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CONSISTENCY OF DATA-DRIVEN HISTOGRAM METHODS
FOR DENSITY ESTIMATION AND CLASSIFICATION

BY GABOR LUGOSI1 AND ANDREW NOBEL2´
Technical University of Budapest and University of North Carolina

We present general sufficient conditions for the almost sure L -1
consistency of histogram density estimates based on data-dependent parti-
tions. Analogous conditions guarantee the almost-sure risk consistency of
histogram classification schemes based on data-dependent partitions. Mul-
tivariate data are considered throughout.

In each case, the desired consistency requires shrinking cells, subexpo-
nential growth of a combinatorial complexity measure and sublinear
growth of the number of cells. It is not required that the cells of every
partition be rectangles with sides parallel to the coordinate axis or that
each cell contain a minimum number of points. No assumptions are made
concerning the common distribution of the training vectors.

We apply the results to establish the consistency of several known
partitioning estimates, including the k -spacing density estimate, classi-n
fiers based on statistically equivalent blocks and classifiers based on
multivariate clustering schemes.

1. Introduction. A natural method of estimating local properties of data
in nonparametric statistics is to partition the space of observations into cells
and then compute statistics locally within each cell. This leads to histogram
estimates of an unknown density and to partition-based classification rules.
The simplest histogram methods partition the space into congruent intervals
or cubes whose size and position depends on the number of available data
points, but not on the data itself. These methods provide estimates that are
consistent, regardless of the underlying distribution of the data. Abou-Jaoude
Ž .1976a, c gave necessary and sufficient conditions under which a sequence of

wregular partitions gives rise to L -consistent estimates for every density see1
Ž .xalso Devroye and Gyorfi 1985 . A similar result for classification and regres-¨

sion estimates based on cubic partitions was obtained by Devroye and Gyorfi¨
Ž . Ž .1983 . The weak in-probability consistency of these schemes can also be

Ž .deduced from the general result of Stone 1977 .
Statistical practice suggests that histogram estimators based on data-

dependent partitions will provide better performance than those based on
a fixed sequence of partitions. Theoretical evidence for this superiority
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Ž .was given by Stone 1985 . The simplest data-dependent partitioning methods
w Ž .are based on statistically equivalent blocks Anderson 1966 ; Patrick and

Ž .xFisher 1967 , in which each cell contains the same number of points. In one-
dimensional problems statistically equivalent blocks reduce to k-spacing

w Ž . Ž .estimates Mahalanobis 1961 , Parthasarathy and Bhattacharya 1961 , Van
Ž .xRyzin 1973 , where the kth, 2kth, . . . order statistics determine the parti-

tion of the real line.
Many other data-dependent partitioning schemes have been introduced in

w Ž .xthe literature cf. Devroye 1988 . In many cases the partition is described by
a binary tree, each of whose leaves corresponds to a cell of the partition. The
tree structure makes computation of the corresponding classification rule or
density estimate fast and provides a ready interpretation of the estimate. The
consistency of tree-structured classification and regression was investigated

Ž .by Gordon and Olshen 1978, 1980, 1984 in a general framework and was
Ž .extended by Breiman, Friedman, Olshen and Stone 1984 .

Existing conditions for the consistency of histogram classification and
density estimation using data-dependent partitions require significant re-

Ž .strictions. The conditions of Breiman, Friedman, Olshen and Stone 1984 for
consistent classification require that each cell of every partition belongs to a
fixed Vapnik]Chervonenkis class of sets and that every cell must contain at
least k points, where k rlog n ª ` as the sample size n tends to infinity.n n

Ž . Ž .Chen and Zhao 1987 , and Zhao, Krishnaiah and Chen 1990 restrict their
attention to density estimates based on rectangular partitions.

This paper presents general sufficient conditions for the almost-sure L -1
consistency of histogram classification and density estimates that are based
on data-dependent partitions. Analogous conditions for the consistency of

Ž .histogram regression estimates are addressed in Nobel 1996 .
In the next section two combinatorial properties of partition families are

defined, and a Vapnik]Chervonenkis-type large deviation inequality is estab-
lished. In Section 3, common features of the estimates investigated in the
paper are defined. Sections 4 and 5 are devoted to the consistency results for
density estimation and classification, respectively.

Our results establish consistency under significantly weaker conditions
Ž .than those imposed by Breiman, Friedman, Olshen and Stone 1984 and

Ž .Zhao, Krishnaiah and Chen 1990 and are readily applicable to a number of
existing partitioning schemes. In Section 6 the results are applied to establish
the consistency of k -spacing density estimates, classifiers based on statisti-n
cally equivalent blocks and classifiers based on clustering of the data.

2. A Vapnik–Chervonenkis inequality for partitions. Let R d denote
Ž . n?dd-dimensional Euclidean space. An ordered sequence x , . . . , x g R will1 n

be denoted by x n. By a partition of R d we mean a finite collection p s1
� 4 dA , . . . , A of Borel-measurable subsets of R , referred to as cells, with the1 r

Ž . r d Ž . < <property that i D A s R and ii A l A s B if i / j. Let p denotejs1 j i j
the number of cells in p .
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Ž . dLet AA be a possibly infinite family of partitions of R . The maximal cell
count of AA is given by

< <m AA s sup p .Ž .
pg AA

The complexity of AA will be measured by a combinatorial quantity similar to
the growth function for classes of sets that was proposed by Vapnik and

Ž . d � 4Chervonenkis 1971 . Fix n points x , . . . , x g R and let B s x , . . . , x .1 n 1 n
Ž n.Let D AA, x be the number of distinct partitions1

� 41 A l B , . . . , A l BŽ . 1 r

� 4of the finite set B that are induced by partitions A , . . . , A g AA. Note that1 r
Ž .the order of appearance of the individual sets in 1 is not important. It is

Ž n. Ž .neasy to see that D AA, x F m AA . Define the growth function of AA as1

2 DU AA s max D AA, x nŽ . Ž . Ž .n 1
n n?dx gR1

is the largest number of distinct partitions of any n point subset of R d that
can be induced by the partitions in AA.

