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We discuss maximum likelihood methods for fitting a broad class of
multivariate categorical response data models. In particular, we derive
the large-sample distributions for maximum likelihood estimators of pa-
rameters of product-multinomial generalized log-linear models. The
large-sample behavior of other relevant likelihood-based statistics such as
goodness-of-fit statistics and adjusted residuals is also described. The
asymptotic results are derived within the framework of the constraint
specification, rather than the more common freedom specification, of the
model. We also outline an improved fitting algorithm for computing
parameter maximum likelihood estimates and other relevant statistics.
The broad class of multivariate categorical response data models, which
are referred to as generalized log-linear models, can imply structure on

Žseveral response configuration distributions e.g., joint and marginal dis-
.tributions . These models, which include as special cases log-linear, logit

and cumulative-logit models, enjoy a wide breadth of application including
longitudinal, rater-agreement and crossover data analyses.

1. Introduction. In this paper, we consider maximum likelihood meth-
ods for a broad class of models useful for describing multivariate categorical
response data. These models, which are referred to as generalized log-linear

Ž . Žmodels GLLM’s , can be specified in terms of the vector of cell probabilities
.p as

1.1 C log Ap s Xb , samp p s 0,Ž . Ž .

where the matrices C, A and X are of a certain nonrestrictive structure and
Ž . Žsamp p s 0 is a multinomial sampling constraint e.g., p91 y 1 s 0 for

. wfull-multinomial sampling . Standard log- and logit-linear models Bishop,
Ž . Ž .xFienberg and Holland 1975 ; Agresti 1990 , cumulative and adjacent-

w Ž .xcategory logit models for marginal distributions Lang and Agresti 1994
w Ž .xand global cross-ratios models Dale 1986 are all special cases of these

generalized log-linear models.
When given an opportunity to analyze multivariate categorical response

data, it is often desirable to have at one’s disposal a broad class of models
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that can be used to simultaneously answer several questions about the
multivariate distributions. For instance, we may wish to describe both the

wfirst-order marginal distributions and the joint distributions cf. Lang and
Ž .xAgresti 1994 . More generally, we may wish to simultaneously describe

several different response configuration distributions; a response configura-
tion is simply a collection of response variables. Generalized log-linear models
are well suited for this simultaneous modeling. They can imply structure on
several response configuration distributions and, hence, enjoy a wide breadth
of application including longitudinal, rater-agreement and crossover data
analyses.

Several papers written in the late 1950’s and early 1960’s by Aitchison and
w Ž . Ž . Ž .xSilvey e.g., Aitchison and Silvey 1958, 1960 ; Silvey 1959 ; Aitchison 1962

laid out much of the foundation for the results produced in this paper. In
those seminal papers, Aitchison and Silvey discussed likelihood methods
useful for testing nonstandard hypotheses. They introduced a terminology
useful for describing two different ways of specifying a model}freedom
equation and constraint equation specifications. As a simple example, a
log-linear model can be used to easily test the hypothesis that two binary

Ž . Žvariables A and B are stochastically independent. Let p s Pr A s i,i j
. Ž .B s j , i, j s 1, 2. Setting h s log p , the parameter space for the multino-

mial log-linear model of independence can be written as

2 2
3v s p : h s Xb , p s 1, b g R ,Ý ÝI i j½ 5

is1 js1

where the design matrix X can be specified as

1 1 1
1 1 0X s .
1 0 1
1 0 0

Aitchison and Silvey call this specification the freedom equation specification.
� 4The parameters p and b are called model and freedom parameters,i j

respectively. Alternatively, the independence model could be specified in
terms of constraint equations, namely,

2 2

v s p : h q h y h y h s 0, p s 1 .Ý ÝI 11 22 12 21 i j½ 5
is1 js1

Several authors have discussed maximum likelihood methods for fitting
wcertain models in the class of generalized log-linear models e.g., McCullagh

Ž . Ž . Ž .xand Nelder 1989 ; Dale 1986 ; Becker and Balagtas 1993 . In particular,
they considered models for bivariate categorical data that implied structure
on both the joint distributions and the marginal distributions. Their methods
do not extend easily to the general multivariate response case. This is due in
part because they use the freedom equation specification of the model and
their method requires writing the joint probabilities as explicit functions of
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the freedom parameters. This is generally not an easy task since, for exam-
ple, marginal models utilize marginal probabilities, rather than joint proba-

w Ž .xbilities to which the likelihood refers Laird 1991 .
Ž . Ž .Haber 1985a, b and Haber and Brown 1986 considered maximum

Ž .likelihood fitting of models of the form 1.1 using the constraint specification
of the model. They were thereby able to avoid the difficulty inherent in the
reparameterization in terms of freedom parameters. However, their fitting
algorithm was only practical for relatively small tables of counts and they did
not describe the large-sample behavior of the maximum likelihood estimators.

Ž .In this paper, we explore maximum likelihood ML methods for fitting the
broad class of generalized log-linear models. In particular, we derive the
large-sample distributions of model parameter maximum likelihood estima-

Ž .tors MLE’s . We explore this asymptotic behavior and the asymptotic behav-
ior of other relevant statistics such as goodness-of-fit statistics and adjusted
residuals within the framework of constraint, rather than freedom, specifica-

Ž .tions of the models. In an appendix of Gilula and Haberman 1986 , a general
Ž .expression, first introduced by Aitchison and Silvey 1958 , for the asymptotic

behavior of restricted multinomial estimators is given. In this paper, we give
an important modification of Gilula and Haberman’s expression: We parame-
terize the model in such a way so that the multinomial sampling constraints
can be accounted for explicitly. More specifically, we prove that for this class
of models the Jacobian matrix of the multinominal sampling constraints is

Ž .orthogonal with respect to a simple inner product to the Jacobian matrix of
the remaining model constraints. The resulting expressions we give for the
asymptotic distributions of the restricted MLEs are convenient for several

Ž .reasons, including: 1 it simplifies the expressions for the asymptotic distri-
Ž .butions of certain statistics, 2 a comparison of asymptotic behavior under

Ž .different sampling schemes e.g., Poisson, multinomial, product-multinomial
Ž .is straightforward and 3 expressions for goodness-of-fit statistics such as the

Wald statistic can be simplified and easily shown to be invariant to the
sampling scheme.

In Section 2, we describe in detail the sampling schemes and generalized
Ž .log-linear models that will be used throughout this paper. The restricted

likelihood equations involving Lagrange multipliers are investigated in Sec-
tion 3. We show that for a broad class of models the equations can be
simplified due to the orthogonality of the Jacobian matrices for the multino-
mial sampling constraints and the remaining model constraints. In Section 4,
the asymptotic distribution of the cell probability estimators and Lagrange
multipliers is derived within the framework of a constraint model. The

Ž .technique used is similar to that of Aitchison and Silvey 1958 . For practical
and mathematical reasons, it is often better to reparameterize the likelihood

Ž .in terms of log expected counts rather than joint probabilities. In Section 5,
we show that the ML estimators for the joint probabilities can be obtained by

Ž .solving likelihood equations reparameterized in terms of log expected counts .
The asymptotic behavior of these reparameterized estimators is also investi-
gated. The form and large-sample behavior of many relevant model assess-
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ment statistics, including goodness-of-fit statistics and adjusted residuals, is
investigated in Section 6. Section 7 briefly outlines an improved fitting
algorithm for finding the parameter ML estimates and other relevant statis-

Ž .tics. The algorithm, which is a modification of Haber’s 1985b algorithm, has
several positive features. For example, it uses a parameterization that en-
ables us to avoid out-of-range iterate estimates. We also argue that this
algorithm can be used for relatively large problems since the matrix that is to
be inverted in the Newton]Raphson iterative scheme is of a very special
form; a form that is simply inverted using well-known numerical techniques.
A summary and discussion is given in Section 8. As a matter of style, most of
the longer andror less germane proofs are left out of the body of the paper;
they can be found in the Appendix.

