.s.,Ž . u , h u , h u , h0 0 0 0

˜ 25 52.7 l p q p dm s O 1 .Ž . Ž . Ž .H u , h u , h u , h0 0 0

These conditions should hold for u ª u and h ª h for a metric d for which0 0
the maximum likelihood estimator is known to be consistent.

The following theorem is true for general semiparametric models and
˜arbitrary functions l , though its conditions are motivated by the applica-u , h

tion to mixture models described previously. In the application to the errors-
in-variables model we shall use the theorem in its general form with h equal
to the mixing distribution and the error variance jointly. It is useful to note
that the efficient score equation is not necessary in its full strength. It suffices
that

n
˜ '2.8 l X s o n .Ž . Ž . Ž .ˆÝ u , h i Pˆn n

is1

This may be satisfied even if the efficient score function is not an actual score
function, in which case the present approach still holds. In fact, the proof of

Ž .the following theorem shows that under regularity conditions 2.8 is neces-
sary for the asymptotic normality and efficiency of the maximum likelihood
estimator. A further note is that within the context of the following theorem
the estimators h need not be the maximum likelihood estimators. Anyˆn

Ž .consistent estimators for which 2.8 is valid could be used. Furthermore the
˜ ˜functions l may be arbitrary except that l should be the efficient scoreu , h u , h0 0
Ž . Ž .function at u , h . Finally we note that 2.2 may be replaced by0 0

˜ y1r22.9 l p dm s o n .Ž . Ž .ˆ ˆH u , h u , h Pˆn n n 0

The usefulness of these relaxations is the subject of further study. We do not
need them for the examples in this paper.

The notion of a Donsker class is reviewed in Section 3.



A. VAN DER VAART866

Ž . Ž .THEOREM 2.1. Suppose that 2.8 and 2.9 hold and that the class of
˜� 5 5 Ž . 4functions l : u y u - d , d h, h - d is P -Donsker for some d ) 0u , h 0 0 u , h0 0

ˆŽ . Ž . Ž .and satisfies 2.5 ] 2.7 . If the maximum likelihood estimator u , h isˆn n
ˆ'Ž . Ž .consistent for u , h , then the sequence n u y u is asymptotically nor-0 0 n 0

˜ Ž .mal. If l is the efficient score function at u , h , then the asymptoticu , h 0 00 0

covariance matrix equals the inverse of the efficient information matrix.

ŽPROOF. A Donsker class which is bounded in L is totally bounded or1
˜.precompact in L . Therefore any sequence l with u ª u and h ª hu , h2 n 0 n 0n n

Ž .has a further subsequence that converges in L P . In view of condition2 u , h0 0˜Ž . Ž .2.6 the function l is the only limit point. Conclude that 2.6 is also validu , h0 0

in an L -sense.2
˜The assumption that the functions l form a Donsker class entails thatu , h

the sequence of processes

n1 ˜ ˜G u , h s l X y l p dmŽ . Ž .Ý Hn u , h i u , h u , h0 0ž /'n is1

`ŽŽ . 5 5 Ž . .converges in distribution in the space l u , h : u y u - d , d h, h - d of0 0
Ž .bounded functions on a neighbourhood of the true parameter u , h to a0 0

Ž .tight Brownian bridge process G u , h . Almost all sample paths of G are
uniformly continuous with respect to the semimetric with square

2 ˜ ˜ 25 5r u , h , u , h s l y l p dm.Ž . Ž .Ž . H1 1 2 2 u , h u , h u , h1 1 2 2 0 0

ˆŽ . ŽŽ . Ž ..By the L -version of 2.6 we have that r u , h , u , h converges to zero inˆ2 n n 0 0
probability. As a consequence of the uniform convergence and continuity of
the limit,

ˆG u , h y G u , h ª 0.Ž .ˆž /n n n n 0 0 P

The second part of the proof consists of showing that

ˆ ˜'G u , h s y n l p dm q o 1Ž .ˆ ˆHž /n n n u , h u , h Pˆn n 0 0

˜'s n l p y p dm q o 1Ž .Ž .ˆ ˆH u , h u , h u , h Pˆn n n 0 0 0
2.10Ž .