Let X , X , . . . be i.i.d. random vectors in R d with X ; m and let m1 2 i n
denote the empirical distribution of X , . . . , X . We wish to establish a large1 n
deviations inequality for random variables of the form

3 sup m A y m A ,Ž . Ž . Ž .Ý n
pg AA Agp

where AA is an appropriate family of partitions. Our analysis relies on the
Ž .well-known inequality of Vapnik and Chervonenkis 1971 . Consider a class

d Ž .CC of subsets of R . The shatter coefficient S CC is defined to be the maximumn
� 4 dcardinality of the collection B l C: C g CC , as B ranges over subsets of R

Ž .containing n points. Vapnik and Chervonenkis 1971 showed that for each
n G 1 and each « ) 0,

24 P sup m A y m A ) « F 4S CC exp yn« r8 .Ž . Ž . Ž . Ž . Ž .½ 5n 2 n
AgCC

Ž .REMARK. In order to insure measurability of the supremum in 3 , it is
necessary to impose regularity conditions on uncountable collections of parti-

Ž .tions. Suppose that m AA s r - `. Let V consist of all measurable functions
d � 4f : R ª 1, . . . , r . Each function in V corresponds to a measurable partition

of R d having at most r cells, and each partition in AA corresponds to a finite
collection of functions in V. Let V

X : V be the collection of all such functions
associated with partitions in AA. It is assumed that each family AA considered
here gives rise to a collection V

X that contains a countable subcollection V0
with the property that every function in V

X is the pointwise limit of a
w Ž .sequence of functions in V . It is easy to show cf. Pollard 1984 , pages0

x Ž .38]39 that the supremum in 3 is measurable when AA has this property.
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The following lemma presents a Vapnik]Chervonenkis inequality for par-
tition families. A similar inequality for families of rectangular partitions was

Ž .established by Zhao, Krishnaiah and Chen 1990 .

LEMMA 1. Let AA be any collection of partitions of R d. For each n G 1 and
every « ) 0,

U mŽ AA . 25 P sup m A y m A ) « F 4D AA 2 exp yn« r32 .Ž . Ž . Ž . Ž . Ž .Ý n 2 n½ 5
pg AA Agp

REMARK. A longer, but more general, proof can be found in Lugosi and
Ž .Nobel 1993 . The argument below was suggested by Andrew Barron.

� 4 Ž .PROOF OF LEMMA 1. For each partition p s A , . . . , A g AA let BB p be1 r
the collection of all 2 r sets that can be expressed as the union of cells of p .
Let

BB AA s A g BB p : p g AA� 4Ž . Ž .

be the collection of all such unions, as p ranges through AA. Fix p for the
moment and define

Ã s A.D
Ž . Ž .Agp : m A Gm An

Then clearly

˜ ˜m A y m A s 2 m A y m AŽ . Ž . Ž . Ž .Ž .Ý n n
Agp

F 2 sup m A y m A .Ž . Ž .n
Ž .Ag BB p

Consequently,

sup m A y m A F 2 sup sup m A y m AŽ . Ž . Ž . Ž .Ý n n
Ž .pg AA pg AA Ag BB pAgp

s 2 sup m A y m A .Ž . Ž .n
Ž .Ag BB AA

6Ž .

Ž Ž .. mŽ AA . U Ž .A straightforward argument shows that S BB AA F 2 D AA . In con-2 n 2 n
Ž . Ž .junction with 4 and 6 it then follows that

P sup m A y m A ) « F P sup m A y m A ) «r2Ž . Ž . Ž . Ž .Ý n n½ 5½ 5
Ž .pg AA Ag BB AAAgp

F 4DU AA 2 mŽ AA . exp yn« 2r32 ,Ž . Ž .2 n

as desired. I

The results of Sections 4 and 5 rely on the following corollary of Lemma 1,
whose proof is an easy application of the Borel]Cantelli lemma.
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COROLLARY 1. Let X , X , . . . be i.i.d. random vectors in R d with X ; m1 2 i
and let AA , AA , . . . be a sequence of partition families. If, as n tends to infinity,1 2
Ž . y1 Ž . Ž . y1 U Ž .a n m AA ª 0 and b n log D AA ª 0, thenn n n

7 sup m A y m A ª 0 with probability 1.Ž . Ž . Ž .Ý n
pg AA Agpn

3. Data-driven partitioning schemes. The density and classification
estimates studied below have several common features. In each case an
estimate is produced in two stages from a training set T that consists of nn
i.i.d. random variables Z , . . . , Z taking values in a set XX . For density1 n

d d � 4estimation XX s R , while for classification XX s R = 1, . . . , M . Using T an
Ž .partition p s p Z , . . . , Z is produced according to a prescribed rule. Then n 1 n

partition p is then used in conjunction with T to produce a densityn n
estimate as in Section 4 or a classification rule as in Section 5. In either case,
the training set is ‘‘used twice’’ and it is this feature of data-dependent
histogram methods that distinguishes them from fixed histogram methods.