Ž .2. Setup and notation. We assume that Y s vec Y , Y , . . . , Y , where1 2 K

Y s Y , . . . , Y 9 ; independent Mult N , p , k s 1, . . . , K ,Ž . Ž .k k1 k r k k

Ž .and the probability vector p s p , . . . , p 9, k s 1, . . . , K. That is, thek k1 k r
random vector Y is a product-multinomial random vector, each component
Ž .e.g., Y being an r-dimensional multinomial vector. The symbol p willk

� 4represent the concatenation of each of the p , namely,k

p s vec p , p , . . . , p .Ž .1 2 k

The rK = 1 probability vector p satisfies the multinomial sampling con-
straint

K
Xsamp p s 1 p y 1 s 0,Ž . [ r Kž /ks1

where [ is the direct-sum operator. For convenience, we will set rK ' s, so
that the length of p is s.

The diagonal matrix N is defined to be [KN I , where the matrix I is thek r r1
r = r identity matrix. The total sample size is n s ÝKN . In the following1 k
text we make use of the parameters m s Np and j s log Np. The symbol Dx
denotes the diagonal matrix with the components in x on the diagonal.

Our objective is to make model-based inferences about the probability
Ž .vector p or m or j based on a realization y of the product-multinomial

vector Y. We begin by specifying a generalized log-linear model.

w ŽM .x2.1. Model specification. We will assume that a model v with model
parameter space v ŽM . can be specified as

2.1 v ŽM . s p : C log Ap s Xb , samp p s 0 ,� 4Ž . Ž .
where X is some full-rank design matrix and the vector b is an unconstrained

Ž .regression or freedom parameter. The model space

VŽM . s p : samp p s 0� 4Ž .
will be referred to as the saturated model space.
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There is an equivalent model specification that uses so-called constraint
w Ž .xequations Aitchison and Silvey 1958, 1960 . It is

v ŽM . s p : U9C log Ap s 0, samp p s 0� 4Ž .
2.2Ž .

s p : f p s 0, samp p s 0 .� 4Ž . Ž .

The matrix U is assumed to be of full column rank u and has range space
Ž .that spans the space orthogonal to the range space of X; in symbols, R U s

Ž .HR X .

2.2. Generalized log-linear model assumptions. To emphasize the simul-
taneous modeling aspect of generalized log-linear models, we will assume
that z different groups of response configurations are to be explicitly mod-
eled. For instance, suppose V and V are two categorical responses. We may1 2
want to simultaneously model the joint and marginal distributions corre-

�Ž .4sponding to the following two groups of response configurations: V , V and1 2
�Ž . Ž .4V , V . In general, we will assume that the model matrices satisfy the1 2
following five nonrestrictive assumptions:

ASSUMPTION A1. C s [z C , C s [K C and C ' C is a q rK =i i ik ik i1 iis1 ks1
Ž .m rK contrast, zero or identity matrix z G 1 .i

Ž X X . KASSUMPTION A2. A9 s A , . . . , A , A s [ A and A ' A is1 z i ik ik i1ks1
m rK = r.i

ASSUMPTION A3. X s [z X , where X is a full column rank designi iis1
Ž .matrix q = p .i i

Ž . Ž K .ASSUMPTION A4. If C s I , then R X = R [ 1 .i q i q r Kks1i i

Ž . Ž . y1ASSUMPTION A5. The s = u matrix F p '  f p 9r p s A9D C9U is ofA p

full column rank u for all p g VŽM ..

Assumptions A1]A3 imply that the models for the z groups of response
configuration distributions may have different forms, but that for a particular
group of response configurations the same model is used across the K levels
of the covariate. For the special case when C is an identity matrix, assump-i
tion A4 implies that there must exist a set of columns in X that spans ai
space containing the range space of [K 1 . For standard log-linearq r Kks1 i

models, this condition is met whenever the model includes a parameter for
each of the K multinomials. In general, this assumption will allow us to
equivalently fit the model assuming Poisson, rather than multinomial, sam-

Ž .pling. The last assumption, A5, implies that the constraints f p s
U9C log Ap s 0 are nonredundant. A model satisfying all five assumptions
Ž .A1]A5 is said more simply to satisfy Assumptions A.
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3. Solution to the likelihood equations. In this section, we find the
restricted likelihood equations and show that for models that satisfy Assump-
tions A, the likelihood equations can be simplified.

Ž .Let the kernel of the multinomial log likelihood be denoted by

3.1 l ŽM . p ; y s y9 log p , p g VŽM . .Ž . Ž .
Our objective is to find the estimate p in v ŽM . : VŽM . that maximizes theˆ

Ž .multinomial log likelihood in 3.1 . That is, we must find

3.2 p g v ŽM . 2 sup l ŽM . p ; y s sup y9 log p s y9 log p .Ž . Ž .ˆ ˆ
ŽM . ŽM .pgv pgv

Ž .Assuming that p is unique, Aitchison and Silvey 1958 show that it isˆ
consistent and that it is the solution to the restricted likelihood equations

K
  

XŽM .l p ; y y t9 1 p y 1 q l9f pŽ . Ž .Ž .[ r K½ 5ž / p  p  pks1

s 0f pŽ .
K

X1 p y 1[ r Kž /ks1

or, after differentiating,

K

y1D y y 1 t q F p lŽ .[p rž /ks1

f pŽ .3.3 s 0,Ž .
K

X1 p y 1[ r Kž /ks1

where t and l are K = 1 and u = 1 vectors of undetermined multipliers
Ž . Ž . Ž . Ž .corresponding to f p s 0 and samp p s 0, respectively; F p s  f p 9r p

Ž .is the s = u matrix of derivatives see Assumption A5 .
The following lemma will be used to show that for models that satisfy

Ž .Assumptions A, the solution to 3.3 can be found using a simpler set of
equations. The proof can be found in the Appendix.

Ž .LEMMA 3.1. If F p is the derivative matrix corresponding to a model that
satisfies Assumptions A, then

K
X ŽM .p F p s 0, ;p g V .Ž .[ kž /ks1

Ž . KThis lemma states that the Jacobian matrices F p and [ 1 arerks1
Ž K X . Ž . K Xorthogonal with respect to D }that is, [ 1 D F p s 0}since [ 1p r p rks1 ks1
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Ž K X . y1can be written as [ p D . This orthogonality proves to be importantk pks1
Ž .for several reasons. For example, it follows that the s = u q K matrix

F p ,  samp p 9r pŽ . Ž .
K

s F p , 1 is of full column rank u q K .Ž . [ r
ks1

3.4Ž .

Notice that this means Assumptions A imply that the constraints in
w Ž . Ž .xf p , samp p s 0 are nonredundant. Another consequence of this orthogo-
nality is that the following theorem holds. The proof can be found in the
Appendix.

