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SHRINKAGE ESTIMATORS, SKOROKHOD’S PROBLEM

AND STOCHASTIC INTEGRATION BY PARTS

By Steven N. Evans1 and Philip B. Stark2

University of California, Berkeley

For a broad class of error distributions that includes the spherically

symmetric ones, we give a short proof that the usual estimator of the mean

in a d-dimensional shift model is inadmissible under quadratic loss when

d ≥ 3. Our proof involves representing the error distribution as that of

a stopped Brownian motion and using elementary stochastic analysis to

obtain a generalization of an integration by parts lemma due to Stein in

the Gaussian case.

Let X have a d-variate, spherically symmetric normal distribution with

mean vector θ. Stein (1956) showed that, for d ≥ 3, X is an inadmissible

estimator of θ under quadratic loss. Stein observed that X is dominated by

“shrinkage” estimators (1 − a/(b + ‖X‖2))X for a > 0 sufficiently small and

b sufficiently large. James and Stein (1961) showed that 0 < a < 2(d − 2)

and b = 0 suffice. Using the results of rather lengthy explicit calculations in

Brandwein and Strawderman (1978), Brandwein (1979) extended James and

Stein’s (1961) result to d-variate shift models for d ≥ 4 that have general

spherically symmetric error distributions with finite second moments. (In the

d-variate shift model, the distribution of the observation vector X is, under Pθ,

the same as Z+θ, where Z is a zero-mean random variable whose distribution

does not depend on θ.) A somewhat shorter proof was given in Brandwein and

Strawderman (1990) for the case d ≥ 5. Meanwhile, the proof in the normal

case had been simplified considerably by the “unbiased estimation of risk”

technique, which depends on a simple integration by parts identity for the

normal distribution [cf. Stein (1981)].

The following result, proved using elementary stochastic analysis to gener-

alize Stein’s lemma, establishes in a simple way that certain shrinkage estima-

tors dominate X when d ≥ 3 for a large class of error distributions, including,

as a special case, spherically symmetric ones. The result substantially extends

the class of distributions for which shrinkage estimators were known to dom-

inate X. Our majorizing estimators are of the form (1 − a/(1 + ‖X‖2))X for

a > 0 sufficiently small, but, with extra moment assumptions, a similar proof

works for estimators of the form (1 − a/‖X‖2)X.

Received April 1995; revised October 1995.
1Research supported by a Presidential Young Investigator Award and an Alfred P. Sloan Foun-

dation Fellowship.
2Research supported by a Presidential Young Investigator Award and grants from the NSF

and NASA.

AMS 1991 subject classifications. Primary 62C15, 62F10.

Key words and phrases. Admissibility, balayage, Brownian motion, location parameter,

quadratic loss, shift model.

809



810 S. N. EVANS AND P. B. STARK

Generalizations of Stein’s lemma for spherically symmetric distributions

have been established using classical calculus methods in Brandwein and

Strawderman (1991) and Cellier and Fourdrinier (1995), but it appears that

such methods cannot be extended to the class of error distributions consid-

ered here, which contains singular distributions supported on fractal sets of

nonintegral dimension.

Theorem. Let Z be a random variable taking values in R
d, d ≥ 3. Suppose

that Z is not almost surely 0, E[Z] = 0, E[‖Z‖2] < ∞ and

(1) E[‖Z+ θ‖2−d] ≤ ‖θ‖2−d, ∀ θ ∈ R
d.

(i) For sufficiently small a > 0,

(2) E[‖Z‖2] > E

[∥

∥

∥

∥

(

1 −
a

1 + ‖Z+ θ‖2

)

(Z+ θ)− θ

∥

∥

∥

∥

2]

for all θ ∈ R
d.

(ii) If the support of the distribution of Z is contained by the ball {z ∈

R
d: ‖z‖ ≤ A}, then any

a ∈

(

0, 2
(d− 2)

d

(

α
∗

2 + α∗

)6

E[‖Z‖2]

)

satisfies (2), where α
∗ is the unique positive root of

(d− 2)α6A2(1 + (2 + α)2A2)2 − d(2 + α)4 = 0.

(iii) If the support of the distribution of Z does not intersect the ball {z ∈

R
d: ‖z‖ ≤ A}, then any

a ∈

(

0, 2
(d− 2)

d
A2

)

satisfies (2).

Proof. (i) Inequality (2) is equivalent to the inequality

aE

[

‖Z+ θ‖2

(1 + ‖Z+ θ‖2)2

]

< 2E

[

Z · (Z+ θ)

1 + ‖Z+ θ‖2

]

for all θ ∈ R
d.

Let B be a standard d-dimensional Brownian motion starting at 0 ∈ R
d.