X˜ ˙ ˆ's l l p dm q o 1 n u y u q o 1 .Ž . Ž .Ž .H u , h u , h u , h P n 0 P0 0 0 0 0 0ž /
Since the integral in the last line equals the efficient information matrix, this
would conclude the proof.

Ž . Ž .The first equality in 2.10 is the efficient score equation 2.8 and the
Ž .second equality follows from the unbiasedness 2.9 of the efficient score

function. We must prove the third equality. The difference between the
Ž .second and last line of 2.10 can be written as the sum of three terms:
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1r2 1r2 1r2 1r2 1r21˜ ˆ ˙'n l p q p p y p y u y u l p dmŽ .ˆ ˆ ˆH ž / ž /u , h u , h u , h u , h u , h n 0 u , h u , h2ˆn n n 0 0 0 n 0 0 0 0 0 0 0

1r2 1r2 1r2X1˜ ˙ ˆ'q l p y p l p dm n u y uŽ .ˆ ˆH ž /u , h u , h u , h u , h u , h n 02ˆn n n 0 0 0 0 0 0 0

X˜ ˜ ˙ ˆ'y l y l l p dm n u y u .Ž .ˆH u , h u , h u , h u , h n 0ž /ˆn n 0 0 0 0 0 0

ˆ'Ž 5 5.The first and third terms can easily be seen to be o n u y u by applyingP n 0
Ž . Ž .the Cauchy]Schwarz inequality together with 2.5 ] 2.7 . The square of the

norm of the integral in the middle term can for every sequence of constants
m ª ` be bounded by a multiple ofn

2 ˙ 1r2 1r2 1r2 25 5 < <m l p p y p dmˆ ˆHn u , h u , h u , h u , hˆn n 0 0 n 0 0 0

˜ 2 ˙ 25 5 5 5q l p q p dm l p dm.Ž .ˆ ˆH Hu , h u , h u , h u , h u , hˆn n n 0 0 0 0 0 0 0˙5 5l )mu , h n0 0

Ž .In view of 2.5 and the Cauchy]Schwarz inequality, the first term converges
to zero in probability provided m ª ` sufficiently slowly to ensure thatn

ˆ5 5 wm u y u ª 0. Such a sequence exists. If Z ª 0, then there exists an n 0 P n P
Ž < < . y1r2 xsequence « x0 such that P Z ) « ª 0. Then « Z ª 0. In view ofn n n n n P

Ž .2.7 the second term converges to zero in probability for every m ª `. Thisn
Ž .concludes the proof of 2.10 . I

The assumption of consistency of the maximum likelihood estimator allows
us to localize the conditions to a neighbourhood of the true parameter. One

Ž .possibility to establish consistency is the method of Wald 1949 . This method
Ž .is applied by Kiefer and Wolfowitz 1956 to obtain consistency of the maxi-

mum likelihood estimator in mixture models. Under some regularity condi-
tions they prove consistency for a metric that generates the weak topology.
Another possibility is to prove that

n1 p pu , h u , h
sup log X y log p dmŽ .Ý Hi u , h0 0n p pugQ u , h u , his1 0 0 0 0
hgH

converges to zero in outer probability. This requires that the class of func-
Ž .tions log p rp is Glivenko]Cantelli and is of similar character to theu , h u , h0 0

Ž .other conditions in this paper. If the true value u , h is a ‘‘well-separated’’0 0
Ž .maximum of the Kullback]Leibler information function u , h ª

Ž .H log p rp p dm, then consistency follows. Consistency of the maxi-u , h u , h u , h0 0 0 0

mum likelihood estimator for a mixture distribution in the absence of the
parameter u can be proved under very weak regularity conditions making use

Ž .of the concavity of the likelihood, as shown by Pfanzagl 1988 . This approach
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Ž .is not possible for estimating u , h jointly, but variations on Pfanzagl’s
Žmethod may help to relax regularity conditions a little. The idea of the

method is not to use the log density as criterion function, but another better
.behaved function. We do not address the matter of consistency in great detail

in this paper.
Ž .Condition 2.5 simply requires that the score function for u exists in an

L -sense. For mixture models it is implied by differentiability of the kernels2
in the following manner:

2X11r2 1r2 1r2˙< < < <p x z y p x z y u y u l x z p x z dm x dh zŽ . Ž . Ž . Ž . Ž . Ž . Ž .HH u u 0 u u 020 0 0