Ž .THEOREM 3.1. Suppose that the model can be specified as in 2.1 or
ˆŽ . Ž .equivalently 2.2 and that it satisfies Assumptions A. Let vec p, l , t be theˆ ˆ

Ž .solution to the s q u q K equations in 3.3 . It follows that the subvector
ˆŽ .vec p, l is the solution to the following reduced set of s q u equations:ˆ

y1D y y N1 q F p lŽ .p s3.5 s 0.Ž .
f pŽ .

Theorem 3.1 shows that, for the generalized log-linear models that satisfy
Assumptions A, the multinomial sampling constraints can be accounted for
explicitly. Not only does this simplify our search for the MLE, but also results
in important simplications of several statistics and the specification of their
asymptotic distributions.

4. Asymptotic behavior of multinomial estimators. All of the
asymptotics in this section hold as n ª ` in such a way so that

K

y14.1 n N ª W s w I , as n ª `,Ž . [ k r
ks1

where 0 - w F 1, k s 1, . . . , K. That is, the relative sample size N rnk k
converges to some positive constant w as n, the total sample size, gets large.k

Ž .The number of independent multinomials or covariate levels K is consid-
ered fixed. For notational convenience, we will let the symbol p represent
both an arbitrary element of some set v ŽM . : VŽM . and the true unknown
parameter value. Which of the two the symbol stands for should be clear from
the context. As an example, we might say that the difference between the
sample proportions Ny1 Y s p and the true parameter p converges in proba-
bility to zero.

Define the multinomial ‘‘score’’ vector to be

s p ; y s Dy1 y y N1Ž . p s

and notice that

4.2 ny1 s p ; Y s ny1 Dy1 Y y ny1 N1 s Dy1 ny1 N p y p ª 0Ž . Ž . Ž .p s p P
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and

 s p ; Y Y Ny1 YŽ .y1 y1 y1n s yn diag s yn N diag2 2ž / ž / p9 p p

y1 y1 y1r2s yn N D q O nŽ .p P

4.3Ž .

s yWDy1 q O ny1r2 ,Ž .p P

Ž y1r2 . y1 Ž .since p y p s O n and n N s W q o 1 . Also,P

 2s p ; Y  diag Yrp2Ž . Ž .y1 y14.4 n s yn s O 1 ,Ž . Ž .P p  p9  p

y1 Ž .since n Y s O 1 .P
Ž . Ž .The constraint function f p is continuous with derivative F p which, by

Ž . Ž .A5, is of full column rank u. Finally, the matrix  F p r p9 s O 1 . These
Ž . Ž . Ž .properties of f, along with properties 4.2 , 4.3 , and 4.4 , imply that the

Ž .regularity conditions of Aitchison and Silvey 1958 hold. In that paper, they
ˆŽ . Ž .showed that under these regularity conditions, the ML solution p, l to 3.5ˆ

w ŽM .xexists with probability going to 1. Moreover, assuming that model v
ˆholds, p and l are consistent estimators of p and 0 in the following sense:ˆ

4.5 p y p s O ny1r2 ,Ž . Ž .ˆ P

ˆ 1r24.6 l s O n .Ž . Ž .P

More specifically, the joint limiting distribution of these estimators is
described in the next theorem. The proof, which uses the technique of

Ž .Aitchison and Silvey 1958 , allows us to avoid reparameterizing the probabil-
ity vector p in terms of the freedom parameters b. This is an important
modification to standard asymptotic arguments, as this reparameterization is

w Ž .not usually possible for this general class of models cf. Laird 1991 ; Becker
Ž .xand Balagtas 1993 .

THEOREM 4.1. Suppose the model satisfies Assumptions A and that the
ˆŽ . Ž .vector vec p, l is the solution to the multinomial likelihood equations 3.5 .ˆ

1r2 y1r2ˆw Ž . xIt follows that the limiting distribution of vec n p y p , n l is multi-ˆ
variate normal with mean vector zero and variance]covariance matrix

K
y1 Xy1 y1 y1D y D W F F9D W F F9D y p p W 0Ž . [p p p p k k

ks1 ,
y1y10 F9D W FŽ .p

Ž .where F s F p .
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Ž .PROOF. The limiting distributions of properly standardized estimators p̂
ˆ Ž .and l can be found using the technique of Aitchison and Silvey 1958 . Our

brief outline of the technique makes use of the following relationships:
y1 y1ˆn s p ; Y q F p n lŽ . Ž . Ž .ˆ ˆ

4.7 s 0,Ž .
f pŽ .ˆ

 s p ; YŽ .y1 y1 y1 y1n s p , Y s n s p ; Y q n p y p q O nŽ . Ž . Ž . Ž .ˆ ˆ P p94.8Ž .
s ny1 s p ; Y y WDy1 p y p q O ny1 ,Ž . Ž . Ž .ˆp P

4.9 f p s f p q F p 9 p y p q O ny1 ,Ž . Ž . Ž . Ž . Ž . Ž .ˆ ˆ P

4.10 F p s F p q O ny1r2Ž . Ž . Ž . Ž .ˆ P

and

ˆ ˆ ˆl l l
y1r2 y1r2 y14.11 F p s F p q O n O n s F p q O n .Ž . Ž . Ž . Ž . Ž . Ž . Ž .ˆ P P Pn n n

Ž . Ž .By 4.7 ] 4.11 , the likelihood equations evaluated at the MLE can be
written as

y1 y1ˆn s p ; Y q F p n lŽ . Ž .ˆ ˆ0 s
f pŽ .ˆ

y1 y1 y1ˆn s p ; Y y WD p y p q F p n lŽ . Ž . Ž .ˆp y1s q O n .Ž .PF p 9 p y pŽ . Ž .ˆ
That is,

y1 y1n s p ; Y WD yF p p y pŽ . Ž . ˆp y1s q O nŽ .Py1ˆ0 yF p 9 0 n lŽ .
or, multiplying both sides of this equation by n1r2,

y1r2n s p ; YŽ .
0

y1 1r2WD yF p n p y pŽ . Ž .ˆp y1r2s q O n .Ž .Py1r2ˆyF p 9 0 n lŽ .

4.12Ž .

However,

ny1r2s p ; Y s n1r2 ny1s p ; Y s n1r2 Dy1 ny1 N p y pŽ . Ž . Ž .Ž . p

y1 y1r2 1r2 1r2s D n N N p y pŽ .p

s Dy1 W 1r2 N1r2 p y p q o 1Ž . Ž .p P

and so, by the multivariate central limit theorem and Slutsky’s theorem, it
y1r2 Ž .follows that n s p; Y has a multivariate normal limiting distribution

with mean vector zero and variance]covariance matrix equal to the asymp-
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y1 1r2 1r2Ž .totic variance]covariance matrix of D W N p y p . Specifically, thep

asymptotic variance]covariance matrix is
y1 1r2 1r2 y1 1r2 1r2 1r2 y1avar D W N p y p s D W avar N p y p W DŽ . Ž .p p p

K
Xy1 1r2 1r2 y1s D W D y p p W D[p p k k p

ks1

K
Xy1 y1 y1s D W y D p p D W[p p k k p

ks1

K
Xy1s D W y 1 1 W.[p r rž /ks1

Ž .Therefore, in view of 4.12 , the joint limiting distribution of the estimator
1r2 y1r2ˆw Ž . xvec n p y p , n l is multivariate normal with mean vector zero andˆ

variance]covariance matrix
Ky1y1 Xy1WD yF pŽ . WD y 1 1 W 0p [p r rž /ks1yF p 9 0Ž .

0 04.13Ž .

