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NONPARAMETRIC LIKELIHOOD RATIO CONFIDENCE
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AND JIE YANG

University of North Carolina, Charlotte,
and Florida State University

The purpose of this paper is to derive confidence bands for quantile
functions using a nonparametric likelihood ratio approach. The method is
easy to implement and has several appealing properties. It applies to
right-censored and left-truncated data, and it does not involve density
estimation or even require the existence of a density. Previous approaches
Ž .e.g., bootstrap have imposed smoothness conditions on the density. The
performance of the proposed method is investigated in a Monte Carlo
study, and an application to real data is given.

1. Introduction. Confidence bands and intervals for quantile functions
provide an attractive and readily interpretable way of summarizing survival
data. For example, Figure 1 gives confidence bands for patients treated for
malignant melanoma. Such curves are useful to medical researchers for
assessing the effectiveness of treatments.

Consider the right-censored survival data consisting of n i.i.d. pairs
Ž . Ž . � 4 Ž .Z , d , . . . , Z , d , where Z s min X , Y , d s I X F Y and X and Y1 1 n n i i i i i i i i
are independent positive random variables representing the survival time
and the censoring time of the ith subject under study. Let F and G be the0 0
distribution functions of X and Y , respectively. We study the problem ofi i

y1Ž .constructing confidence bands for the quantile function F p on an interval0
w x Ž .p , p ; 0, 1 , where, for any nondecreasing function x, the right-continu-1 2
ous inverse is defined by

xy1 p s sup t : x t F p .� 4Ž . Ž .

Ž . wLet F be the Kaplan]Meier 1958 estimator of F . It is well known cf.n 0
Ž . xShorack and Wellner 1986 , Section 18.4 that if F has a positive and0
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w y1Ž . .continuous derivative f on 0, F p q « for some 0 - p - 1, « ) 0 and0 0 0 0
Ž y1Ž ..G F p - 1, then0 0 0

W Fy1Ž .01r2 y1 y1 w x1.1 n F y F ª y in D 0, p ,Ž . Ž .n 0 d 0y1f FŽ .0 0

where W is a Gaussian process with mean 0 and covariance function
� Ž . Ž .4 Ž Ž ..Ž Ž .. 2Ž .cov W s , W t s 1 y F s 1 y F t s s for s - t,0 0

s dF uŽ .021.2 s s sŽ . Ž . H 1 y F u 1 y F u y 1 y G u yŽ . Ž . Ž .0 0 0 0

Ž .and D I is the Skorohod space on the interval I. It is not easy, however, to
y1 w x Ž xconstruct confidence bands for F on an interval p , p ; 0, p from the0 1 2 0

Ž .result in 1.1 , because the distribution of

y1W F pŽ .Ž .0
sup y1f F pŽ .Ž .p FpFp 0 01 2

involves the unknown F and is intractable except in some special cases. One0
Ž .possible solution is to transform the weak convergence result in 1.1 to a

Ž .Brownian bridge form, along the lines of Hall and Wellner’s 1980 method of
constructing confidence bands for the distribution function F . Details will be0
given in subsection 2.4. Here we only point out that the resulting band is still
difficult to use in practice because it requires knowledge of the density

Ž y1 .quantile function g s f F . As in density estimation, estimation of0 0 0
w Ž .xg involves smoothing cf. Xiang 1994 , and the choice of smoothing param-0

eter is problematic. Another solution is to bootstrap the distribution of
1r2Ž y1 y1. Ž .n F y F ; see Efron 1981 . The bootstrap does not require estimationn 0

Ž .of g . In this context, its validity was established by Lo and Singh 1986 ,0
Theorem 2, under the condition that F has a bounded second derivative.0
Bootstrap confidence bands for quantiles were also studied by Doss and Gill
Ž .1992 . A rather different approach was taken by Aly, Csorgo and Horvath¨ ˝ ´
Ž . Ž .1985 , who used strong approximations. Keaney and Wei 1994 proposed a

Ž .resampling method, different from that of Efron 1981 , and which can be
used to construct pointwise confidence intervals for quantiles without making
strong assumptions. Further work, however, would be needed to extend their
results to provide simultaneous bands for quantiles.