5 5 2s o u y u .Ž .0

In this case the score function for u in the mixture model is related to the
score functions for u in the model of the kernel through

˙ < <Hl x z p x z dh zŽ . Ž . Ž .u u˙2.11 l x s .Ž . Ž .u , h <Hp x z dh zŽ . Ž .u

wŽ . xSee, for instance, Van der Vaart 1988a , Lemma 5.18 . The conditional
˙expectation of l can be found asu , h

˙ < < <HE l X z c X p X z dh zŽ . Ž . Ž . Ž .Ž .u u u u˙ <E l X c X s .Ž . Ž .ž /u u , h u <Hp X z dh zŽ . Ž .u

3. Donsker classes. In this section we review some results on empirical
processes that are used repeatedly in later sections of the paper. Let FF be a

Ž .class of measurable functions f : XX ª R on the probability space XX , AA, P .
The empirical measure P s Ýn d of an i.i.d. sample from P is the discreten is1 X i

random measure that puts mass 1rn at every observation. The empirical
' Ž .process G s n P y P evaluated at the function f isn n

n1
G f s f X y f dP .Ž .Ý Hn iž /'n is1

� Ž . 4The class FF is called Donsker if the empirical process G f : f g FF con-n
`Ž .verges in distribution in the metric space l FF of all bounded functions z:

FF ª R, which is equipped with the supremum norm. To avoid problems with
measurability, convergence in distribution is defined in the sense of outer

Ž .expectations as in Dudley 1985 .
5 5 Ž .Let f denote the L P -norm of a function f. Given a pair of functionsP , 2 2

w xl F u the bracket l, u consists of all functions f with l F f F u. The bracket-
Ž Ž .. w xing number N « , FF, L P is the minimal number of brackets l, u of sizew x 2
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Ž .2 2P u y l smaller than « needed to cover FF. According to a theorem of
Ž .Ossiander 1987 a sufficient condition for FF to be Donsker is that

`

3.1 log N « , FF , L P d« - `.Ž . Ž .Ž .'H w x 2
0

Ž .This is referred to as FF having a finite bracketing entropy integral.
Important examples of classes with a finite bracketing entropy integral are

classes of smooth functions on Euclidean spaces. To define such classes let,
for a given function f : I ; R d ª R and a ) 0,

< k k <D f x y D f yŽ . Ž .
k5 5 < <f s max sup D f x k max sup ,Ž .a ay? a @5 5? @ ? @k F a k s a x y yx x , y? ?

where the suprema are taken over all x, y in the interior of I with x / y, the
? @value a is the greatest integer strictly smaller than a , and for each vector k

of d integers Dk is the differential operator

­ k ?

kD s , k s k .Ý? ik k1 d­ x ??? ­ x1 d

5 5For a F 1 the norm ? is the Lipschitz norm of order a , while for largera

values of a the norm involves bounds on the partial derivatives of f together
a Ž .with a Lipschitz norm on the partial derivatives of highest order. Let C IM

5 5be the set of all continuous functions f : I ª R with f F M.a

Ž .A classical result of Kolmogorov and Tikhomorov 1961 asserts that the
a Ž . Žentropy numbers of C I for the uniform norm the logarithm of theM

.number of balls of radius « needed to cover the class are of the order
Ž .d ra d1r« for each given convex, bounded subset I of R . Thus the bracketing

a Ž .entropy integral of the class C I is finite for a ) dr2.M
Ž .Van der Vaart 1993 extends this to classes of smooth functions on an

unbounded support. Let R d s D` I be a partition into cubes of uniformlyjs1 j
bounded size. Let FF be a class of functions f : R d ª R such that the

a Ž .restrictions f belong to C I for every j and some fixed a ) dr2. Then< I M jj j

the class FF is Donsker if and only if

3.2 M P1r2 I - `.Ž . Ž .Ý j j
j

Ž .An earlier result in this direction was obtained by Gine and Zinn 1986 . In´
some situations it is also useful to have an explicit upper bound for the
bracketing entropy of these classes FF. A simple bound obtained by Van der

Ž .Vaart 1994 is as follows: there exists a constant K depending only on a , V,
r, d and the uniform bound on the diameter of the sets I such that forj
V G dra ,

