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SOME INEQUALITIES FOR SYMMETRIC CONVEX SETS
WITH APPLICATIONS

BY T. W. ANDERSON

Stanford University

Under appropriate conditions the probability of a convex symmetric
set decreases as the spread or scatter of the distribution increases. This
paper studies the conditions when the random vector has a symmetric
unimodal distribution.

1. Introduction. This paper is an extension and application of the
following theorem about the integral of a symmetric unimodal density over a

w Ž .xsymmetric convex set Anderson 1955 :

Ž .THEOREM Anderson . Let C be a convex set, symmetric about the origin.
Ž . Ž . Ž . Ž . Ž . � < Ž . 4Let f y G 0 be a function such that i f y s f yy , ii y f y G u is

Ž . Ž .convex for every u, 0 - u - ` and iii H f y dy - `. Then, for 0 F k F 1,C

1 f y q x dy F f y q kx dy.Ž . Ž . Ž .H H
C C

ŽThis theorem was deduced from the following lemma which was proved,
. pbut not stated explicitly . Let C and E be convex sets in R , symmetric about

�Ž . 4 �Ž . 4the origin. Then V E q x l C F V E q kx l C for 0 F k F 1. Herep p
� 4V ? indicates the volume of the set. These propositions have had manyp

Ž .consequences in probability and statistics; see Perlman 1990 for an informa-
tive exposition of some of them.

Such an inequality may be interpreted as indicating the effect on the
probability of a convex set, symmetric about the origin, of a change in the
location parameter of a symmetric unimodal density. The present paper is a
study of the effect of a change in spread or scatter of such a density. Suppose
the symmetric unimodal density is centered at the origin and y is linearly
transformed by an expansion or dilation. Under some conditions given below
the probability of the symmetric convex set C decreases. However, an exam-
ple is given to show that this inequality is not independent of the conditions.

One implication of the 1955 theorem was that the probability of a symmet-
ric convex set for a random vector normally distributed with mean 0 and
covariance S is greater than for a random vector normally distributed with

Žmean 0 and covariance matrix F if F y S is positive semidefinite. When Y
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has the covariance matrix S and X the covariance matrix F y S, the
conditional distribution of Y q X given X s x satisfies the condition of the

.1955 inequality. This inequality was extended to a more general class of
Ž .elliptically contoured densities by Fefferman, Jodeit and Perlman 1972 and

Ž .by Das Gupta, Eaton, Olkin, Perlman, Savage and Sobel 1972 ; the two sets
of authors applied Anderson’s inequality in different ways. While the general
result for elliptically contoured densities is almost a corollary of the basic
theorem in this current paper, a broader application can be made.

Among other applications in statistics of the 1955 theorem was the mono-
tonicity of power functions of tests of hypotheses concerning location parame-
ters, such as regression coefficients, in normal distributions. The current
theorem can similarly be applied to show the monotonicity of power functions
of tests concerning covariance matrices.

To motivate the basic result, consider the probability of a symmetric
convex set on the basis of a given distribution and compare that probability
with the probability of that set on the basis of a distribution more spread out.
Perhaps the simplest case is that of a random variable uniformly distributed
over a symmetric convex set compared with a random variable uniformly
distributed over the set stretched out in the direction of the first coordinate
axis.

p Ž . � < 4 Ž .XFor a set C in R let C x s y y g C, y s x , where y s y , . . . , y .1 1 p
For 0 F a F 1 and C and C two convex sets, define1 2

<2 a C q 1 y a C s y y s a u q 1 y a v, u g C , v g C .� 4Ž . Ž . Ž .1 2 1 2

� 4 p � Ž .4Let V C be the Lebesgue measure of C ; R , and let V C x be thep py1
Ž .Lebesgue measure of C x in the hyperplane y s x. We disregard sets of1

measure zero.