The purpose of this paper is to show that the nonparametric likelihood
ratio approach provides a simple solution to the problem of constructing
confidence bands for quantile functions. Let Q be the space of all distribution

w .functions on 0, ` . Let

d 1ydi iL F s F Z y F Z y 1 y F ZŽ . Ž . Ž . Ž .Ł i i i
i
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be the likelihood function based on the right-censored data described earlier.
Here F is treated as a parameter taking values in Q. For any t G 0 and
0 - p - 1, define

sup L F : F t s p and F g Q� 4Ž . Ž .
1.3 R p , t s ,Ž . Ž .

sup L F : F g Q� 4Ž .
and, for 0 F r F 1,

1.4 C p , r s t : R p , t G r .� 4Ž . Ž . Ž .
Ž .Clearly, a large value of R p, t gives evidence in favor of the hypothesis H :0

Ž . Ž .F t s p. Therefore, C p, r can be interpreted, for each fixed p, as the set of0
Ž .times t for which H is not rejected by a test based on R p, t . This suggests0

Ž . y1Ž . Ž .that C p, r be used as a confidence set for F p . We show that C p, r is0
� Ž .always an interval and that an r can be determined so that C p, r ,a a

4p F p F p gives an approximate 1 y a simultaneous confidence band for1 2
y1 w xF on the interval p , p . The band is easy to compute using a standard0 1 2

root-finding procedure.
Our approach has some appealing features. First, the method is quite

general; it works not only for right-censored data, but also for other impor-
tant missing data schemes including random truncation. In fact, without
major changes in the arguments, the method can be extended to Aalen’s
Ž .1978 multiplicative intensity counting process model, which is known to

wencompass a variety of models in survival analysis cf. Andersen, Borgan, Gill
Ž . xand Keiding 1993 , Chapters 2 and 3 . More details will be given in subsec-

tion 2.4. To the best of our knowledge, very little has been done concerning
quantile function estimation beyond the standard right censorship model.
Moreover, it appears that for such extensions our approach is more tractable
than the bootstrap or strong approximation approaches. Second, the likeli-
hood ratio confidence bands are valid under much weaker conditions. They do
not require F to be differentiable. In contrast, the methods based on weak0
convergence of Fy1 or the bootstrap were derived under the strong conditionn
that F has a bounded second derivative, as mentioned earlier. Finally, our0
approach does not require estimation of the density quantile function g .0

The nonparametric likelihood ratio approach was introduced by Thomas
Ž .and Grunkemeier 1975 to derive confidence intervals for survival probabili-

ties from right-censored data. Their simulation studies showed that the
method has a better small-sample performance than that of normal approxi-

Ž . Ž .mation. Theoretical justification was given by Li 1995a and Murphy 1995 ,
Ž .and in the case of truncated data by Li 1995b . Likelihood ratio based

confidence bands for survival functions have been derived by Hollander,
Ž .McKeague and Yang 1995 .

The theoretical development of nonparametric likelihood ratio based infer-
Ž .ence was initiated by Owen 1988, 1990 , who used an empirical likelihood to

construct confidence regions for the mean of a random vector and some of its
smooth functions in the i.i.d. complete data setting. In recent years the
nonparametric likelihood method has received much attention. It has many
attractive properties; for instance, it only uses data to determine the shape of
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a confidence region. It respects the range of the parameter, which is appeal-
ing for estimating probabilities. Moreover, empirical likelihood is Bartlett-

Ž .correctable, unlike the bootstrap; see DiCiccio, Hall and Romano 1991 .
Ž .Owen’s 1988, 1990 results have been extended to more general models

including linear regression, generalized linear models and projection pursuit.
Ž . Ž . Ž .See Owen 1991, 1992, 1995 , Kolaczyk 1992 and Qin and Lawless 1994 for

further discussion and references in this area.
The paper is organized as follows. In Section 2 we derive our confidence

bands and intervals for the quantile function and explain how they are
computed. Extensions beyond the standard right censorship model and
Hall]Wellner type confidence bands for Fy1 are discussed in subsection0
2.4. In Section 3 we illustrate the proposed procedure on a set of melanoma
data and compare it with the bootstrap method. We also investigate its small-
sample performance by simulation. Proofs are given in Section 4.