VqrrrV `1 Ž .Vr VqrV rŽVqr .r3.3 log N « , FF , L P F K M P I .Ž . Ž .Ž . Ž .Ýr j jž / ž /« js1
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Ž .This implies that the class FF satisfies 3.1 if the series on the right is
convergent for r s 2 and some V - 2. This is slightly worse than the neces-

Ž .sary and sufficient condition 3.2 .
< <The class of functions FF is said to be Glivenko]Cantelli if sup P f y Hf dPf n

converges almost surely to zero. A sufficient condition is that the bracketing
Ž Ž ..numbers N « , FF, L P are finite for every « ) 0. For the class FF asw x 1

Ž .considered in the preceding paragraph this is the case if and only Ý M P Ij j j
- `.

Ž .4. A frailty model. Write the observations as pairs X , Y and consideri i
the mixture model with kernel

< yz x yu z yp x , y z s ze u ze .Ž .u

Thus given unobservable variables Z s z each observation consists of a pairi
of exponentially distributed variables with hazards z and u z, respectively.
The problem is to estimate the common ratio of the hazards u .

Ž .As sufficient statistic we use c X, Y s X q u Y. In the parametric modelu

given by the kernel the score function for u equals

1˙ <l x , y z s y zy.Ž .u u

Ž .The score function for u in the mixture model is given by 2.11 . Given
X q u Y s s the variables X and u Y are uniformly distributed on the interval
w x Ž .0, s . This yields the efficient score function as in 2.1 given by

1 3H x y u y z exp yz x q u y dh zŽ . Ž . Ž .Ž .2
l̃ x , y s .Ž .u , h 2Hu z exp yz x q u y dh zŽ . Ž .Ž .

The circumstance that this is an actual score function is a consequence of the
even more special fact that in the parametric model of the kernel the
conditional score function for u is proportional to the score for z:

1 X q u Y z ­˙ < < <E l X , Y z X q u Y s y z s log p X , Y z .Ž . Ž .Ž .u u uu 2u 2u ­ z

Suppose that the ‘‘true’’ model belongs to the parametric model of the kernel
Ž < .p x, y z . Then the left side is the projection in the mixture model of theu

score function for u on the closed linear span of the score function for the
Ž .unknown mixing distribution. The right side is the projection of this same

� Ž < .score function on the score for z in the parametric submodel p x, y, z :u

4u g Q, z g ZZ . Thus an interpretation of the identity in terms of information
numbers is that estimating u does not become harder if the parametric model
given by the kernel is enlarged to the mixture model. The technical implica-
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tion is that

˙ <yE l X , Y X q u YŽ .ž /u u , h

< <H zr2u ­r­ z log p X , Y z p X , Y z dh zŽ . Ž . Ž . Ž . Ž .u us y
<Hp X , Y z dh zŽ . Ž .u

­ 1 y t
<s log p X , Y z dh z .Ž .H u ž /­ t 2u ts0

˜It follows that the efficient score function l is the score function at t s 0 ofu , h

Ž .the one-dimensional ‘‘least favorable’’ submodel t ª p x, y for the prob-uqt, h t

ability measures h given byt

y1
h B s h B 1 y tr2u .Ž . Ž .Ž .t

The asymptotic normality and efficiency of the maximum likelihood estimator
û follow provided the regularity conditions of Theorem 2.1 hold.n

Ž . Ž . Ž .Conditions 2.5 and 2.6 are satisfied for any true parameter u , h . We0 0
shall check the other conditions under moment conditions on the true mixing
distribution h . The present approach does not seem to yield asymptotic0
efficiency without imposing some restrictions. In comparison Van der Vaart
Ž .1988a, c has shown that asymptotically efficient estimators exist in com-
plete generality, using the one-step method and extensive truncation. Even a
refined version of the present argument does not appear to yield an equally
strong result. It may be noted that already for the one-step estimators

Ž .considered in Pfanzagl 1990 some moment conditions appear necessary.
Maximum likelihood estimators may require stronger conditions.

COROLLARY 4.1. Suppose that the true mixing distribution h satisfies0
Ž 2 y5. Ž .H z q z dh z - `. Then maximum likelihood estimator for u is asymp-0

totically efficient.