An n-sample partitioning rule for R d is a function p that associates everyn
Ž . n dn-tuple z , . . . , z g XX with a measurable partition of R . Applying the1 n

Ž .rule p to Z , . . . , Z produces a random partition p Z , . . . , Z . A partition-n 1 n n 1 n
ing scheme for R d is a sequence of partitioning rules

� 4P s p , p , . . . .1 2

Associated with every rule p there is a fixed, nonrandom family of partitionsn

AA s p z , . . . , z : z , . . . , z g XX .� 4Ž .n n 1 n 1 n

� 4Thus every partitioning scheme P is associated with a sequence AA , AA , . . .1 2
Ž .of partition families. In what follows the random partitions p Z , . . . , Z willn 1 n

be denoted simply by p . With this convention in mind, for every x g R d letn
w xp x be the unique cell of p that contains the point x.n n
Let A be any subset of R d. The diameter of A is the maximum Euclidean

distance between any two points of A:

5 5diam A s sup x y y .Ž .
x , ygA

For each g ) 0 let Ag be the set of points in R d that are within distance g of
some point in A,

g 5 5A s x : inf x y y - g .½ 5
ygA

4. Histogram density estimation. In this section we investigate the
consistency of histogram density estimates based on data-dependent parti-
tions. Let m be a probability distribution on R d having density f , so that

m A s f x dxŽ . Ž .H
A
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for every Borel subset A of R d. Let X , X , . . . be i.i.d. random vectors in R d,1 2
each distributed according to m, and let m be the empirical distribution ofn

� 4 dX , . . . , X . Fix a partitioning scheme P s p , p , . . . for R . Applying the1 n 1 2
Ž n. dnth rule in P to X , . . . , X produces a partition p s p X of R . The1 n n n 1

partition p , in turn, gives rise to a natural histogram estimate of f asn
follows. For each vector x g R d let

w x w x w xm p x rl p x , if l p x - `,Ž . Ž . Ž .n n n n8 f x sŽ . Ž .n ½ 0, otherwise.

Here l denotes the Lebesgue measure on R d. Note that f is itself a functionn
of the training set X , . . . , X and that f is piecewise constant on the cells of1 n n

� 4p . The sequence of estimates f is said to be strongly L -consistent ifn n 1

9 f x y f x dx ª 0Ž . Ž . Ž .H n

with probability 1 as n ª `. The strong distribution-free consistency of
kernel and non-data-dependent histogram estimates has been thoroughly

Ž .studied by Devroye and Gyorfi 1985 .¨

REMARK. While the estimates f are always nonnegative, they need notn
Ž . Ž .integrate to 1. Indeed H f x dx x is just the fraction of those pointsn

Ž .X , . . . , X lying in cells A g p for which l A is finite. The consistency of1 n n
the normalized estimates is addressed in Corollary 2 below.

PROPOSITION 1. Let f be a density function on R d and for some « - 1r2,
let g G 0 satisfy

< <f y g dx - « .H
Ž . Ž . Ž .If g x s g x rH g y dy is the normalized density corresponding to g, thenˆ

8«
< <f y g dx - .ˆH 3

PROOF. In this proof all integrals are understood with respect to Lebesgue
< < < <measure. Since H g y H f F H g y f - « , it follows that 1 y « F H g F 1 q « .

Therefore,

g f f g
f y F f y q yH H HH g H g H g H g

1 1
< <s f 1 y q f y gH HH g H g

1 « 8«
- 1 y q F . I

1 q « 1 y « 3
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The following theorem extends previous work of Zhao, Krishnaiah and
Ž .Chen 1990 , who found sufficient conditions for the strong L -consistency of1

histogram density estimates based on infinite, data-dependent rectangular
partitions. Our result differs from theirs in two respects. First, we place no
restriction on the geometry of the partitions outside of the growth condition
Ž . Ž .b below. Second, the condition c weakens their requirement that for
l-almost every x the cells containing x have diameter tending to zero.

THEOREM 1. Let X , X , . . . be i.i.d. random vectors in R d whose common1 2
� 4distribution m has a density f. Let P s p , p , . . . be a fixed partitioning1 2

scheme for R d and let AA be the collection of partitions associated with then
Ž . y1 Ž . Ž . y1 U Ž .rule p . If, as n tends to infinity, a n m AA ª 0, b n log D AA ª 0n n n n

Ž . � Ž w x. 4and c m x: diam p x ) g ª 0 with probability 1 for every g ) 0, thenn
the density estimates f are strongly consistent in L :n 1

f x y f x dx ª 0 with probability 1.Ž . Ž .H n

Ž .PROOF. Fix a number « g 0, 1r2 . It follows from Proposition 1 and
standard arguments that there is a continuous density g on R d such that
� Ž . 4 < <x: g x ) 0 is bounded and H f y g dx - « . Let n be the measure corre-

� Ž . 4sponding to g and set S s x: g x ) 0 .n

Ž n.Fix n and let p s p X be the random partition produced fromn n 1
Ž .X , . . . , X . Let f be as in 8 above and define the auxiliary functions1 n n

w x w x w xm p x rl p x , if l p x - `,Ž . Ž . Ž .n n nf̃ x sŽ .n ½ 0, otherwise,

and

w x w x w xn p x rl p x , if l p x - `,Ž . Ž . Ž .n n ng x sŽ .˜n ½ 0, otherwise.