2. Inequalities for contents of symmetric convex sets.

THEOREM 1. Let E and C be convex sets, symmetric about the origin, such
that, for a scalar x,

3 E x y x« s E yx q x« ,Ž . Ž . Ž .1 1

Ž .Xwhere « s 1, 0, . . . , 0 . Let1

<� 44 E s y y s Fz, z g E ,Ž . k

where
k 0

5 F s , 0 F k F 1.Ž . 0 I py1

Then

6 V E l C x F V E l C kx .� 4 � 4Ž . Ž . Ž . Ž . Ž .py1 py1 k

Ž .PROOF. For a s k q 1 r2, the set

7 a E l C x q 1 y a E l C yx ; E l C kxŽ . Ž . Ž . Ž . Ž . Ž . Ž . Ž .k



INEQUALITIES FOR SYMMETRIC CONVEX SETS 755

Ž . Ž . Ž .since E and C are convex and E kx s E x y 1 y k x« . Hencek 1

8 V a E l C x q 1 y a E l C yx F V E l C kx .� 4 � 4Ž . Ž . Ž . Ž . Ž . Ž . Ž . Ž .py1 py1 k

Ž .Ž . Ž .Ž . �Ž .Ž .4 �Ž .Ž .4Since E l C yx s y E l C x , V E l C x s V E l C yx .py1 py1
Then

9 V E l C x F V a E l C x q 1 y a E l C yx� 4 � 4Ž . Ž . Ž . Ž . Ž . Ž . Ž . Ž .py1 py1

Ž . 1r n� 4by the Brunn]Minkowski theorem, which states that 1 y u V E qn 0
1r n� 4 1r n�Ž . 4u V E F V 1 y u E q u E for E and E convex and nonemptyn 1 n 0 1 0 1

n Ž . Ž .sets in R and 0 F u F 1. The theorem follows from 8 and 9 . I

ŽNote that the Brunn]Minkowski theorem has been applied to E s C l1
.Ž . Ž . Ž .Ž . Ž .E x y k y 1 x« , E s C l E yx q k q 1 x« with n s p y 1 and1 0 1

u s a .

COROLLARY 1. Let C be a convex set in R p, symmetric about the origin.
� Ž .4 � Ž .4Then V C x F V C kx for 0 F k F 1.py1 py1

PROOF. In Theorem 1 let E and E s FE be such that C ; E . Thenk k
Theorem 1 implies Corollary 1. I

Ž .This corollary also follows from a theorem of Prekopa 1971, 1973 , Rinott´
Ž . Ž .1976 and Brascamp and Lieb 1976 to the effect that the marginal integral
of a log-concave function is log-concave.

THEOREM 2. Let E and C be convex sets, symmetric about the origin.
Ž . Ž . Ž .Suppose 3 holds for almost every x. Define E by 4 and 5 . Thenk

� 4 � 410 kV E l C F V E l C .Ž . p p k

PROOF. We have

`

� 411 V E l C s V E l C x dx� 4Ž . Ž . Ž .Hp py1
y`

and

`

� 4V E l C s V E l C z dz� 4Ž . Ž .Hp k py1 k
y`

`

s k V E l C kx dx� 4Ž . Ž .H py1 k
y`12Ž .
`

G k V E l C x dx� 4Ž . Ž .H py1
y`

� 4s kV E l C . Ip
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If E is a sphere or, more generally, an ellipsoid with a principal axis along
Ž .the first coordinate, the property 3 holds for every x. The condition is

Ž .Xequivalent to the condition that if y s x, y , . . . , y g E, then2 p
Ž .X Ž .yx, y , . . . , y g E; that is, E is symmetric about y s 0. Inequality 102 p 1
can also be written as

� 4V E l C V E l CŽ .p p k
13 F .Ž . � 4V E V EŽ .p p k

If a random vector Y has the uniform distribution on E and Z has the
Ž . � 4 � 4uniform distribution on E , 13 is equivalent to Pr Y g C F Pr Z g C .k

The condition of symmetry of E implies that Y has the same distribution
Ž . Ž .as yY; hence EY s E yY s 0. The condition 3 for almost every x implies