ˆŽ .PROOF. Consistency of the maximum likelihood estimator u , h for theˆn n
product of the Euclidean and weak topology follows from Kiefer and Wol-

Ž .fowitz 1956 .
Ž .By applying Lemma L.23 of Pfanzagl 1990 repeatedly it follows that

there exists a constant C and a weak neighborhood V of the true mixing
distribution such that

l¡ < <log s` kql yz s lH z e dh zŽ . C , s - 1r20 ~ ž /4.1 sup FŽ . s` k yz sH z e dh zŽ .hgV 0 ¢ lC , s G 1r2.

Ž .If we write h s for the quotient in the supremum on the left side for k s 2h
˜ Ž . Ž . Ž .and l s 1, then l x, y s x y u y r2u h x q u y , and we immediatelyu , h h
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� 5 5 4obtain, with U s u : u y u - d ,0

C˜< < < < < <sup sup l x , y F sup log x q u y q x q u yŽ . Ž .Ž .u , h 2uugU hgV ugU

< < < < < <F C9 log x q x q y .Ž .
Ž . < <Condition 2.7 follows if log X , X and Y have a finite second moment under

Ž .u , h uniformly over u in a neighborhood of u . This is valid under our0 0
assumptions on h .0

˜� 4The class of functions l : u g U, h g V will be shown to be a Donskeru , h

Ž .class by verifying that it satisfies Ossiander’s condition 3.1 .
Ž .Consider first the class of functions s ª sh s as h ranges over V on theh

Ž .domain 0, ` ; R. We shall construct brackets by first constructing brackets
Ž x Ž . Ž .on the subdomains 0, 1r2 and 1r2, ` separately. In view of 4.1 we have

for every 1r2 - a - 1 and every h g V, letting Q denote less than equal up
to a constant,

< < < <sh s Q log s , s - 1r2,Ž .h

a 1yaa< < < <s h s y s h s Q s y s sup sh s 9 sup 2 sh sŽ . Ž . Ž . Ž .Ž . Ž .1 h 1 2 h 2 1 2 h h
s -s-s s -s-s1 2 1 2

< <1qalog s1a< <Q s y s , 0 - s - s - 1r2.1 2 1 2as1

Ž . w xThus the restrictions of the functions s ª sh s to an interval a, b ;h

Ž x a w x < <1qa a0, 1r2 belong to the space C a, b for M s log a ra . Similarly we haveM

< < < <sh s Q s , s G 1r2,Ž .h

< < < <s h s y s h s Q s y s s , 1r2 - s - s .Ž . Ž .1 h 1 2 h 2 1 2 2 1 2

Ž . w xThus the restrictions of the functions s ª sh s to an interval a, b ;h

w . 1 w x Ž .1r2, ` belong to the space C a, b for M s b. We now apply 3.3 with theM
Ž . Ž yi yiq1. w . w . w .partitions 0, 1r2 s j 2 , 2 and 1r2, ` s 1r2, 1 j j i, i q 1 toi i

see that for every W G 1ra ,
W1

4.2 log N « , sh s : h g V , L Q G K ,Ž . Ž . Ž .� 4Ž .h 2 ž /«

for a constant K depending only on a and W and the numbers
Ž .Wr Wq22q2 ayi< <log 2 Ž .Wr Wq2yi yiq1 2w wQ 2 , 2 ; i Q i , i q 1 ,Ž .. .Ý Ýy2 iaž /2i i

provided these numbers are finite.
We apply this inequality for the measure Q equal to the distribution of

Ž . Ž .X q u Y for a given fixed u and X, Y distributed according to u , h . By a0 0
straightforward calculation, the density at s of X q u Y given Z s z is

2 Ž Ž . w yi yiq1.bounded above by u ru z s exp yz 1 n u ru s. It follows that Q 2 , 20 0
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yi 2 2 Ž .Q 2 u ru H z dh z and the first series converges for every W. Similarly0 0
w . w . yk yk Ž .Q i, i q 1 is bounded above by Q i, ` Q i H z dh z and the second0

yk Ž .series converges for some W - 2 sufficiently close to 2 provided H z dh z0
- ` for some k ) 4. Both series are bounded uniformly in u g U.