2. Main results.

2.1. Preliminaries. We assume throughout that F is continuous. The0
distinct and ordered uncensored survival times are denoted 0 - T - ??? -1
T - `. Letk

n

r s I Z G TŽ .Ýj i j
is1

be the number of subjects that are ‘‘alive’’ just before time T . Thej
Kaplan]Meier estimator of F is0

1
2.1 F t s 1 y 1 y ,Ž . Ž . Łn ž /rj: T Ft jj

Ž .which maximizes L F in Q. Its variance can be estimated by Greenwood’s
Ž Ž ..2 2Ž .formula 1 y F t s t rn, whereˆn

1
22.2 s t s n .Ž . Ž .ˆ Ý r r y 1Ž .j jj: T Ftj

Ž . Ž .The function R p, t given in 1.3 arises as the solution of an infinite-
dimensional constrained maximization problem, but it can be reduced to a

Ž .finite one as given in the following result of Li 1995a .

LEMMA 1. For each T F t F T ,1 k

k
r y1 kjR p , t s max h 1 y h : h g 0, 1Ž . Ž .Ž .Ł j j½ js1

and 1 y h s 1 y pŽ .Ł j 5j: T Ftj

2.3Ž .

k
r y1 kj= max h 1 y h : h g 0, 1 ,Ž .Ž .Ł j j½ 5

js1

Ž .where h s h , . . . , h .1 k
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� 4Note that any discrete distribution function F supported on T , . . . , T1 k
Ž . Ž . Ž Ž .can be written as F t s 1 y Ł 1 y h , t ) 0, by writing h s F T yj: T F t j j jj

Ž .. Ž Ž .. Ž . Ž .F T r 1 y F T for j G 2 and h s F T . For such an F, L F sjy1 jy1 1 1
k Ž .r jy1Ł h 1 y h . Therefore, Lemma 1 says that the nonparametric likeli-js1 j j

Ž .hood ratio R p, t can be obtained by restricting Q to be the subspace of all
discrete distributions F supported on T , . . . , T .1 k

Ž .Applying Lagrange’s method, one can show from 2.3 that

y 2 log R p , tŽ .
l t l tŽ . Ž .n ns y2 r y 1 log 1 q y r log 1 q ,Ž .Ý j j½ 5ž / ž /r y 1 rj jj: T Ftj

2.4Ž .

Ž . � 4where l t ) ymin r y 1 is uniquely determined byn j: T F t jj

1
2.5 1 y s 1 y p.Ž . Ł ž /r q l tŽ .j: T Ft j nj

Ž .The last equation is easily solved for l t using a standard root-findingn
Ž . Ž .procedure see Section 3 . The expression 2.4 was first used by Thomas and

Ž .Grunkemeier 1975 to construct confidence intervals for survival probabili-
ties.

Ž .2.2. Computing C p, r . A quantile confidence set should not fall outside
Ž . Ž .the range of the uncensored data, so we shall implicitly restrict C p, r to

w xbe contained within T , T . This is done for notational simplicity and has no1 k
Ž . Ž .effect asymptotically. In view of 2.4 , it is natural to write C p, r s

� Ž . 4 Ž .t: y2 log R p, t F y2 log r . Although y2 log R p, t is not a convex func-
Ž .tion of t, the following theorem shows that C p, r is always an interval.

Ž .THEOREM 1. For every 0 - p - 1 and 0 - r - 1, C p, r is an interval.

Ž .The proof is given in Section 4. This result enables one to compute C p, r
using a simple algorithm.

Ž . Ž .First note that the l t determined by 2.5 is a right-continuous stepn
Ž .function of t on the interval T , T with positive jumps at T , . . . , T only.1 k 1 k

Ž . Ž .This, together with 2.4 , implies that y2 log R p, t is a right-continuous
step function of t with nonzero jumps at T , . . . , T only. This fact and1 k

Ž .Theorem 1 imply that the boundaries of C p, r are uncensored survival
times.