Ž . Ž .further that Y , Y , . . . , Y has the same distribution as yY , Y , . . . , Y ;1 2 p 1 2 p
Ž .hence EY Y s E yY Y s yEY Y s 0, j s 2, . . . , p; that is, Y is uncorre-1 j 1 j 1 j 1

lated with Y , . . . , Y .2 p
Ž .The set E defined in 4 will be denoted as FE. The transformation F is ak

contraction. We now generalize Theorem 2 to a more general contraction. If

14 F s Hy1 DH,Ž .
Ž .where H is nonsingular and D is a diagonal matrix diag d , . . . , d such that1 p

d , . . . , d are real and d F 1, i s 1, . . . , p, we call F a diagonalizable con-1 p i
traction. Consider the three sets E, C, and E s FE s Hy1 DH E, each ofd
which is convex and symmetric about the origin. An equivalent model con-
sists of the sets EU s H E, CU s HC and EU s H E s DH E s DEU, each ofd d
which is convex and symmetric about the origin.

THEOREM 3. Let C and E be convex sets, symmetric about the origin.
Ž . Ž . U U UDefine E by 4 for F given by 14 . Let y s Hy and E s H E. Suppose Ed

is symmetric about each yU s 0 for which d - 1, j s 1, . . . , p. Thenj j

< <15 F V E l C F V E l C ,Ž . Ž . Ž .p p d

< < < < pwhere F s D s Ł d .is1 i

PROOF. We transform to EU, CU and EU s DEU and then transform backd
p Ž .to E, C and E . Note that D s Ł D with D s diag 1, . . . , 1, d , 1, . . . , 1 .d js1 j j j

Then application of Theorem 2 for each j for which d - 1 yields the Theo-j
rem 3. I

If

I 0 0jy1

16 R s ,Ž . 0 y1 0j
0 0 I py j

the condition that EU is symmetric about yU s 0 is that R EU s EU, j sj j
1, . . . , p. The set EU is said to be sign-invariant. An ellipsoid whose principal
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axes are in the directions of the coordinate axes is sign-invariant; a ball
meets the condition in every coordinate system. A rectangular parallelopiped
whose edges are parallel to the coordinate axes in the space of yU also meets
the condition. Note that if a set is sign-invariant it is symmetric about the
origin.

If E is a ball, we can use the singular-value decomposition for F:

17 F s PDQ,Ž .
Ž . 2 2where P and Q are orthogonal, D s diag d , . . . , d and d , . . . , d are the1 p 1 p

X X Žcharacteristic roots of FF or, alternatively, of F F d , . . . , d with d G 0 are1 p i
.the singular values of F .

COROLLARY 2. Let C be a convex set, symmetric about the origin; let E be a
ball; and let E s FE. If the singular values of F are less than or equal to 1,d
Ž .15 holds.

PROOF. Let EU s PXE s E, EU s PXE s DQ E s D E and CU s PXC,d d
Ž .each of which is convex and symmetric about the origin. Then V E l C sp

Ž U U . Ž . Ž U U .V E l C and V E l C s V E l C . The corollary follows from The-p p d p d
orem 3. I

Ž . Ž .REMARK 1. We now give an example to show that 6 and hence 15 are
not true for every convex C and E symmetric about the origin. For p s 2 let

Ž .E be an ellipse with major axis larger than the minor axis in the first and
third quadrant different from each coordinate axis, and let E s FE with1r2

1Ž .F s diag , 1, . . . , 1 . Suppose the maximum y -value in E is z and the1 12
Ž .corresponding y -value is z ) 0 ; then the maximum y -value in E is2 2 1 1r2

1 Ž .z and the corresponding y -value is z . The line from the origin to z , z1 2 2 1 22
U U U 1 U 1Ž .intersects the boundary of E at a point z , z with z - z , z - z ,1r2 1 2 1 1 2 22 2

Ž .that is, the length of the line segment to z , z in E is more than 2 times1 2
the length of this line segment intersected with E. Now construct C as a

Ž . Ž .narrow rectangle that includes z , z and yz , yz as interior points. If1 2 1 2
Ž . Ž .the width of C is small enough, V E l C ) 2V E l C . Alternatively, Cp p 1r2

Ž . Ž .can be an ellipse containing z , z and yz , yz with a large major axis1 2 1 2
and a small minor axis.