It is clear that

˜ ˜< < < < < < < < < <10 f y f F f y g q g y f q g y g q f y f ,Ž . ˜ ˜n n n n n n

so the L error of f is bounded above by the sum of the integrals of each1 n
< <term on the right-hand side above. By design, H f y g dx - « and it is easy

to see that

˜< < < <g y f dx F n A y m A F f y g dx - «Ž . Ž .˜ ÝH Hn n
Agpn

as well.
Ž .The last term in 10 involves the difference between m and m on cells ofn

the random partition p . By considering the worst-case behavior over then
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Ž .range of p ? , we obtain an upper bound to which the results of Section 2n
apply:

˜< <f y f dx F m A y m AŽ . Ž .ÝH n n n
Agpn

F sup m A y m AŽ . Ž .Ý n
pgAA Agpn

and it follows from Corollary 1 of Lemma 1 that

˜< <lim f y f dx s 0 with probability 1.H n n
nª`

Ž .It remains to consider the third term in 10 . Let d ) 0 be so small that
Ž 1. 1 Ž .dl S F « , where S denotes the 1-blowup of S . Let g g 0, 1 be such thatn n n

for every set A : R d having diameter less than g ,

sup g x y g y - d .Ž . Ž .
x , ygA

U Ž .Let p be the collection of cells A g p for which l A is finite. Thenn n

g x y g x dxŽ . Ž .˜H n

w xn p xŽ .ns g x y dx q g x dxŽ . Ž .Ý ÝH Hw xU Ul p xŽ .A AnAgp Afpn n

11Ž .

w xn p xŽ .n w xF g x y dx q n x : diam p x G g .� 4Ž . Ž .Ý H nw xU l p xŽ .A nAgpn

An application of Fubini’s theorem shows that if A g p U, thenn

w xn p xŽ .n y1g x y dx s l A g x l A y n A dxŽ . Ž . Ž . Ž . Ž .H Hw xl p xŽ .A An

y1s l A g x dy y g y dy dxŽ . Ž . Ž .H H H
A A A

12Ž .

y1F l A g x y g y dx dy.Ž . Ž . Ž .H
A=A

If A l S s B, thenn

13 g x y g y dx dy s 0.Ž . Ž . Ž .H
A=A

Ž . gSuppose that A l S / B. If diam A - g , then A : S and it follows thatn n

2 2 g14 g x y g y dx dy F dl A s dl A l S .Ž . Ž . Ž . Ž . Ž .H n
A=A



DATA-DRIVEN HISTOGRAM 695

Ž .On the other hand, if diam A G g , then

15 g x y g y dx dy F 2 g x dx dy s 2n A l A .Ž . Ž . Ž . Ž . Ž . Ž .H H
A=A A=A

Ž . Ž .Combining 11 ] 15 shows that

gw xg x y g x dx F 3n x : diam p x G g q dl S� 4Ž . Ž . Ž .Ž .˜ Ž .H n n n

3 gw xF 3m x : diam p x G g q « q dl S ,� 4 Ž .Ž .Ž .n n2

where the second inequality follows from the fact that for every Borel set
A : R d,

1 1< <n A y m A F f y g dx - « .Ž . Ž . H2 2

Ž .Letting n ª ` and making use of assumption c in the statement of the
theorem,

3 5glim sup g x y g x dx F « q dl S F «Ž . Ž . Ž .˜H n n2 2
nª`

with probability 1. The result may now be established by letting « tend to
zero. I

� 4The consistency of the estimates f extends immediately to their normal-n
ized versions using Proposition 1.

COROLLARY 2. Under the assumptions of Theorem 1 the L -error of the1
normalized partitioning density estimates converges to zero with probability 1.

5. Histogram classification. In the classification problem, a measure-
ment vector X g R d is associated in a stochastic fashion with a class label Y

Ž . Ž . Ž .taking on finitely many values. Let X, Y , X , Y , X , Y , . . . be indepen-1 1 2 2
d � 4dent and identically distributed with X g R and Y g 1, . . . , M . Each mea-

d � 4surable decision rule g: R ª 1, . . . , M has an associated error probability,
or risk,

L g s P g X / Y .� 4Ž . Ž .
Ž .The decision rule minimizing L ? is given by

gU x s arg max P x ,Ž . Ž .k
ks1, . . . , M

Ž . � < 4where P x s P Y s k X s x is the a posteriori probability of the kth classk
U Ž U .given that X s x. Define L s L g .

Let g be a decision rule that is based on the training set T sn n
Ž . Ž .X , Y , . . . , X , Y . The error probability of g is a random variable given1 1 n n n
by

<L g s P g X / Y T .� 4Ž . Ž .n n n
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� 4A sequence g of data-dependent decision rules is said to be strongly riskn
Ž . Uconsistent if L g ª L with probability 1 as n tends to infinity.n

� 4 dLet P s p , p , . . . be a fixed partitioning scheme for R . The partition-1 2
ing rule p assigns a measurable partition of R d to each sequencen
Ž . Ž .x , y , . . . , x , y of labeled vectors. Of interest here are decision rules that1 1 n n

Ž .are defined by forming a class-majority votes within the cells of p T .n n
Ž .Suppressing the dependence of p T on T , definen n n

� 4 � 4g x sk if I Y s k G I Y s lŽ . Ý Ýn i i
w x w xX gp x X gp x16Ž . i n i n

for l s 1, . . . , M ,

� 4where I C denotes the indicator of an event C. Ties are broken in favor of
the class having the smallest index. We emphasize that the partition p cann
depend on the vectors X and on their labels Y as well.i i

The weak consistency of histogram classification rules whose partitions
depend only on the vectors X may be established using the general result ofi

Ž .Stone 1977 . The strong universal consistency of histogram classification
rules based on data-independent cubic partitions was shown by Devroye and

Ž . Ž .Gyorfi 1983 . Gordon and Olshen 1978, 1980, 1984 established universal¨
consistency for classification and regression schemes based on data-depen-
dent, rectangular partitioning of R d. The most general existing conditions for
the risk consistency of the classification rules studied here can be found in

Ž .the book of Breiman, Friedman, Olshen and Stone 1984 . These conditions
are discussed further in Section 6.