Ž .To compute C p, r , search through the uncensored survival times in the
Ž .order T , . . . , T . Take the lower boundary of C p, r to be the first T for1 k j

Ž .which y2 log R p, T F y2 log r, and the upper boundary to be the firstj
Ž .subsequent T for which y2 log R p, T ) y2 log r.j j

2.3. LR confidence bands and intervals for Fy1. We now state our main0
result and explain how it can be used to construct the confidence bands and
intervals.
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THEOREM 2. Assume that F is continuous and strictly increasing on0
w y1Ž .x Ž y1Ž ..0, F p for some fixed 0 - p - 1 and that G F p - 1. Then, for0 0 0 0 0 0
every 0 - r - 1:

Ž .a For 0 - p - p F p ,1 2 0

y1 w xlim P F p g C p , r for p g p , pŽ . Ž .� 40 1 2
nª`

0B tŽ . 's P sup F y 2 log r ,1r2½ 5t 1 y t� 4Ž .w xtg t , t1 2

0 w xwhere B is a Brownian bridge on 0, 1 ,

s 2 Fy1 pŽ .Ž .0 l
2.6 t s for l s 1, 2Ž . l 2 y11 q s F pŽ .Ž .0 l

2Ž . Ž .and s t is defined in 1.2 .
Ž .b For 0 - p F p ,0

lim P Fy1 p g C p , r s P x 2 F y2 log r ,Ž . Ž .Ž . Ž .0 1
nª`

where x 2 is a chi-square random variable with 1 degree of freedom.1

Our LR confidence band is obtained by pasting together intervals of the
Ž .form C p, r with r chosen appropriately. Specifically, an asymptotic 1 y a

y1 w xconfidence band for F on the interval p , p is given by0 1 2

w x2.7 C p , r : p g p , p ,� 4Ž . Ž .a 1 2

� Ž . 4ˆ ˆ ˆwhere r s exp ye t , t r2 , the t is a consistent estimator of t obtaineda a 1 2 l l
2Ž . Ž . Ž . Ž .by replacing F and s ? in 2.6 by their estimated versions 2.1 and 2.2 ,0

Ž .and e t , t is the upper a-quantile of the distribution ofa 1 2

0B tŽ .
W t , t ' sup .Ž .1 2 1r2t 1 y t� 4Ž .w xtg t , t1 2

Ž U .An asymptotic 1 y a confidence interval for the p-quantile of F is C p, r ,0 a
U � 2 4 2 2where r s exp yx r2 and x is the upper a-quantile of x .a 1, a 1, a 1

Ž .For any given 0 - t - t - 1, the distribution of W t , t was studied by1 2 1 2
Ž .Miller and Siegmund 1982 . In particular, they showed that, as w ª `,

4f w 1 tŽ . 1 y1P W t , t G w s q f w w y log q o w f w ,� 4Ž . Ž . Ž .Ž .1 2 ž / ž /w w t 2

Ž . Ž .where t s t r 1 y t and f w is the standard normal density function. Thisl l l
Ž . Ž .approximation can be used to find e t , t . Some specific values of e t , ta 1 2 a 1 2

Ž .are given by Nair 1984 .

2.4. Remarks. The idea and techniques used in this article also work for
other important survival models. In fact, the likelihood ratio method can be
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Ž .extended to Aalen’s 1978 multiplicative intensity counting process model by
using an empirical version of the binomial type likelihood described by

wŽ . Ž .x Ž .Andersen, Borgan, Gill and Keiding 1993 , 4.1.37 ; see also Murphy 1995 .
The multiplicative intensity model is known to encompass a number of
models in survival analysis, including those with very general forms of
censoring and truncation. Below we describe briefly how the likelihood ratio
approach works for left-truncated data.

Confidence bands from randomly truncated data. Left-truncated data
Ž U U . Ž U U .consists of n i.i.d. pairs X , Y , . . . , X , Y from the conditional distribu-1 1 n n

Ž .tion of X, Y given that X ) Y. Here X and Y are independent positive
random variables representing the survival time and the truncation time of a

Ž .subject under study. Thus, in the left-truncation model, the pair X, Y is
Ž .observable only when X ) Y. See Woodroofe 1985 , Wang, Jewell and Tsai

Ž . Ž .1986 and Keiding and Gill 1990 for further discussions. Let F and G0 0
denote the distribution functions of X and Y, respectively. Assume F is0
continuous. We consider the problem of constructing confidence bands for
Fy1.0

Define, for any t ) 0 and 0 - p - 1,

sup L F : F t s p and F g Q� 4Ž . Ž .c
R p , t s ,Ž .c sup L F : F g Q� 4Ž .c

Ž . n �w Ž U . Ž U .x w Ž U .x4where L F s Ł F X y F X y r 1 y F Y is the conditionalc is1 i i i
likelihood of F given Y U, . . . , Y U. Let XU - ??? - XU denote the order1 n Ž1. Žn.