The import of this example is that some condition on E and F is needed for
the validity of the theorems just as in the case of the 1955 theorem the center
of E moves away from C along a ray.

Ž . Ž .REMARK 2. We now give an example to show that 6 and hence 15 are
not true for every convex sign-invariant E and every symmetric star-shaped

Ž .C. A set C is star-shaped if y g C implies k y g C, 0 F k F 1. Let p s 2.
�Ž . < < < < < 4 �Ž . < < < < < < < 4Let E s y , y y F 2, y F 1 and C s y , y y F y , y F 2 .1 2 1 2 1 2 2 1 1

1Ž .The set E is a rectangle, and C has the shape of a bow tie. In 5 let k s .2
�Ž . < < < < < 4 � 4 �Then E s y , y y F 1, y F 1 . Since V E l C s 6 ) V E l1r2 1 2 1 2 2 2 1r2

4 Ž .C s 2, inequality 6 is violated.
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3. Inequalities for densities. We use the inequalities in Section 2 to
obtain inequalities on integrals over sets.

THEOREM 4. Let C be a convex set, symmetric about the origin. Let
Ž . Ž . Ž . Ž . Ž .f y G 0 be a function such that the following hold: i f y s f yy ; ii for

� < Ž . 4 Ž . Ž .every u, 0 - u - `, y f y G u is convex; and iii H f y dy - `. Then, forC
Ž .F given by 14 ,

< <y1 y118 f y dy F F f F y dyŽ . Ž . Ž .H H
C C

Ž y1 U . Ž y1 U .if f H y s f H R y for each j for which d - 1 and I y D is positivej j
semidefinite.

u � < Ž . 4PROOF. For each u, 0 - u - `, the set E s y f y G u satisfies the
conditions of Theorem 3; hence

u < <y1 u� 419 g u s V C l E F h u s F V C l E ,� 4Ž . Ž . Ž .p p d

u � < Ž . 4where E s y f Fy G u . Definitions of the Lebesgue and Lebesgue]Stieltjesd
integrals show that

` `y1 y1< <F f F y dy y f y dy s y u dh u q u dg uŽ . Ž . Ž .Ž .H H H H
C C 0 0

20Ž .
`

s u d g u y h u .Ž . Ž .H
0

Integration by parts shows that

b b
21 u d g u y h u s b g u y h u q h u y g u du.Ž . Ž . Ž . Ž . Ž . Ž . Ž .H H

0 0

Ž . Ž .Since f y has a finite integral over C, bh b ª 0 as b ª ` and hence
Ž . Ž .bg b ª 0. Since the second term on the right-hand side of 21 is nonnega-

Ž .tive for every b, 18 results. I

Ž . � < Ž . 4A probability density f y for which the set y f y G u is convex for every
Ž . Ž .u, 0 - u - `, will be called unimodal; if in addition f y s f yy , the density

Ž . Ž . Ž .will be called symmetric unimodal. If f R y s f y , j s 1, . . . , p, we say f yj
Ž .is sign-invariant. Note that if f y is sign-invariant, it is symmetric. In

probability terms we can interpret Theorem 4 as stating that the probability
Ž .of a convex set, symmetric about the origin, is smaller for f y than for

< <y1 Ž . Ž y1 U .F f Fy if f H y is sign-invariant and I y D is positive definite.
We specialize Theorem 4 to elliptically contoured densities.