Ž .This concludes the proof that 4.2 is valid for some W - 2 and Q equal to
the distribution of X q u Y, for a constant K not depending on u g U.
Alternatively this inequality can be formulated in terms of the functions
Ž . Ž . Ž .x, y ª x q u y h x q u y . Letting GG be the set of all such functions as hh u

Ž . Ž .varies over V and P , the distribution of X, Y under u , h , we have0 0 0

W1
log N « , GG , L P F K .Ž .Ž .u 2 0 ž /«

˜Still for a fixed u the functions l can be writtenu , h

x y u y
l̃ x , y s x q u y h x q u y .Ž . Ž . Ž .u , h hx q u y

˜Thus the class FF of functions l when h varies over V is obtained from GGu u , h u

by multiplication by a fixed, uniformly bounded function. It is not hard to see
that

log N « , FF , L P F log N « , GG , L P .Ž . Ž .Ž . Ž .u 2 0 u 2 0

Finally the class of interest FF s j FF can be seen to be Donsker by theu gU u

lemma below upon noting that

­
X˜ < <l x , y s y yh x q u q x y u y h x q u y yŽ . Ž . Ž .Ž .u , h h y h­u

22< <Q log x q u y q x q u y .Ž . Ž .
The proof is complete, because the right side is bounded by a multiple of
< < 2 2 2log x q x q y , which is square integrable. I

LEMMA 4.2. Suppose that for every u in a bounded interval in R a class
� 4FF s f : h g V of measurable functions is given such that for some W - 2u u , h

and a constant K not depending on u

W1
log N « , FF , L P F K .Ž .Ž .u 2 ž /«

Moreover assume that for every u , u and h1 2

< < < <f y f F F u y u ,u , h u , h 1 21 2

for some function F with PF 2 - `. Then FF s j FF is P-Donsker.u u

PROOF. Choose an «-net of points u , . . . , u . The number of elements p1 p
Ž .can be chosen bounded by 2r« times the length of the interval. For every ui

w xform a collection of «-brackets l , u covering FF . The number of bracketsi, j i, j u i
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Ž Ž .W .can be chosen bounded by exp K 1r« . Now form the brackets

l y « F , u q « F .i , j i , j

5 5These have size bounded by 2 F « q « and as i and j range over all possible
values they cover FF. The total number of brackets is bounded by a multiple of
Ž . Ž Ž .W . Ž .2r« exp K 1r« . Hence 3.1 is satisfied. I

Ž .5. Errors-in-variables. Let the observations be a sample of pairs X , Yi i
with the same distribution as

X s Z q e,
Y s a q bZ q f ,

Ž .for a bivariate normal vector e, f with mean zero and covariance matrix S
Ž .and a random variable Z with distribution g , independent of e, f . Thus Yi

is a linear regression on a variable Z which is observed with error. Thei
Ž . Ž .parameter of interest is u s a , b and the nuisance parameter is h s S, g .

To make the parameters identifiable one can put restrictions on either S or g .
ŽIt suffices that g is not normal where a degenerate distribution is considered

.normal with variance zero . Alternatively it can be assumed that S is known
up to a scalar. We refer to the extensive literature on the model, reviewed in

Ž . Ž .Anderson 1984 and Bickel and Ritov 1987 . The second paper gives a
construction of an asymptotically efficient estimator of u by the one-step
method with estimated efficient score function.

We consider the case that S is a diagonal matrix with diagonal elements
s 2 and t 2 of which the ratio srt is known. This is called the restrictive

Ž .model in Bickel, Klaassen, Ritov and Wellner 1993 . The case that S is
known up to a scalar can be treated by the same method, but the formulas
will be longer. The density of the observations is

1 x y z 1 y y a y b z
p x , y s f f dg z .Ž . Ž .Hu , h ž / ž /s s t t

Ž . Ž . y2 y2Ž .Given u , S a sufficient statistic for g is c X, Y s s X q t Y y a b.u , S

Ž . Ž .The efficient score function for u , S can be computed as in 2.1 . We shall
only be interested in the components corresponding to a and b, which are
given by

yb X q Y y a
l̃ x , y s ,Ž .u , h < a 2 2 2t q s b

<yb X q Y y a Hzp X , Y z dg zŽ . Ž .u , S
l̃ x , y s .Ž .u , h < b 2 2 2 <Hp X , Y z dg zt q s b Ž . Ž .u , S

Ž .The unbiasedness condition 2.2 can be verified directly and takes the form

˜E l X , Y s 0,Ž .u , S , g u , S , g < a0 0 0 0 for every u , S , S , g , g .0 0 0˜E l X , Y s 0,Ž .u , S , g u , S , g < b0 0 0 0
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It is essential that the efficient score is also unbiased in S, which within the
context of Theorem 2.1 can therefore be treated in the same manner as
the mixing distribution g . The validity of the second equation depends on the
assumption that the ratio of the diagonal elements is the same for both S0
and S. This equation is not valid for the ‘‘unrestricted version’’ of the model.