=

y1y1WD yF pŽ .p ,
yF p 9 0Ž .

which can be shown to equal
K

y1 Xy1 y1 y1D yD W F F9D W F F9D y p p W 0Ž . [p p p p k k
ks14.14 ,Ž .

y1y10 F9D W FŽ .p

Ž .where F s F p . I

Ž .The block diagonal form of the asymptotic variance 4.14 implies that the
ˆtwo statistics p and l are asymptotically independent. This independence isˆ

w Ž .ximportant since the Lagrange-multiplier statistic Silvey 1959 , which is a
ˆquadratic form in l , is used to assess the goodness-of-fit of the model.

5. Solution to the reparameterized likelihood equations. In this
ŽM . Ž .section, we show that when the model matrices used to specify v of 2.1

ˆsatisfy Assumptions A, the estimator j is the restricted MLE under the
w ŽM .xreparameterized model v , wherej

v ŽM . s j : C log A ej s Xb , samp Ny1ej s 0� 4Ž .j

s j : U9C log A ej s 0, samp Ny1ej s 0� 4Ž .
5.1Ž .

5.2 s j : h j s 0, samp Ny1ej s 0 .� 4Ž . Ž . Ž .
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Ž w ŽM .x.This means that in practice we can also find the restricted under v
Ž w ŽM .x.MLE of p by first finding the restricted under v MLE of j and thenjˆy1 jusing the relationship N e s p.ˆ

w ŽM .xThe restricted MLE of j under v may be, for practical reasons, easierj

Ž .to find. For example, using the j-parameterization, we are able to i avoid
Ž .out-of-range iterate estimates and ii simplify the modified Newton]
Ž .Raphson iterative root-finding scheme see Section 7 . There are other rea-

sons for using the j-parameterization. One in particular is that the parame-
ter j, which is the vector of natural logs of the expected counts, is well
defined for both product-multinomial and product-Poisson sampling}p is
not. The j-parameterization facilitates a direct comparison of multinomial
and Poisson maximum likelihood estimator behavior.

Before stating and proving Theorem 5.1, it will be convenient to state
several useful lemmas; their proofs are in the Appendix. The first lemma

Ž . Ž .shows the relationship between the constraint functions f p and h j .

LEMMA 5.1. Assume that the model matrices satisfy Assumptions A. Then,
for j s log Np, we have that

h j s f p ,Ž . Ž .
Ž .where the constraint functions f and h are those used to specify 2.2 and

Ž .5.2 , respectively.

A consequence of Lemma 5.1 is that the following set equivalence holds:

v ŽM . ' p : C log Ap s Xb , samp p s 0� 4Ž .
5.3Ž .

s p : C log ANp s Xb , samp p s 0 ' v ŽM . .� 4Ž . N

Ž . Ž .The next lemma relates the two derivative matrices F p and H j , where

 h j 9Ž . y15.4 H j s s D A9D C9U.Ž . Ž . m A mj

LEMMA 5.2. For models satisfying Assumptions A, the derivative matrices
Ž . Ž . Ž . Ž .H j s  h j 9rj and F p s  f p 9r p are related according to

H j s D F p ,Ž . Ž .p

where j s log Np.

Ž .Lemma 5.2 shows that the derivative matrix H j is free of N and, hence,
bounded as the total sample size n goes to infinity.

Consider the reparameterized model space

v ŽM . s j : C log A ej s Xb , samp Ny1ej s 0� 4Ž .j

s j : h j s 0, samp Ny1ej s 0� 4Ž . Ž .
Ž . Ž ŽM .. ŽM .and notice, by 5.3 , that log Nv s v . This, along with the fact thatN j

ŽM . ŽM . Ž .v s v , is used to prove see Appendix the following lemma.N
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LEMMA 5.3. Let j s log Np and assume that the model matrices used to
Ž .specify 2.1 satisfy Assumptions A. Then,

ˆsup y9 log p s y9 log p if and only if sup y9j s y9j ,ˆ
ŽM . ŽM .pgv jgvj

ˆwhere j s log Np.ˆ

THEOREM 5.1. Suppose the model Assumptions A holds. Then the solution
ˆy1 jˆ ˆ ˆ ˆŽ . Ž . Ž . Ž .p, l to the likelihood equations 3.5 is N e , l , where j, l is theˆ

solution to

jy y e q H j lŽ .
5.5 s 0.Ž .

h jŽ .

The implication of Theorem 5.1 is that we can find the restricted MLE of p
ˆ Ž .by finding the solution j to the reparameterized likelihood equations 5.5

ˆy1 jand then setting p s N e . An iterative procedure for solving this reparam-ˆ
eterized set of likelihood equations is outlined in Section 7.

The following theorem gives the limiting distributions for several relevant
statistics. These limiting distributions are derived under the assumption that
the data are product-multinomial.

THEOREM 5.2. Suppose that the model matrices satisfy Assumptions A and
that the counts are product-multinomial. Then the following results hold:

1r2 ˆ y1 y1 y1 y1 y1 y1Ž . Ž . Ž Ž .i n j y j ª MVN 0, W D y W F F9D W F F9W yd p p

Ž K X . y1 .[ 1 1 W .r rks1
Ž . y1r2Ž . Ž Ž y1 .y1ii n m y m ª MVN 0, D W y D F F9D W F F9D y Wˆ d p p p p

K X .[ p p .ks1 k k
1r2 ˆ y1 y1Ž . Ž . Ž w Ž .iii n b y b ª MVN 0, Z D W y D F F9D W F F9D y Wd X p p p p

K X x X .[ p p Z ,ks1 k k X

Ž .y1 y1 Ž .where Z s X9X X9CD A. Here F s F p and the freedom parameterX AW p

Ž .b is from model 5.1 . Moreover, each of these random variables is asymptoti-
ˆcally independent of l , the estimator of the Lagrange multipliers.

Ž .Using the notation of Serfling 1980 and writing the asymptotic variances
in terms of the parameters j and m for easy comparability with the asymp-
totic variances for the Poisson models, we have the following corollary:

COROLLARY 5.1.

ˆŽ . Ž .i j y j ; AMVN 0, S ,ĵ

Ž . Ž .ii m y m ; AMVN 0, S ,ˆ m̂
ˆŽ . Ž .iii b y b ; AMVN 0, S ,b̂

Ž . Ž .iv p y p ; AMVN 0, S ,ˆ p̂
ˆŽ . Ž .v l ; AMVN 0, S ,l̂
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where
K X1 1y1 r ry1 y1 y1 y15.6 S s D y D H H9D H H9D y ,Ž . ˆ Ž . [j m m m m Nks1 k

K
m m9y1 k ky15.7 S s D y H H9D H H9 y ,Ž . Ž . [m m mˆ Nks1 k

y1 y1y1 y15.8 S s X9X X9CD A S A9D C9X X9X ,Ž . Ž . Ž .b̂ A m m A mˆ

K
m m9y1 k ky1 y1 y15.9 S s N D y H H9D H H9 y N ,Ž . Ž . [p m mˆ Nks1 k

y1y15.10 S s H9D H ,Ž . ˆ Ž .l m

Ž . Ž .and H s H j of 5.4 .