� 4Here we establish the strong risk consistency of the rules g for a widen
class of partitioning schemes P. The next theorem is analogous to Theorem 1
for density estimation.

THEOREM 2. For each n let AA be the collection of partitions associatedn
with the n-sample partitioning rule p . Let m be the distribution of X. If, as nn

Ž . y1 Ž . Ž . y1 U Ž . Ž .tends to infinity, a n m AA ª 0, b n log D AA ª 0 and c for everyn n n
Ž .g ) 0 and d g 0, 1 ,

w xinf m x : diam p x l S ) g ª 0 with probability 1,� 4Ž .n
Ž .S : m S G1yd

� 4 Ž .then the classification rules g defined in 16 are risk consistent:n

L g ª LU with probability 1.Ž .n

Theorem 2 implies the distribution-free consistency of partitioning schemes
Ž . Ž .for which condition c is satisfied for every distribution of X, Y . An example

of such a scheme will be given in Section 6. The proof of Theorem 2 relies on
w Ž .xthe following elementary inequality cf. Devroye and Gyorfi 1985 .¨



DATA-DRIVEN HISTOGRAM 697

Ž . Ž . dLEMMA A. Let b x , . . . , b x be real-valued functions on R and define1 M
the decision rule

h x s arg max b x .Ž . Ž .k
1FkFM

Then
M

UL h y L F P x y b x m dx .Ž . Ž . Ž . Ž .Ý H k k
ks1

PROOF OF THEOREM 2. Observe that the classification rule g defined inn
Ž .16 can be rewritten in the form

y1 n w xn Ý I X g p x , Y s k� 4is1 i n
g x s arg max .Ž .n ½ 5w xm p xŽ .1FkFM n

For k s 1, . . . , M define

y1 n w xn Ý I X g p x , Y s k� 4is1 i n
P x s ,Ž .k , n w xm p xŽ .n

and note that by Lemma A, it is enough to show that

P x y P x m dx ª 0 a.s.Ž . Ž . Ž .H k k , n

� 4for each k. Fix k g 1, . . . , M and define

m x s P x and m x s P x .Ž . Ž . Ž . Ž .k n k , n

Fix « ) 0 and let r : R d ª R be a continuous function with compact support
such that

m x y r x m dx - « .Ž . Ž . Ž .H
Define the auxiliary functions

<w x� 4E I Y s k I X g p x T� 4Ž .n n
m x sŽ .˜ n w xm p xŽ .n

and
<w xE r X I X g p x T� 4Ž .Ž .n n

r x s ,Ž .ñ w xm p xŽ .n

and note that both are piecewise constant on the cells of the partition p . Wen
begin with the upper bound

m x y m x F m x y r x q r x y r xŽ . Ž . Ž . Ž . Ž . Ž .˜n n
17Ž .

q r x y m x q m x y m x .Ž . Ž . Ž . Ž .˜ ˜ ˜n n n n
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Ž .The integral of the first term on the right-hand side of 17 is smaller than «
Ž .by the definition of r x . As for the third term,

r x y m x m dx s m x m dx y r x m dxŽ . Ž . Ž . Ž . Ž . Ž . Ž .˜ ˜ ÝH H Hn n
A AAgpn

F m x y r x m dx - « .Ž . Ž . Ž .H
Ž � 4. d � 4Now let h be the distribution of X, I Y s k on R = 0, 1 and let h ben

Ž � 4. Ž � 4.the empirical measure of X , I Y s k , . . . , X , I Y s k . For each parti-1 1 n n
� 4 d � 4tion p s A , . . . , A g AA , define a partition p of R = 0, 1 via˜1 r n

� 4 � 4 � 4 � 4p s A = 0 , . . . , A = 0 j A = 1 , . . . , A = 1� 4 � 4˜ 1 r 1 r

� 4and let BB s p : p g AA . Then˜n n

m x y m x m dxŽ . Ž . Ž .˜H n n

n1
<� 4 � 4 � 4 � 4s I Y s k I X g A y E I Y s k I X g A TŽ .Ý Ý i i nnAgp is1n

� 4 � 4s h A = 1 y h A = 1Ž . Ž .Ý n
Agpn

� 4 � 4F sup h A = 1 y h A = 1Ž . Ž .Ý n
pg AA Agpn

s sup h B y h B .Ž .Ž .Ý n j
pg BB˜ B gp̃n j

Ž . Ž . U Ž . U Ž .It is easy to see that m BB s 2m AA and D BB s D AA . In conjunctionn n n n n n
Ž . Ž .with Corollary 1 of Lemma 1, conditions a and b of Theorem 2 imply that

m x y m x m dx ª 0 a.s.Ž . Ž . Ž .˜H n n

Ž .It remains to consider the second term on the right-hand side of 17 . An
application of Fubini’s theorem gives the bound

r x y r x m dxŽ . Ž . Ž .˜H n

<� 4E r X I X g A TŽ .Ž .ns r x y m dxŽ . Ž .Ý H
m AŽ .AŽ .A : m A /0

1
<� 4s r x m A y E r X I X g A T m dxŽ . Ž . Ž . Ž .Ž .Ý H nm AŽ . AŽ .A : m A /0