< <y1r2 Ž X y1 .THEOREM 5. Suppose Z and Z have densities L g z L z and1 2 1 1
< <y1r2 Ž X y1 . Ž .L g z L z , respectively, where g ? is monotonically nonincreasing.2 2
Let C be a convex set, symmetric about the origin. If L F L in the Loewner1 2
sense and L is nonsingular,1

� 4 � 422 Pr Z g C F Pr Z g C .Ž . 2 1
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PROOF. There exists a nonsingular matrix G such that L s GGX and2
L s GDGX, where D is diagonal with nonnegative diagonal elements. Since1

X X Ž . XGG y GDG s G I y D G is positive semidefinite, each diagonal element of
D is not greater than 1. Let ZU s Gy1Z , i s 1, 2. The densities of ZU and ZU

i i 2 1
Ž X . < <y1r2 Ž X y1 .are g z z and D g z D z , respectively. Then Theorem 5 follows from

Theorem 4. I

Ž .Fefferman, Jodeit and Perlman 1972 proved Theorem 5 without the
Ž .condition that g ? is monotonically nonincreasing. Their proof is based on

Ž .their theorem that if E is the unit sphere and F is given by 17 with D F I,
then the uniform surface measure of FC l E is not greater than that of

Ž .C l E. They used Theorem 2 of Sherman 1955 based on Anderson’s theo-
rem.

REMARK 3. We now give an example to show that Theorem 5 does not
hold for every symmetric star-shaped C even if the distribution is normal. Let

Ž X . Ž X . � < < < < <4p s 2, L s I and g z z s exp yz zr2 r2p . Let C s z z F z . Then2 2 1
UX U U 1� 4 � 4 Ž . Ž .Pr Z g C s 4 Pr 0 F Z F Z . Let Z s Z , Z s Z , Z . Then2 1 1 2 1 22

1 0U UX 423 L s EZ Z s - I,Ž . 1 0 1
and

� U 4 � U U 4Pr Z g C s 4 Pr 0 F Z F Z2 1

1 Us 4 Pr 0 F Z F Z s Pr Z g C ,� 4� 42 1 1r22

24Ž .

1� < < < < <4 � 4 � 4where C s z z F z . Since C ; C, Pr C F Pr C .1r2 2 1 1r2 1r22
Ž .Anderson 1955 showed Theorem 5 for Z and Z normally distributed. In1 2

the normal case the covariance matrices of Z and Z are L and L ,1 2 1 2
Žrespectively. Then Z has the distribution of Z q Y, where Y ; N 0, L y2 1 2

.L , and the result follows from Anderson’s theorem.1
If Z has an elliptically contoured distribution, then FZ has an elliptically

w Ž . xcontoured distribution. See Anderson 1993 , e.g., for a general discussion.
Suppose the vector Y is distributed as Xb q V, where X is a known non-
stochastic matrix, b is a parameter vector and V is an unobservable random
vector with an elliptically contoured distribution centered at 0. Then linear

Ž .estimators of b have elliptically contoured distributions. Eaton 1988 has
Ž .used Theorem 5 to show that the generalized least squares or Markov

estimator maximizes the probability of falling in any symmetric convex sets
Ž .in the class of linear unbiased estimators. Ali and Ponnapalli 1990 also

showed this result for ellipsoidal sets.

� < X y1 4REMARK 4. Define S s z z L z F k , i s 1, 2, with L F L in thei i 1 2
Ž . Ž . Ž . Ž .Loewner sense. Then f z s I z rV S , i s 1, 2, where I ? is the indexi S p i ?i

function, are elliptically contoured, and Theorem 5 holds. The fact that
Ž . w Ž .xS ; S raises the question of whether 22 or, equivalently, 13 would be1 2

Ž . Ž . � 4true for f z s I z rV S for any symmetric convex sets such that S ; S .i S p i 1 2i
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Ž .The following example shows that 22 does not hold for arbitrary symmetric
Ž . Ž . Ž .convex sets. Let S be the square with vertices 1, 1 , y1, 1 , y1, y1 ,1

Ž . Ž . Ž . Ž . Ž .1, y1 ; let S be the hexagon with vertices 1, 1 , y1, 1 , y2, 0 , y1, y1 ,2
Ž . Ž . Ž . Ž .1, y1 , 2, 0 ; and let C be the rectangle with vertices 2, a , y2, a ,
Ž . Ž . � 4 � 4 � 4 �y2, ya , 2, ya . Then V S s4, V S s6, V S lC sa and V S l2 1 2 2 2 1 2 2
4 Ž . Ž .C s 2 a 4 y a . Then 22 does not hold for 0 - a - 1.