PROOF. The result is an immediate consequence of Theorem 4.1, Theorem
Ž . y1 Ž . y1 Ž . y1 Ž .5.2, the fact that F p s D H j s ND H j and that n N s W q o 1 .p m

ˆFor example, consider the asymptotic variance of j:
K

y1 Xy1 y1 y1 y1 y1 y1 y1n W D y W F F9D W F F9W y 1 1 WŽ . [p p r rž /ks1

y1y1 y1 y1 y1 y1 y1 y1s n W D y W D H H9W D HŽ .p p p

=

K
Xy1 y1 y1H9D W y 1 1 W[p r rž /ks1

y1y1 y1 y1 y1 y1 y1 y1 y1 y1s W n ND y W n ND H H9W n ND HŽ .m m m

=

K
Xy1 y1 y1 y1 y1 y1H9D n NW y 1 1 N Nn W[m r rž /ks1

K X1 1y1 r ry1 y1 y1 y1 y1s D y D H H9D H H9D y q o n .Ž .Ž . [m m m m Nks1 k

Ž . Ž .The other results 2 ] 5 follow in the same way. I

Ž . Ž .These expressions 5.6 ] 5.10 , allow for simple comparison with the be-
havior under Poisson sampling. For example, the estimated asymptotic vari-

ˆ K XŽ .ance of the Poisson estimator of m can be shown to be S q [ m m rN .ˆ ˆm k k kˆ ks1

6. Assessing model goodness-of-fit. In this section, we derive simpli-
fied forms of certain goodness-of-fit statistics}those statistics that can be
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w ŽM .x Ž .used to test the appropriateness of the model v of 5.1 }and describej

the large-sample behavior of generalized adjusted residuals. Aitchison and
Ž . Ž . Ž .Silvey 1958, 1960 , Silvey 1959 and Aitchison 1962 give the form for the

three asymptotically equivalent goodness-of-fit statistics}the likelihood ratio
Ž 2 . Ž 2 . Ž 2 .G , the Wald W and the Lagrange-multiplier L statistics. All three of
these statistics will have null limiting distributions that are central chi-square
with degrees of freedom equal to u, the length of the constraint function
Ž . Ž .f p s h j .

The statistics have the form
2G s 2Y9 log prp ,Ž .ˆ

y12W s h j 9 avar h j h j ,Ž . Ž . Ž .Ž .
$ y1

2 ˆ ˆ ˆL s l9 avar l l ,Ž .
where the careted symbols represent the MLE’s under the model which is

w ŽM .xbeing tested, v , and the barred symbols represent the MLE’s under thej

saturated model.
w ŽM .xNow, assuming that the model v holds so that the constraint functionj

w Ž . xevaluated at the true parameter value is zero i.e., h j s 0 ,
y1 y1h j s h j q H j 9 j y j q O n s H j 9 j y j q O n .Ž . Ž . Ž . Ž . Ž .Ž . Ž . Ž .P P

Ž .We can find the asymptotic variance of h j using the delta method. It is

avar h j s H j 9 avar j H jŽ . Ž .Ž . Ž .Ž .
K X1 1r ry1s H j 9 D y H jŽ . Ž .[mž /Nks1 k

s H j 9Dy1 H j ,Ž . Ž .m

Ž K X . Ž . Ž K .Ž K X . Ž .since [ 1 1 rN H j s [ 1 rN [ p F p s 0 by Lemmas 3.1r r k r k kks1 ks1 ks1$
y1 y1ˆ ˆ ˆŽ . w Ž . Ž .xand 5.2. Also, avar l s H j 9D H j by Corollary 5.1. Hence, them̂

goodness-of-fit statistics can be written more explicitly as

6.1 G2 s 2Y9 log Yrm ,Ž . Ž .ˆ
y12 y16.2 W s h j 9 H j 9D H j h j ,Ž . Ž . Ž . Ž . Ž .m

2 ˆ ˆ y1 ˆ ˆ6.3 L s l9H j 9D H j l .Ž . Ž . Ž .m̂

REMARK 1. The Poisson goodness-of-fit statistics are numerically equal to
Ž . Ž . Ž .the corresponding multinomial test statistics 6.1 , 6.2 and 6.3 .

Ž .REMARK 2. By likelihood equations 5.5 , it is evident that
2 y1 ˆ ˆ y1 ˆ ˆ 2X s y y m 9D y y m s l9H j 9D H j l s L .Ž . Ž .ˆ ˆ Ž . Ž .m mˆ ˆ

That is, the Pearson chi-squared and Lagrange-multiplier statistics are nu-
merically equal for these models.
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It is usually desirable to investigate more closely the fit of a model using
cell residuals. A nice feature of our fitting and descriptive method is that

w Ž .xadjusted cell residuals Haberman 1973 for these generalized log-linear
models are simple to compute; they are calculated using matrices that are a

Ž .by-product of the fitting algorithm. Specifically, Haberman 1973 defined
adjusted residuals as

y y mŽ .ˆ i
r s ,$i

ase Y y mŽ .ˆ i

Ž .where x is the ith component of the vector x. These residuals have manyi
nice properties. For example, they more closely resemble standard normal

Ž Ždeviates than their competitors e.g., Pearson residuals, e s y yi$
. wŽ . x.m r ase Y . They are not often computed, however, since they are thoughtˆ i i

to be difficult to determine. Within this constraint setting, we show that not
only are they simple to compute for standard log-linear models, but also for
the broader class of generalized log-linear models.

Ž .Notice that by the likelihood equations 5.5 ,
y1r2 ˆ y1r2ˆ y1r2ˆn Y y m s yH j n l s yH j n l q o 1 ,Ž . Ž . Ž .Ž . Ž .ˆ Ž . P

ˆ y1r2 y1r2ˆŽ . Ž . Ž . Ž .since H j s H j q O n and n l s O 1 . By the delta method,P P
Ž .the asymptotic variance of Y y m isˆ

ˆavar Y y m s H j avar l H j 9Ž . Ž . Ž .Ž .ˆ
6.4Ž . y1y1s H j H j 9D H j H j 9.Ž . Ž . Ž . Ž .m

Therefore, the adjusted residuals have the form
y y mŽ .ˆ i

6.5 r s ,Ž . i si

where s is the square root of the ith diagonal element of the estimatedi
Ž .version of 6.4 . It can be shown that for models satisfying Assumptions A,

these adjusted residuals are invariant to sampling scheme}multinomial or
Poisson.

For models that imply structure on marginal distributions, it may be
wappropriate to compute adjusted marginal-cell residuals cf. Lang and Agresti

Ž .x1994 . These residuals are defined as
Ly y LmŽ . Ž .ˆi iLr s ,i Lsi

Ž .where the components Lm of the vector Lm are linear combinations of thei$
L ŽŽ . Ž . .cell means m, and s s ase LY y Lm is the square root of the ithˆi i i

diagonal element of
y1y1ˆ ˆ ˆ ˆLH j H j 9D H j H j 9L9.Ž . Ž . Ž . Ž .m̂

7. A maximum likelihood fitting algorithm. We outline a simple
iterative technique for finding parameter MLE’s and other relevant statis-
tics for the broad class of generalized log-linear models. The algorithm
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Ž . Ž .is a modification of Haber’s 1985a, b and Aitchison and Silvey’s 1958
algorithms.

One modification is to reparameterize the model in terms of j s log m to
avoid out-of-range iterate estimates. This reparameterization also results in a

Ž .simplified Newton]Raphson NR algorithm. For models that satisfy Assump-
ˆ ˆŽ .tions A, the parameter MLEs can be found by solving for g s vec j, l inˆ

ĵ ˆ ˆy y e q H j lŽ .
g g s s 0.Ž .ˆ ˆh jŽ .