1
s r x m dy y r y m dy m dxŽ . Ž . Ž . Ž . Ž .Ý H H H

m AŽ . A A AŽ .A : m A /0

1
F r x y r y m dx m dy .Ž . Ž . Ž . Ž .Ý H H

m AŽ . A AŽ .A : m A /0
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Ž . d Ž .Fix d g 0, 1 and let g ) 0 be chosen so that if A : R satisfies diam A - g ,
< Ž . Ž . <then r x y r y - d for every x, y g A. Let K - ` be a uniform upper

< < d Ž . Ž .bound on r . Let S ; R be such that m S G 1 y d . If diam A l S G g ,
then

y1
m A r x y r y m dx m dy F 2 Km A .Ž . Ž . Ž . Ž . Ž . Ž .H H

A A

Ž .If, on the other hand, diam A l S - g , then

y1
m A r x y r y m dx m dyŽ . Ž . Ž . Ž . Ž .H H

A A

y1F m A r x y r y m dx m dyŽ . Ž . Ž . Ž . Ž .H Hž AlS AlS

q2 r x y r y m dx m dyŽ . Ž . Ž . Ž .H H /A A_S

y1 2F m A dm A q 4Km A m A _ SŽ . Ž . Ž . Ž .Ž .
s dm A q 4Km A _ S .Ž . Ž .

Ž c.Summing over the cells A g p and noting that m S - d , these boundsn
show that

w xr x y r x m dx F 2 Km x : diam p x l S G g q 4K q 1 d .� 4Ž . Ž . Ž . Ž .Ž .˜H n n

d Ž .Take the infimum of both sides above over S ; R with m S G 1 y d and
Ž .then let n tend to infinity. By condition c of Theorem 2,

lim sup r x y r x m dx F d 4K q 1 a.s.Ž . Ž . Ž . Ž .˜H n
nª`

In summary, we have shown that

lim sup m x y m x m dx F 2« q d 4K q 1 a.s.Ž . Ž . Ž . Ž .H n
nª`

As « and d were arbitrary, the proof is complete. I

REMARK. The similarity between the conditions of Theorem 1 and Theo-
Ž . Ž .rem 2 is apparent. Condition c of Theorem 2 is weaker than condition c of

Theorem 1, however, as one can see by taking S s R d in the argument above.
Consider density estimation requires more stringent conditions on the diame-
ter of the partition cells than does consistent classification.

6. Applications.

6.1. Relation to a previous result. Breiman, Friedman, Olshen and Stone
Ž .1984 considered classification rules based on tree-structured partitions.
Tree-structured partitions are produced recursively: beginning with a single
cell containing all of R d, refinements are made in an iterative fashion by
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splitting a selected cell of the current partition with a hyperplane that is
Ž .based on the data. If the rule p ? makes k such splits, then the resultingn

partition contains k q 1 cells, each of which is a convex polytope. Breiman,
Ž .Friedman, Olshen and Stone 1984 establish the consistency of classification

Ž .rules g defined as in 16 under three conditions:n

Ž .1. For every n and every training sequence T , each cell of p T is an n n
polytope having at most B faces, where B is fixed.

2. Each cell of p contains at least k of the vectors X , . . . , X , wheren n 1 n
k rlog n ª `.n

Ž .3. A ‘‘shrinking cell’’ condition that implies condition c of Theorem 2.

Ž . Ž .Using Theorem 2 it can be shown that conditions 2 and 3 alone suffice to
insure the consistency of classification rules based on tree-structured parti-
tioning schemes.

� 4THEOREM 3. Let P s p , p , . . . be a sequence of tree-structured parti-1 2
tioning rules for R d. Suppose that for every training sequence T , each cell ofn

Ž .the partition p T contains at least k of X , . . . , X , wheren n n 1 n

kn
18 ª `.Ž .

log n

Ž .If the shrinking cell condition c of Theorem 2 is satisfied, then the classifi-
� 4cation rules g based on P are risk consistent.n

PROOF. Let AA denote the collection of all possible partitions produced byn
Ž . Ž .the rule p ? . Each partition p T contains at most nrk cells, so thatn n n n

m AA 1Ž .n F ª 0.
n kn

The recursive nature of the partitioning rule insures that each partition
Ž . Ž .p T is based on at most m AA s nrk hyperplane splits. Each such splitn n n n

d d wcan dichotomize n G 2 points in R in at most n different ways cf. Cover
Ž .x1965 . It follows that the number of different ways n vectors can be
partitioned by p g AA is bounded byn

nrk nU dD AA F n ,Ž . Ž .n n

and consequently

1 d log n
Ulog D AA F ª 0.Ž .n nn kn

Ž . Ž .Thus conditions a and b of Theorem 2 are satisfied and the proof is
complete. I

6.2. k-Spacing density estimates. Consider the k -spacing estimate of an
univariate density. Let X , . . . , X be i.i.d. real-valued random variables1 n
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whose distribution m has a density f on R. Let X Ž1. - X Ž2. - ??? - X Žn. be
Žthe order statistics obtained by a suitable permutation of X , . . . , X . This1 n