The circumstance that the efficient score function for u is an actual score
function follows in a similar manner as in the frailty model. As in the
example of the paired exponential model, this has the interpretation that
the problem of estimating u does not become harder if the model given by the
kernel is enlarged to the mixture model. This was first noted by Bickel and

Ž .Ritov 1987 . Indeed

bs 2 ­˙ < < <E l X , Y z c X , Y s log p X , Y z .Ž . Ž . Ž .ž /u , S u < a u , S u , S2 2 2 ­ zt q b s

˜ Ž .By a similar argument as for the frailty model, it follows that l x, y andu , h < a
˜ Ž .l x, y are score functions at t s 0 for the one-dimensional submodelsu , h < b

t ª p defined by the probability measuresuqt, h t

tbs 2

h B s h B qŽ .t 2 2 2ž /t q b s

and
y12tbs

h B s h B 1 y ,Ž .t 2 2 2ž /ž /t q b s

ˆrespectively. To prove that the maximum likelihood estimator for u isn
asymptotically normal and efficient, it suffices to establish consistency and to
check the regularity conditions of Theorem 2.1.

Ž .COROLLARY 5.1. In the ‘‘restrictive’’ model where the ratio srt is known
Žsuppose that g possesses a finite absolute 11th moment and that s and0

.hence t are known to belong to a known compact interval bounded away from
Ž .zero and infinity. Then the maximum likelihood estimator for a , b is

asymptotically efficient.

Ž . Ž .PROOF. Conditions 2.5 and 2.6 are satisfied provided g has a finite0
second moment. For the verification of the other conditions it is useful to
rewrite

yb X q Y y a
y2 y2l̃ x , y s h s x q t y y a b ,Ž . Ž .Ž .u , h < b u , h2 2 2t q s b

for the function h given byu , h

Hz exp sz exp yz2r2s 2 y b 2 z 2r2t 2 dg zŽ . Ž .Ž .
h s s .Ž .u , h 2 2 2 2 2Hexp sz exp yz r2s y b z r2t dg zŽ . Ž .Ž .



A. VAN DER VAART876

Ž .Extending Lemma L.27 of Pfanzagl 1990 we can show that for every
Ž .h s S , g there exists a neighbourhood U around g in the weak topology0 0 0 0

such that
iŽ i.< < < <sup sup sup h s F C 1 q s , i s 0, 1, 2,Ž . Ž .u , h

5 5 5 5 ggUuyu -d SyS -d0 0

for a constant C depending only on h , d and U. As a first application this0
yields the bound

˜ 2 2< <sup sup sup l x , y F C 1 q x q y .Ž . Ž .u , h < b
5 5 5 5 ggUuyu -d SyS -d0 0

Ž 2 2 . 2 Ž . 2 2 2Since E X q Y is bounded by a multiple of Hz dg z q a q b q su , h
2 Ž .q t , condition 2.7 follows if g has a finite second moment.0

˜� 5 5 4The class of functions l : u y u - d , h g U can be shown to beu , h < b 0
Ž .Donsker with the help of 3.2 . Elementary calculations show that the partial

derivatives with respect to x and y of the first and second order are bounded
< < < <by a fourth degree polynomial in x and y . Precisely,
i˜ 4 4< < < < < <sup sup sup D l x , y F C x q y q 1 ,Ž . Ž .u , h < b

5 5 5 5 ggUuyu -d SyS -d0 0

Ž .for a constant C depending only on d and U. Thus we can apply 3.2 with the
2 Ž x Ž x 4partition R s D k y 1, k = l y 1, l and the constants M s k qk , l k , l

l4 q 1. The class is certainly Donsker if

k 4 q l4 q 1 P1r2 k y 1 - X F k , l y 1 - Y F l - `.Ž . Ž .Ý 0
k , l

This is certainly ensured by a finite absolute 11th moment of g .0
Suppose that this is true and that s and t are known to belong to an