4. Monotonicity of a power function . Consider using a sample
Ž . Ž .x , . . . , x s X of size n from N 0, S to test the null hypothesis H: S s I1 n
against alternative S ) I. The density of X is

1 1
Xy1<25 f X S s exp y tr S XX ,Ž . Ž . pnr2 n r2 ž /2< <2p SŽ .

y1 X n X y1 Ž .XŽ y1 .Ž .which is a function of tr S XX s Ý x S x s vec X I m S vec X .as1 a a
X Ž .Let S s PDP , where P is orthogonal, D s diag d , . . . , d and d G ??? G d1 p 1 p

X Ž < .are the characteristic roots of S. The density of Y s P X is f Y D , the
1 X 1y1 n p 2exponent of which is y tr D YY s y Ý Ý y rd . It follows fromas1 is1 ia i2 2

Theorem 5 that the probability of Y falling in some symmetric convex set
decreases if one or more of d , . . . , d increases. A test of H for which the1 p
acceptance region is a symmetric convex set in X has a power function that is
monotonically increasing in each ordered characteristic root of S. In fact, the
result holds if the density of X has the form

< <yn r2 y1 X26 S g tr S XX .Ž . Ž .

Ž .THEOREM 6. Suppose the density of the p = n random matrix X is 26 ,
and suppose that the acceptance region of a test of the null hypothesis H:
S s I is convex in X and symmetric about the origin. Then the power function
is an increasing function of each ordered characteristic root of S.

Ž .Anderson and Das Gupta 1964 proved the monotonicity of the power
function of a test whose acceptance region is monotonic in the characteristic
roots of XXX. Some tests that are both monotonic in the sample roots and
convex in X are based on tr XXX s Ý p c and c , where c ) c ) ??? ) cis1 i 1 1 2 p
are the characteristic roots of XXX. However, a test based on c alone is notp
convex in X.

The test procedures that depend on the characteristic roots of XXX are
invariant with respect to transformations XU s PX, where P is orthogonal;
this transformation leaves the null hypothesis invariant. An acceptance
region that is symmetric and convex in X cannot necessarily be expressed in
terms of the characteristic roots. Hence, the conditions of Theorem 6 are more

Ž .general than those of Anderson and Das Gupta 1964 .
Anderson and Das Gupta also considered testing the hypothesis S s S1 2

Ž < . Ž < .on the basis of observations X and X on f X S and f X S , respectively.1 2 1 2
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X Ž X .y1If a test is monotonic in the characteristic roots of X X X X the power1 1 2 2
function is monotonic in the characteristic roots of S Sy1. Theorem 6 can be1 2
extended to this problem.

5. Equality in Corollary 1. In this section we study the implications of
equality in Corollary 1.

THEOREM 7. Let C be a convex set in R p, symmetric about the origin. Then
� Ž .4 � Ž .4 w .V C x s V C x for some x g 0, x impliespy1 2 py1 1 1 2

27 C x s C x y zŽ . Ž . Ž .2 x

w xfor some z for every x g yx , x .x 2 2

The proof of Theorem 7 is based on the part of the Brunn]Minkowski
theorem that states that equality of the volumes implies E s E q z for1 0

Ž .some z. First, 27 is shown for x s x . Then use of the Brunn]Minkowski1
Ž . Ž . Ž . Ž . Ž .theorem for u s x q x r x q x , E s C yx and E s C x yields 271 2 1 2 0

for other x. The details are left to the reader.
The meaning of Theorem 7 is that if two parallel sections of C have equal

areas, C is a cylinder set within the region defined.
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