.permutation exists with probability 1 as m has a density. The rule pn
partitions the real line into intervals such that each interval, with the

u vpossible exception of the rightmost, contains k points. Let m s nrk .n n
Then

n � 4p X s A , . . . , A ,Ž .n 1 1 m

where

X Žk nŽ jy1.q1. , . . . , X Žk n j. g A j

for each j s 1, . . . , m y 1 and

X Žk nŽmy1.q1. , . . . , X Žn. g A .m

Theorem 4 applies to any partition having these properties. The endpoints of
the individual cells are not important. The density estimate f is defined byn

¡ my 1w xk rl p x , if x g D A ,Ž .n n js1 j~f x sŽ .n w xn y k m y 1 rl p x , if x g A ,Ž .Ž . Ž .n n m¢
0, otherwise.

Ž .Abou-Jaoude 1976b established the strong L -consistency of this estimate1
when the density f of m is Riemann-integrable. An application of Theorem 1
gives the best possible result.

THEOREM 4. Let f be the k -spacing estimate given above. Thenn n

lim f x y f x dx s 0 a.s.Ž . Ž .H n
nª`

if k ª ` and k rn ª 0 as n tends to infinity.n n

Ž .REMARK. Abou-Jaoude 1976b showed that the conditions on the block
size k are necessary for universal consistency, so the conditions above aren
optimal.

PROOF OF THEOREM 4. Let AA contain all the partitions of R into m sn
u v Ž . Ž .nrk intervals. Then m AA F nrk q 1, so that condition a of Theorem 1n n n

U Ž .is satisfied. The partitioning number D AA is equal to the number of ways nn n
fixed points can be partitioned by m intervals, so that

U n q mD AA s .Ž .n n ž /n

Ž . Ž .Let h be the binary entropy function, defined by h x s yx log x y
Ž . Ž . Ž . Ž x1 y x log 1 y x for x g 0, 1 . Note that h is increasing on 0, 1r2 , h is
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Ž . wsymmetric about 1r2 and that h x ª 0 as x ª 0. It is well known cf.
sŽ .x Ž .Csiszar and Korner 1981 that log F sh trs , and consequently´ ¨ ž /t

m
Ulog D AA F n q m hŽ . Ž .n n ž /n q m

1
F 2nh .ž /kn

As k ª `, the last inequality implies thatn

1
Ulog D AA ª 0.Ž .n nn

Ž .which establishes condition b of Theorem 1.
Žw x c.Now fix g , « ) 0 and let B be so large that m yB, B - « . Then

w x w x w xm x : diam p x ) g F « q m x : diam p x ) g l yB, B .� 4 � 4Ž . Ž .Ž .n n

There are at most 2 Brg disjoint intervals of length greater than g in
w xyB, B , and consequently

w x w xm x : diam p x ) g l yB, B� 4Ž .Ž .n

2 B
F max m AŽ .

g Agpn

2 B
F max m A q max m A y m AŽ . Ž . Ž .n nž /g Agp Agpn n

2 B knF q sup m A y m A ,Ž . Ž .nž /g n

where in the last inequality the supremum is taken over all intervals in R.
The first term in the parentheses tends to zero by assumption, while the
second term tends to zero with probability 1 by an obvious extension of the
classical Glivenko]Cantelli theorem. In summary, for any g , « ) 0,

w xlim sup m x : diam p x ) g F « a.s.� 4Ž .n
nª`

Ž .so that condition c of Theorem 1 is satisfied. This completes the proof. I

6.3. Classification using statistically equivalent blocks. Classification
rules based on statistically equivalent blocks are analogous to the k-spacing
density estimate studied above. If the observations X are real-valued, theni
the partition for the statistically equivalent blocks classification rule agrees
with the partition used by the k-spacing density estimate. Note that parti-
tions of this sort are well defined only if data points do not coincide.

For multivariate data the k-spacing partitioning scheme can be general-
Ž . Ž .ized in several ways. Consider a training sequence X , Y , . . . , X , Y g1 1 n n

d � 4R = 1, . . . , M such that d G 2 and the distribution of X has nonatomici
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Ž .marginals. We consider a partitioning method proposed by Gessaman 1970 .
uŽ .1r d vLet m s nrk . Now project the vectors X , . . . , X onto the firstn n 1 n

coordinate axis. Based on these projections, partition the data into m setsn
using hyperplanes perpendicular to the first coordinate axis, in such a way

Ž .that each set with the possible exception of the last contains an equal
number of points. This produces m cylindrical sets. In the same way,n
partition each of these cylindrical sets along the second axis into m boxes,n
such that each box contains the same number of data points. Continuing in a
similar fashion along the remaining coordinate axes produces md rectangularn

Ž .cells, each of which with the possible exception of those on the boundary
contains k points. The corresponding classification rule g is defined as inn n
Section 5, by taking a majority vote among those labels Y whose correspond-i
ing vectors X lie within a given cell. The consistency of this classificationi
rule can be established by an argument similar to that given for the k -spac-n
ing density estimate above. It is sufficient to verify that the conditions of
Theorem 2 are satisfied. The only minor difference is in the computation of

U n q m d
D , which in this case is upper bounded by . The following theoremž /n n
summarizes the result.