ˆŽ .interval that is bounded away from zero. Then the consistency of u , h mayˆn n
Ž .be proved by the arguments of Kiefer and Wolfowitz 1956 , provided the true

Ž .parameter u , h is identifiable. The proof of asymptotic normality and0 0
ˆefficiency of u is complete. In

6. Scale mixture. Let f denote a probability density that is symmetric
about zero and consider the mixture model with kernel

1 x y u
<p x z s f .Ž .u ž /z z

In this example the mixture density is symmetric about u as well and one
may estimate u asymptotically efficiently with a fully adaptive estimator. See

Ž . Ž . Ž .Stone 1975 and Bickel 1982 . Alternatively, Van der Vaart 1988a con-
structs an efficient one-step estimator that takes the mixture form of the
underlying distribution into account. In this section it is shown that the full
maximum likelihood estimator is asymptotically efficient.

For simplicity it is assumed that the mixing distribution h is supported on
w x Ž .a fixed interval m, M ; 0, ` . This may be relaxed to moment conditions,

but the precise argument would have to take into account special properties
of the density f. Here we are interested to show that the conditions of
Theorem 2.1 are valid in fair generality. Let H be the set of all probability
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distributions on this interval. Assume that f is twice continuously differen-
tiable with finite Fisher information for location.

ˆŽ .Consistency of the sequence of maximum likelihood estimators u , h forˆn n
the product of the Euclidean and the weak topology can be proved by the

Ž .method of Kiefer and Wolfowitz 1956 . Since the model is fully adaptive in
Ž .the sense of Bickel 1981 , the efficient score function for u equals the

Ž .ordinary score function for u . Thus 2.4 is trivially satisfied. The unbiased-
Ž .ness 2.2 follows from the argument in the Introduction using the sufficient

Ž . < <statistic c X s X y u or can be verified directly. It suffices to verify theu

regularity conditions of the theorem.
Ž . Ž . Ž .Conditions 2.5 and 2.6 are satisfied for any u and h . For condition 2.70 0

we use the bound
X Xy2< <Hz f x y u rz dh z 1 f x y uŽ . Ž .Ž .˙< <l x s F sup .Ž .u , h y1 ž /m f zHz f x y u rz dh zŽ . Ž .Ž . z

Ž .Condition 2.7 is satisfied if the function on the right is square integrable
˙� 5 5uniformly in u in a neighbourhood of u . The class of functions l : u y u0 u , h 0

4 Ž .- d , h g H can be shown to be Donsker with the help of 3.2 . We have
Yy3< <­ Hz f x y u rz dh zŽ . Ž .Ž .

2˙ ˙l x F q l xŽ . Ž .u , h u , hy1­ x Hz f x y u rz dh zŽ . Ž .Ž .
2Y X1 f x y u 1 f x y u

F sup q sup .2 2ž / ž /f z f zm mz z

Ž . ` Ž xThus we may apply 3.2 with the partition R s D j y 1, j and con-jsy`

stants M equal to the maximum values of the function on the right-handj
Ž xside on the intervals j y 1, j .

The preceding estimates can be used for a variety of kernels. We close this
section with formal statements for two examples.

COROLLARY 6.1. If f is the normal or logistic density and the mixing
w x Ž .distribution is known to belong to a known interval m, M ; 0, ` , then the

maximum likelihood estimator for u is asymptotically efficient.

PROOF. For the normal kernel f the function fXrf is bounded in abso-
< < < Y <lute value by x and the function f rf can be bounded by a multiple of

Ž 2 . Ž . 2x q 1 . We can apply 3.2 with constants M s j . The seriesj

Ý j2P1r2 j y 1 - X F jŽ .0

is certainly finite if E X 6 is finite. This translates into a moment condition0
on h , which is certainly satisfied if h has compact support.0 0

For the logistic kernel both the score function fXrf and the function fYrf
Ž .are uniformly bounded. We may apply 3.2 with the constants M equal to 1.j

By the same argument the class of score functions is a Donsker class. I
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