An unmodified NR iterative scheme is
y1Ž tq1. Ž t . Ž t . Ž t .7.1 g s g y G g g g , t s 0, 1, . . . ,Ž . Ž . Ž .

Ž . Ž .where the derivative matrix G g s  g g r g 9 has the form

 H jŽ .
jydiag e q l m I H jŽ . Ž . Ž .sj9G g s .Ž .

H j 9 0Ž .

Ž .Haber 1985a, b used an analogous unmodified NR algorithm, but under the
p-parameterization. Two drawbacks to that iterative scheme were that
Ž . Ž .1 out-of-range iterate estimates e.g., negative p estimates could occur and
Ž .2 the matrix analogous to G, which is potentially very large, does not have a
simple inverse.

Ž .Aitchison and Silvey 1958 advocated a simplified algorithm that required
a single inversion. It was similar to the iterative scheme

y1Ž tq1. Ž t . Ž0. Ž t .7.2 g s g y G g g g , t s 0, 1, . . . .Ž . Ž . Ž .
Reasonable starting estimates are obtained by setting jŽ0. s log y and

Ž0. Ž0. Ž .l s 0. We make the slight adjustment j s log y q « for some small «
when some of the observed counts y are zero. For these starting estimates,k j

Ž0.j Ž0.ydiag e H jŽ . Ž .Ž0.G g sŽ . Ž0.H j 9 0Ž .
and the inverse Gy1 is simple to compute. Specifically,

y1G gŽ .
y1 y1y1 y1 y1 y1 y1 y1yD q D H H9D H H9D D H H9D HŽ . Ž .

s ,y1 y1y1 y1 y1H9D H H9D H9D HŽ . Ž .

7.3Ž .

Ž j . Ž .where D s diag e and H s H j .
Ž . Ž .The iterative scheme we advocate is a modification of both 7.1 and 7.2 .

Ž .In view of 7.3 , to determine the inverse of G, we need only invert the
Ž j . Ždiagonal matrix D s diag e and the symmetric positive-definite by As-

. Ž y1 .sumption A5 matrix H9D H . This simplification is a result of our choice of
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parameterization and the fact that the Jacobian matrices of the multinomial
sampling and remaining model constraints are orthogonal. Since there are
many good numerical techniques for inverting large positive-definite matri-
ces, it seems reasonable to invert an updated matrix G at each iteration. We
advocate the following iterative scheme:

y1Ž tq1. Ž t . Ž t . Ž t .7.4 g s g y G* g g g , t s 0, 1, . . . ,Ž . Ž . Ž .
where

jydiag e H jŽ . Ž .
G* g sŽ .

H j 9 0Ž .
Ž .y1 Ž .and G* g has form 7.3 .

Ž .Following an argument Aitchison and Silvey 1958 used to motivate their
Ž .iterative scheme, we provide an alternative motivation for use of 7.4 . For

y1ˆmodels that are relatively close to holding, we have that n l is close to zero
Ž . Ž .by 4.6 . Also, the matrix  H j rj9 is bounded as n gets large. Thus, when

ˆ y1Ž Ž . .Ž .l is close to l , we expect the matrix  H j rj9 n l m I to behave likes
Ž . y 1 Ž j .it was o 1 . On the other hand, the matrix n diag e s

Ž .WD q o 1 . Therefore, the matrix G* is the dominant part of G in thep

following approximate sense:

o 1 0Ž .y1 y1n G s n G* q .
0 0

Ž .REMARK 3. By expression 7.3 , we see that the matrices used for comput-
ing statistics such as G2, L2, W 2, adjusted residuals and parameter estimator

Ž .variances are by-products of the iterative scheme 7.4 . That is, upon conver-
Ž .gence of 7.4 , one can use the block components of the final iterate estimate

Ž Ž`..y1G g to compute these relevant statistics.

Ž . Ž .REMARK 4. Recall that the matrix H j has form 5.4 , which involves the
Ž z .matrix U. The matrix U is the q = u q s Ý q full column rank matrixis1 i

that has range space that spans that space orthogonal to the range space of
Ž . Ž Ž .y1 .X. Haber 1985a points out that U can be calculated as I y X X9X X9 W,

where W is a random q = u full column rank matrix. In practice, one could
Ž .generate the full column rank matrix W at least with high probability using

uniform random numbers.

8. Discussion. We have considered a broad class of models, namely,
generalized log-linear models, that can be used to simultaneously describe
several response configuration distributions of multivariate categorical re-
sponses. Generalized log-linear models are useful in many application areas,
including longitudinal, rater-agreement and crossover data analyses. The

Žlarge-sample behavior of many relevant statistics, such as regression i.e.,
.freedom parameter ML estimators, model parameter ML estimators, good-

ness-of-fit statistics and adjusted residuals is described when the sampling



MAXIMUM LIKELIHOOD METHODS FOR GLLM’S 743

scheme is product-multinomial. The technique used to derive these asymp-
Ž .totic distributions is similar to the approach of Aitchison and Silvey 1958 ;

the asymptotic behavior is explored within the framework of constraint
equations, rather than the more commonly used freedom equations.

wŽ . xIn contrast, McCullagh and Nelder 1989 , Section 6.5 , considered the
maximum likelihood approach for a generalized log-linear model when there
are two binary responses; they used freedom equations and were therefore
required to reparameterize the likelihood in terms of the freedom parameters.
It is evident from their discussion that a straightforward generalization of
their method}the freedom equation approach}to several response variables

w Ž .xwould be difficult see also, Laird 1991 . In particular, the freedom equation
approach is applicable only if C log Ap is a one-to-one function of p. Glonek

Ž .and McCullagh 1995 have considered this special case for a collection of
models they call multivariate logistic models. A broader class of generalized
linear models for multivariate categorical data is considered in Molenberghs

Ž .and Lesaffre 1994 . As in Glonek and McCullagh, their approach requires
explicit specification of all higher-order moments so that the link is a one-to-
one function of the cell probabilities. The approach we advocate in this paper
}the constraint equations approach}does not require the reparameteriza-
tion of the likelihood in terms of the freedom parameters and so does not
require C log Ap to be one-to-one. This is important because many models of

Ž .interest e.g., marginal homogeneity are simpler to specify using a many-to-
one generalized log-linear model function.

Existence and uniqueness results for maximum likelihood estimators exist
for many special cases of these generalized log-linear models. In this paper,
we assumed the existence of a unique solution to the restricted likelihood
equations. Indeed, this has been shown to be the case for many examples. For

Ž .instance, Haber and Brown 1986 prove that models equivalent to general-
ized log-linear models that imply a log-linear model structure for the joint
probabilities and a linear constraint structure for the marginal distributions

Ž .afford unique solutions. Pratt 1981 addresses uniqueness of ML estimators
for cumulative logit models. Also, both existence and uniqueness results are

w Ž .xwell developed for log-linear and logit models cf. Haberman 1974 . More
generally, however, results that hold for the entire class of generalized
log-linear models are currently unavailable. For example, although Aitchison

Ž .and Silvey 1958 have proven that a solution to the restricted likelihood
equations exists with probability going to 1, the finite sample problem is not
completely resolved unless A is an identity matrix. When A is an identity
matrix, a sufficiency reduction is possible and existence results for standard

w Ž .xlog-linear and logit models can be utilized cf. Haberman 1974 . Regarding
uniqueness, results that would encompass the entire class of generalized
log-linear models are not currently available. Undoubtedly, this is because
the constraint set implied by constraining C log Ap to fall in a linear mani-
fold need not be convex.