THEOREM 5. Assume that the distribution m of X has nonatomic marginals.
Then the classification rule based on Gessaman’s partitioning scheme is
consistent if k ª ` and k rn ª 0 as n tends to infinity.n n

To consider distributions with possibly atomic marginals the partitioning
algorithm must be modified, since for large n every such atom will have more
than k data points with the same corresponding component. Such a modifi-n
cation is possible, but it is not discussed here.

REMARK. Consistency of Gessaman’s classification scheme can also be
Ž .derived from the results of Gordon and Olshen 1978 under the additional

'condition k r n ª `. Results in Breiman, Friedman, Olshen and Stonen
Ž .1984 can be used to improve this condition to k rlog n ª `. Theorem 5n
guarantees consistency under the optimal condition k ª `.n

6.4. Clustering-based partitioning schemes. Clustering is a widely used
method of statistical data analysis. Clustering schemes divide the data into
finitely many disjoint groups by minimizing an empirical error measure, such
as the average squared distance from the cluster centers. In this section we
outline the application of our results to classification rules and density

Ž .estimates based on nearest-neighbor clustering of the unlabeled measure-
ment vectors X .i

d � 4 dA clustering scheme is a function C: R ª CC, where CC s c , . . . , c : R1 m
is a finite set of vectors known as cluster centers. Every clustering scheme C

� 4 dis associated with a partition p s A , . . . , A of R having cells A sj1 m
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� Ž . 4 Ž .x: Q x s c . A clustering scheme C ? is said to be nearest neighbor if forj

each x g R d,

5 5C x s arg min x y c ,Ž . j
c gCCj

with ties broken in favor of the center c having the least index. In this casej
the partition p of C is just the nearest-neighbor partition of the vectors
� 4 Ž . Ž .c , . . . , c . See Hartigan 1975 or Gersho and Gray 1992 for more details1 m
concerning multivariate clustering and its applications.

Ž . Ž . d � 4Let X , Y , X , Y , . . . g R = 1, . . . , M be i.i.d. and suppose that the1 1 2 2
distribution m of X has bounded support. The risk of a clustering scheme C1

Ž . 5 Ž .5 2 Ž .is defined to be R C s H x y C x dm x and the empirical risk of C with
respect to X , . . . , X is given by1 n

n1 2ˆ19 R C s X y C X .Ž . Ž . Ž .Ýn i in is1

Ž 5 5 .Here ? denotes the usual Euclidean norm. From a training set T sn
Ž . Ž .X , Y , . . . , X , Y and a clustering scheme C one may produce a classifi-1 1 n n n
cation rule g by taking class-majority votes within the cells of C . Suitablen n
choice of C insures that g is risk consistent.n n

THEOREM 6. Assume that the distribution m of X has bounded support.i
Ž .Let C minimize the empirical risk R C over all nearest-neighbor clusteringn n

schemes C with k cluster centers. Let the classification rule g be definedn n
Ž . y1 2within the cells of C by a majority vote as in 16 . If k ª ` and n k log nn n n

Ž . Uª 0, then L g ª L with probability 1.n

PROOF. Let VV be the family of all nearest-neighbor partitions of kk
d Ž .vectors in R . Then m VV s k and every cell of a partition p g VV isk k
Ž .bounded by k y 1 hyperplanes representing points that are equidistant

w Ž .xfrom two vectors. It is well known cf. Cover 1965 that n vectors x , . . . , x1 n
in R d can be split by hyperplanes in at most nd different ways. Therefore the
cells of partitions in VV can intersect x , . . . , x in at most nŽky1.d differentk 1 n

U Ž . k 2 dways. Each partition contains at most k cells, so that D VV F n , andn k
consequently

1 dk2 log nnUlog D VV F ª 0Ž .n k nn n

Ž .by assumption. Thus condition b of Theorem 2 is satisfied.
It remains to establish the shrinking cell condition of Theorem 2. Fix

g , d ) 0 and let c , . . . , c be the cluster centers of the scheme C that1 k nn
Ž .minimizes 19 . Define

kn

S s B c , gr2 l A ,Ž .Dn j j
js1
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Ž .where A is the cell of c and B x, a denotes the open ball of radius aj j
around the vector x. It is evident that

w xm x : diam p x l S ) g s 0,� 4Ž .n n

Ž .so it suffices to show that m S ª 1 with probability 1. Using a large-n
Ž .deviation inequality of Linder, Lugosi and Zeger 1993 for the empirical

squared error of nearest-neighbor clustering schemes, it can be shown that

20 R C ª 0Ž . Ž .n

Žwith probability 1. Here we have made use of the fact that the X arei
.bounded. By the Markov inequality,

22
1 y m S F R CŽ . Ž .n nž /g

Ž .for each n and it follows that m S ª 1 as desired. In

Suppose now that X , X , . . . g R d are i.i.d. and that the distribution m of1 2
X has a density with bounded support. Let p be the partition associated1 n

Ž .with the nearest-neighbor clustering scheme C minimizing 19 . It followsn
Ž . Ž . Ž w x.from a general result of Nobel 1995 that if R C ª 0, then diam p X ª 0n n

Ž .in probability. Thus 20 insures that the shrinking cell condition of Theorem
1 is satisfied, and we obtain the following analogue of Theorem 6.

Ž .THEOREM 7. Let C minimize the empirical risk R C over all nearest-n n
neighbor clustering schemes C with k cluster centers. Let the density estimaten

Ž . y1 2f be defined within the cells of C as in 8 . If k ª ` and n k log n ª 0,n n n n
< <then H f y f dx ª 0 with probability 1.n
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