Recall that the potential kernel of B is given by

U(x,dy) = Γ(d/2 − 1)(2π)−d/2‖y− x‖2−d dy

[see, e.g., Proposition II.3.1 of Bass (1995)]. Rost’s (1971) solution of Sko-

rokhod’s problem for transient Markov processes establishes that condition

(1) is equivalent to the existence of a (possibly randomized) stopping time T

such that the distribution of BT is that of Z.
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Put Sr = inf{s ≥ 0: ‖Bs‖ = r}, and let Tn = T ∧ Sn ∧ n. By bounded

convergence,

E

[

‖BT + θ‖2

(1 + ‖BT + θ‖2)2

]

= lim
n→∞

E

[

‖BTn
+ θ‖2

(1 + ‖BTn
+ θ‖2)2

]

and

E

[

BT · (BT + θ)

1 + ‖BT + θ‖2

]

= lim
n→∞

E

[

BTn
· (BTn

+ θ)

1 + ‖BTn
+ θ‖2

]

.

For y ∈ R
d, « ∈ R and F: R

d → R any bounded Borel function, Girsanov’s

formula [e.g., Theorem IV.38.5 of Rogers and Williams (1987)] gives that

E[F(BTn
+ «yTn)] = E

[

exp(«y ·BTn
− 1

2
«

2‖y‖2Tn)F(BTn
)
]

.

If F is bounded and continuous with bounded and continuous first-order par-

tial derivatives, we can differentiate both sides of this equality with respect

to « at 0 to get

(3) E[y ·BTn
F(BTn

)] = E[y · ∇F(BTn
)Tn].

Equation (3) generalizes Stein’s lemma beyond the Gaussian case and is an

instance of “stochastic integration by parts.” See Section IV.41 of Rogers and

Williams (1987) for a discussion and references to the relevant literature.

Applying (3) repeatedly, with F(BTn
) = [(BTn

)i + θi]/[1 + ‖BTn
+ θ‖2] and

y the ith coordinate vector, then summing the results over i yields

E

[

BTn
· (BTn

+ θ)

1 + ‖BTn
+ θ‖2

]

= E

[

Tn

d+ (d− 2)‖BTn
+ θ‖2

(1 + ‖BTn
+ θ‖2)2

]

and so, by applying Fatou’s lemma to the right-hand side,

E

[

BT · (BT + θ)

1 + ‖BT + θ‖2

]

≥ E

[

T
d+ (d− 2)‖BT + θ‖2

(1 + ‖BT + θ‖2)2

]

.

We therefore need to find a > 0 such that

aE

[

‖Z+ θ‖2

(1 + ‖Z+ θ‖2)2

]

= aE

[

‖BT + θ‖2

(1 + ‖BT + θ‖2)2

]

< 2E

[

T

(

d+ (d− 2)‖BT + θ‖2

(1 + ‖BT + θ‖2)2

)]

≤ 2E

[

BT · (BT + θ)

1 + ‖BT + θ‖2

]

= 2E

[

Z · (Z+ θ)

1 + ‖Z+ θ‖2

]

(4)

for all θ ∈ R
d.

By bounded convergence,

θ 7→ E

[

‖BT + θ‖2

(1 + ‖BT + θ‖2)2

]
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is continuous, and

lim
θ→∞

‖θ‖2
E

[

‖BT + θ‖2

(1 + ‖BT + θ‖2)2

]

= 1.

By Fatou’s lemma,

θ 7→ E

[

T
d+ (d− 2)‖BT + θ‖2

(1 + ‖BT + θ‖2)2

]

is lower semicontinuous. As this function is strictly positive at each point, it

is bounded away from 0 on compacts. Again, by Fatou,

lim inf
θ→∞

‖θ‖2
E

[

T

(

d+ (d− 2)‖BT + θ‖2

(1 + ‖BT + θ‖2)2

)]

≥ (d− 2)E[T].

We may therefore find a > 0 such that (4) holds.

(ii) Fix α > 0. Observe that, for ‖z‖ ≤ A and ‖θ‖ ≥ (1 + α)A, we have

α

1 + α
‖θ‖ ≤ ‖z+ θ‖ ≤

2 + α

1 + α
‖θ‖,

and hence, for ‖θ‖ ≥ αA,

inf
‖z‖≤A

d+ (d− 2)‖z+ θ‖2

(1 + ‖z+ θ‖2)2

≥
(d− 2)(α/(1 + α))2‖θ‖2

(1 + ((2 + α)/(1 + α))2‖θ‖2)2

≥ (d− 2)

(

α

2 + α

)6
((2 + α)/(1 + α))2‖θ‖2

(1 + (α/(1 + α))2‖θ‖2)2

≥ (d− 2)

(

α

2 + α

)6

sup
‖z‖≤A

‖z+ θ‖2

(1 + ‖z+ θ‖2)2
.