Section 6 describes several model assessment statistics. In particular, the
Ž .overall goodness of fit of a model compared to the unrestricted model can be
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Ž . Ž . Ž . Ž .measured using any of the statistics 6.1 , 6.2 or 6.3 . Aitchison 1962
addresses the issue of testing a hypothesis against a restricted alternative by
comparing nested models using differences between statistics of the form
Ž . Ž . Ž .6.1 , 6.2 or 6.3 . Model residuals can be measured in many ways. We

Ž .showed that generalized adjusted residuals are simple to compute using
by-products of the fitting algorithm outlined in Section 7. Other residual

wcompetitors are the Pearson and deviance residuals cf. Pierce and Schafer
Ž .x1986 .

The maximum likelihood fitting algorithm outlined in Section 7 represents
an improvement over existing algorithms. The algorithm is insensitive to
starting values, which happen to be extremely simple to find. By using the log

Ž .mean or j parameterization, we are able to avoid out-of-range iterate
Žestimates. Also, for this parameterization the restricted Hessian matrix i.e.,

.the derivative of the restricted likelihood equations has a very simple form
and can easily be inverted using standard numerical techniques. For this
reason, the algorithm can be used to fit relatively large tables; of course there
are limitations. We have used the algorithm to fit tables with more than 1000
cells. Finally, as a by-product of the algorithm, one can compute several
relevant statistics and their asymptotic variances.

The constraint equation approach to describing the large-sample behavior
for generalized log-linear models has many other benefits. For instance,
because of orthogonality conditions proved in this paper, a comparison of the
Poisson and multinomial generalized log-linear models is straightforward.
These comparisons represent generalizations of the results of Palmgren
Ž .1981 . As a special case, an alternative to the freedom equations approach to
showing Palmgren’s result for standard log-linear models is straightforward
w Ž .xLang 1996 ; this approach has pedagogical advantages as well as technical
advantages.

APPENDIX

Ž .LEMMA 3.1. If F p is the derivative matrix corresponding to a model
that satisfies A, then

K
X ŽM .p F p s 0, ;p g V .Ž .[ kž /ks1

w Ž .xPROOF. Using matrix derivatives MacRae 1974 ,


F p s log p9A9 C9UŽ . Ž .Ž .

 p

 
s p9A9 log p9A9 C9U q 0Ž . Ž .½ 5ž / p  ApŽ .

A.1Ž .

s A9Dy1C9U.A p
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Therefore, one can go through the algebra to see that
K K

X X y1p F p s p A9D C9UŽ .[ [k k A pž / ž /ks1 ks1

A pK z1
.X X X Xy1 .w xs p A , . . . , A diag C UŽ .[ [k 1 z i i.ž /ks1 is1� 0A pz

K
X X X X Xy1 y1s p A D C U , . . . , A D C U[ k 1 A p 1 1 z A p z z1 zž /ks1

K K K
X X X X Xy1 y1s p A D C U , . . . , A D C U[ [ [k 1k A p 1 1 zk A p z z1 zž /ks1 ks1 ks1

K K
X X X X X Xy1 y1s p A D C U , . . . , p A D C UŽ . Ž .[ [k 1k A p 1 1 k zk A p z z1 z

ks1 ks1

K K
X X X Xs 1 C U , . . . , 1 C U ,[ [m r K 1 1 m r K z z1 zž / ž /ks1 ks1

s 0

where the last equality holds by A1 and A4. I

Ž .THEOREM 3.1. Suppose that the model can be specified as in 2.1 or
ˆŽ . Ž .equivalently 2.2 and that it satisfies Assumptions A. Let vec p, l , t be theˆ ˆ

Ž .solution to the s q u q K equations in 3.3 . It follows that the subvector
ˆŽ .vec p, l is the solution to the reduced set of s q u equationsˆ

y1D y y N1 q F p lŽ .p s s 0.
f pŽ .

Ž .PROOF. By Lemma 3.1, if we pre-multiply the first equation in 3.3 by
Ž K X . w Ž K X . x[ p , we have that since [ 1 p s 1k r Kks1 ks1

K
X1 y y t q 0 s 0.[ rž /ks1

That is, the undetermined multiplier t corresponding to the multinomial
sampling constraint is no longer undetermined. In fact, it satisfies

N1
.. s t ..� 0NK
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ˆŽ . Ž .In particular, we have that p, l , t is the solution to 3.3 if and only ifˆ ˆ
ˆŽ .the vector p, l is the solution to the reduced set of likelihood equationsˆ

NK 1
.y1 .D y y 1 q F p lŽ .[p r .ž / s 0,ks1 � 0NK

f pŽ .

which can be written simply as

y1D y y N1 q F p lŽ .p s s 0. I
f pŽ .

LEMMA 5.1. Assume that the model matrices satisfy Assumptions A. Then,
for j s log Np, we have that

h j s f p ,Ž . Ž .

Ž .where the constraint functions f and h are those used to specify 2.2 and
Ž .5.2 , respectively.

PROOF. We start by showing that AN can be written as N*A, where N* is
a diagonal matrix

K

A A[1 1k
1 K

. .. .AN s N s N I[ k r. .
1K

A A[z zk
1

K

A N[ 1k k
1 z K

..s s N I A,[ [ k m r K. iž /is1 ks1K

A N[ zk k
1

s N*A,

z Ž K .where N* s [ [ N I is a diagonal matrix.k m r Kis1 ks1 i
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Also, since Assumptions A are satisfied, the vector C log N*1 is in thes
range space of X. This can be seen by the following argument:

N 11 m r K1

...
N 1K m r K1

N 11 m r K2N*1 s .s ..
N 1K m r K2

...
N 1K m r Kz

so that the vector C log N*1 can be written ass

log N 11 m r K1
C log N 1. 11 1 m r K1.C1 . C log N 112 2 m r K1log N 1K m r K1 .z .. ..C log N*1 s s .[ i s .ž / C log N 1is1 1 K K m r K1log N 1 .1 m r Kz .. ..C z . C log N 1z K K m r Kzlog N 1K m r Kz

If C is a zero or contrast matrix, then, by Assumption A1,i k
C log N 1 s 0, k s 1, . . . , K. Hence,ik k m r Ki

log N 11 m r Ki

..C s 0i .
log N 1K m r Ki

Ž .is in the range space R X .i
On the other hand,if C s I so that by Assumptions A, C s I , thenik m r K i mi i

the vector

log N1log N 11 m r K Ki log N. 2.C s 1 ,.[i m r K. i .ž /ks1 .log N 1K m r Ki log NK
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Ž K .which, by definition, is in the range space R [ 1 . However, bym r Kks1 i

Assumption A4, it follows that the vector

log N 11 m r Ki

..C i .
log N 1K m r Ki

Ž .is in the range space R X . Finally, since X has a block diagonal form asi
Ž .specified in Assumption A3, we have that the vector C log N*1 is in R X .s

Therefore,

h j s U9C log A ej s U9C log ANpŽ .
s U9C log N*Ap s U9C log N*1 q U9C log Aps

s U9C log Ap since C log N*1 g R XŽ .s

s f p . IŽ .

LEMMA 5.2. For models satisfying Assumptions A, the derivative matrices
Ž . Ž . Ž . Ž .H j s  h j 9rj and F p s  f p 9r p are related according to

H j s D F p ,Ž . Ž .p

where j s log Np.

PROOF.
 f p 9 j9  f p 9Ž . Ž .

F p s sŽ .
 p  p j

j9  h j 9 j9Ž .
s s H j ,Ž .

 p j  p

but
j9  log p9N9

y1s s D .p p  p

Ž . Ž .Hence, we have that D F p s H j . Ip

LEMMA 5.3. Let j s log Np and assume that the model matrices used to
Ž .specify 2.1 satisfy A. Then

ˆsup y9 log p s y9 log p if and only if sup y9j s y9j ,ˆ
ŽM . ŽM .pgv jgvj

ˆwhere j s log Np.ˆ

PROOF. The solution to sup ŽM . y9 log p s y9 log p is identical to theˆp g v

solution to sup ŽM . y9 log p s y9 log p since the sets v ŽM . and v ŽM . areˆp g v NN

identical. Now by the invariance property of MLE’s, it follows that

ˆsup y9 log p s y9 log p if and only if sup y9j s y9j ,ˆ
ŽM . ŽM .Ž .pgv jglog NvN N
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ˆ ŽM . ŽM .Ž .where j s log Np. However, log Nv s v , so the conclusion of theˆ N j

lemma follows. I

THEOREM 5.1. Suppose the model Assumptions A hold. Then the solution
ˆy1 jˆ ˆ ˆ ˆŽ . Ž . Ž . Ž .p, l to the likelihood equations 3.5 is identical to N e , l , where j, lˆ

is the solution to

jy y e q H j lŽ . s 0.
h jŽ .

PROOF. The solution to

ˆsup y9j s y9j
ŽM .jgvj

can be found following the technique used in Section 3. The solution will
satisfy the Lagrangian likelihood equations

K

jy q diag e 1 g q H j fŽ . Ž .[ rž /ks1

KA.2 s 0.Ž .
X j1 e y N , N , . . . , N 9Ž .[ r 1 2 Kž /ks1

h jŽ .

Just as the original likelihood equations could be simplified by explicitly
solving for the undetermined multipliers corresponding to the multinomial
sampling constraints, these reparameterized likelihood equations can be
simplified. This follows since, by Lemmas 3.1 and 5.2,

K K K
X X X1 H j s 1 D F p s p F p s 0.Ž . Ž . Ž .[ [ [r r p kž / ž / ž /ks1 ks1 ks1

Thus, the parameter g can be solved for by pre-multiplying the first equation
Ž . K Xin A.2 by [ 1 . In fact, g s y1 . The simplified likelihood equations arer Kks1

jy y e q H j fŽ .
A.3 s 0.Ž .

h jŽ .

ˆ ˆŽ . Ž .However, j, f solves A.3 if and only if it solves

y1 y1 j y1D y y D e q D H j fŽ .p p p s 0,
h jŽ .
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y1 j Ž . Ž . y1 Ž . Ž .where p s N e . Now since f p s h j and D H j s F p , we canp

rewrite these equations as
y1D y y N1 q F p fŽ .p s s 0.

f pŽ .
ˆ ˆŽ .Comparing this equation to 3.5 , we see that the solution results in f s l .

Ž .So, instead of solving the equations in 3.5 , we can solve the equations
jy y e q H j lŽ . s 0.
h jŽ .

ˆy1 jˆFinally, by Lemma 5.3, this solution j satisfies p s N e , where p is theˆ ˆ
Ž . Žsolution to the likelihood equations 3.5 and hence is the MLE of p under

w ŽM .x.v . This is what we set out to show. I

THEOREM 5.2. Suppose that the model matrices satisfy Assumptions A and
that the counts are product-multinomial. Then the following results hold:

y11r2 y1 y1 y1 y1 y1ˆn j y j ª MVN 0, W D y W F F9D W F F9WiŽ . Ž .Ž . D p pž
K

X y1y 1 1 W ;[ r rž / /ks1

y1y1r2 y1n m y m ª MVN 0, D W y D F F9D W F F9Dii Ž .Ž . ˆ Ž .D p p p pž
K

XyW p p ;[ k k /ks1

y11r2 y1ˆn b y b ª MVN 0, Z D W y D F F9D W F F9DŽ .Ž .iiiŽ . D X p p p pž /
K

X XyW p p Z ,[ k k X /ks1

Ž .y1 y1where Z s X9X X9CD A.X AW p

Ž . Ž .Here F s F p and the freedom parameter b is from model 5.1 . Moreover,
ˆeach of these random variables is asymptotically independent of l , the

estimator of the Lagrange multipliers.

ˆŽ . Ž . Ž .PROOF. i Since the difference j y j is identical to log p y log p ,ˆ
Ž y1r2 .which is O n , we can write this difference asP

ˆ y1 y1j y j s D p y p q O n .Ž . Ž .ˆp P
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1r2Ž .By Theorem 4.1, n p y p has a limiting distribution that is multivariateˆ
normal with mean vector zero and variance]covariance matrix

K
y1 Xy1 y1 y1 y1 y1A.4 D W y D W F F9D W F F9D W y p p W .Ž . Ž . [p p p p k k

ks1

A direct application of the delta method gives the desired result.
Ž . Ž . y1r2Ž .ii Similar to the proof of i , the difference n m y m can be shown toˆ

1r2Ž .be a linear combination of n p y p . Specifically,ˆ

ny1r2 m y m s n1r2 ny1 NNy1 m y mŽ . Ž .ˆ ˆ
s ny1 Nn1r2 p y pŽ .ˆ
s Wn1r2 p y p q o 1 .Ž . Ž .ˆ P

An application of Slutsky’s theorem and the delta method gives the desired
result.

ˆ y1Ž . Ž . Ž .iii First notice that b s X9X X9C log Am and that the differenceˆ
ˆŽ .b y b can be written as

y1 y1y1 y1b̂ y b s X9X X9C log A n m y X9X X9C log A n m .Ž . Ž . Ž .ˆŽ .Ž .
Ž . Ž .y1 Ž .A Taylor series expansion of g y s X9X X9C log Ay about the vector x

gives

 g xŽ .
5 5g y s g x q y y x q o y y x ,Ž . Ž . Ž . Ž .

 x9

Ž . Ž .y1 y1 Ž5 5.where  g x r x9 s X9X X9CD A and o y y x is a term that con-Ax
verges to 0 as y gets close to x. Now set y s ny1m and x s ny1m and noticeˆ

Ž5 5. Ž Ž y1r2 .. Ž y1r2 .that the remainder, o y y x s o O n s o n . Therefore,P P

1r2 1r2 y1 y1ˆn b y b s n g n m y g n mŽ .ˆŽ .Ž .
y1 y1 y1 y1r2s X9X X9C diag A n m A n m y m q o 1Ž . Ž . Ž .Ž . ˆ P

y1 y1 y1r2s X9X X9C diag AWp A n m y m q o 1 ,Ž . Ž . Ž . Ž .ˆ P

where the last equality follows since

y1 y1y1 y1 y1X9X X9C diag A n m A y X9X X9C diag AWp s o 1Ž . Ž . Ž . Ž .Ž .
y1r2Ž . Ž . Ž .and n m y m s O 1 . An application of the delta method using ii givesˆ P

the desired result.
Ž . Ž . Ž .Finally, it was shown that each of the random variables of i , ii and iii

Ž . Ž .could be approximated by a linear combination of p y p . Since p y p isˆ ˆ
ˆasymptotically independent of l , it follows that these other random variables

ˆmust also be asymptotically independent of l . I
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