On the other hand, for ‖z‖ ≤ A and ‖θ‖ < (1 + α)A, we have 0 ≤ ‖z + θ‖ ≤

(2 + α)A and so, for ‖θ‖ < (1 − α)A,

inf
‖z‖≤A

d+ (d− 2)‖z+ θ‖2

(1 + ‖z+ θ‖2)2

≥
d

(1 + (2 + α)2A2)2

≥
d

(2 + α)2A2(1 + (2 + α)2A2)2
(2 + α)2A2

≥
d

(2 + α)2A2(1 + (2 + α)2A2)2
sup
‖z‖≤A

‖z+ θ‖2

(1 + ‖z+ θ‖2)2
.
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Therefore,

inf
‖z‖≤A

d+ (d− 2)‖z+ θ‖2

(1 + ‖z+ θ‖2)2

≥

(

(d− 2)

(

α

2 + α

)6

∧
d

(2 + α)2A2(1 + (2 + α)2A2)2

)

sup
‖z‖≤A

‖z+ θ‖2

(1 + ‖z+ θ‖2)2
.

Note that the function

α 7→ (d− 2)

(

α

2 + α

)6

∧
d

(2 + α)2A2(1 + (2 + α)2A2)2

is maximized at α = α
∗ with the corresponding value being (d − 2) ×

(α∗/(2 + α
∗))6.

It only remains to note that since {‖Bt‖
2 − td}t≥0 is a martingale, it follows

from the monotone convergence theorem and Fatou’s lemma that

E[T] = lim
n

E[Tn] =
1

d
lim
n

E[‖BTn
‖2] ≥

1

d
E[‖BT‖

2],

and so (4) holds for the stated values of a.

(iii) From Fitzsimmons (1991) [see also Heath (1974)], we may suppose

that the stopping time T is of the form τC(U), where {C(u): 0 ≤ u ≤ 1} is a

decreasing family of finely closed sets such that C(u) ⊂ {z ∈ R
d: ‖z‖ ≥ A},

τC(u) = inf{t ≥ 0: Bt ∈ C(u)} and U is a random variable independent of B

that is uniformly distributed on [0, 1]. (A finely open set is one that a Brownian

motion requires strictly positive time to exit, when started at any point in the

set. A finely closed set is the complement of a finely open set.) From the strong

Markov property and the rotational invariance of B, we have

E[T|BT] ≥ E[SA|BT] = E[SA] =
A2

d
,

and so (4) holds for the stated values of a. 2

Remark 1. Condition (1) certainly holds if the distribution of Z is spher-

ically symmetric, since if σr is normalized surface measure on the sphere of

radius r, then

∫

‖x+ θ‖2−d
σr(dx) = r2−d ∧ ‖θ‖2−d

[see, e.g., equation II.3.6 of Bass (1995)]. However, spherically symmetric dis-

tributions are but few of the instances. As mentioned in the proof, condition (1)

is equivalent to Z having the same distribution as BT for some (possibly ran-

domized) stopping time T, so Z could have the exit distribution of Brownian

motion from a finely open domain containing 0, or mixtures of such distri-

butions. It follows from Fitzsimmons (1991) [see also Heath (1974)] that the
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distribution of Z is necessarily of this form. Spherically symmetric distribu-

tions arise just when the domains are balls centered at 0.

Remark 2. If Z1, . . . ,Zn are independent random variables, each of which

satisfies condition (1), and a1, . . . ,an ∈ R, then the linear combination a1Z1 +

· · · + anZn also satisfies condition (1), as a simple induction shows. This es-

tablishes that, in the d-variate shift model with repeated i.i.d. observations

{Xj}
n
j=1 and error distribution satisfying (1), the sample mean as an estima-

tor of the mean vector θ is dominated by estimators that “shrink” the sample

mean appropriately. For many distributions, maximum-likelihood estimators

do not make sense; for example, when the family of distributions generated

as θ varies is not dominated. Similarly, minimum-risk equivariant estima-

tors are often impossible to compute. Shrinking the sample mean is thus an

easy way to improve on the “naive” sample mean in some cases where more

sophisticated approaches fail to provide an “optimal” alternative. Of course,

when we have only one observation X, that observation is the minimum-risk

equivariant estimator of θ.

Remark 3. If Z1 and Z2 respectively satisfy the conditions in parts (ii)

and (iii) of the theorem and Z is a random variable whose distribution is a

mixture of those of Z1 and Z2, then we may take a to be the minimum of any

pair of values that “work” for Z1 and Z2, respectively. In particular, this ap-

proach yields an explicit value of a for any spherically symmetric distribution,

although it does not lead to results as refined as those previously obtained for

that special case. In the case that Z has the uniform distribution on the sur-

face of a sphere, the bound given in part (iii) of the theorem asymptotically

cannot be improved as d → ∞.
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