U U Ž . Ž .statistics of X , . . . , X . Then y2 log R p, t is given by 2.4 , where r is1 n c j
n Ž U U U .now defined by r s Ý I Y - X F X . Moreover, one can establishj is1 i Ž j. i

exact analogs of Theorems 1 and 2 for the left-truncation model along the
same lines. This leads to confidence bands and intervals for Fy1.0

y1 Ž .Hall]Wellner type confidence band for F . Hall and Wellner 19800
derived confidence bands for F from censored data by transforming the weak0
convergence of the Kaplan]Meier estimator to a Brownian bridge form. Their

Ž .idea can also be used as we outline below to obtain confidence bands for the
quantile function Fy1. Unfortunately, such a band requires estimation of0
the density quantile function, which is a serious drawback, as discussed in
the Introduction.

Ž .From 1.1 , it can be shown that

n1r2 Fy1 y Fy1 g s 2Ž .n 0 n 0 y1 w xp ª B ( ( F p in D 0, p ,Ž . Ž .d 0 022 y1 ž /ž /ž /1 y p 1 q s1 q s ( FˆŽ .n

where ( denotes functional composition, B0 is a Brownian bridge process, s 2ˆ
Ž .is given by 2.2 and g is a uniformly consistent estimate of the densityn

quantile function g s f ( Fy1. This leads to the following asymptotic 1 y a0 0 0
y1 w xconfidence band for F on p , p0 1 2

1 y p 1 q s 2 Fy1 pŽ . Ž .ˆ Ž .Ž .ny1F p " c a , a ,Ž . Ž .n 1 2 1r2n g pŽ .n
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2Ž y1Ž .. � 2Ž y1Ž ..4 Ž .where a s s F p r 1 q s F p for l s 1, 2, and c a , a is de-ˆ ˆl n l n l 1 2
termined by

0P sup B u F c a , a s 1 y a .Ž . Ž .1 2
a FuFa1 2

Ž . Ž .See Hall and Wellner 1980 for the computation of c a , a .1 2

3. Application and simulation study. In this section we apply our LR
Ž .band 2.7 and compare it to a bootstrap band for a real data set. We also

carry out a simulation study to assess the small-sample performance of the
LR band.

We considered a data set consisting of survival times following treatment
wŽ .for malignant melanoma; see Andersen, Borgan, Gill and Keiding 1993 ,

xpages 11 and 709 . The analysis was restricted to the 87 males under study,
of whom 31 were observed to die from the disease and the remaining were
censored observations. Figure 1 gives the 90% LR and bootstrap bands for

w xthe quantile function on the interval 0, 0.25 . The bootstrap band is the
Ž .‘‘method 1’’ band of Doss and Gill 1992 . For this data set the LR band is

considerably narrower than the bootstrap band.

FIG. 1. 90% LR and bootstrap confidence bands for quantiles of survival time for men with
malignant melanoma.
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In Table 1 we report the results of simulations to estimate the coverage
probabilities of the LR band in three examples. The three pairs of survival

Ž .and censoring distributions are: a F s standard exponential and G s0 0
Ž . Ž .uniform on 0, b ; b F s standard exponential and G s exponential; and0 0

'Ž . Ž . Ž . Ž . Ž .c F t s 1 y exp y 2 t Weibull and G t s Weibull with the same0 0
shape parameter as F . In each case, the censoring distribution is adjusted to0
give the prescribed censoring rate.

w xThe bands were calculated on the interval 0.1, 0.9 , and each had a
nominal coverage probability of 0.95. Each entry in the table was based on
10,000 Monte Carlo samples that were simulated using the uniform random

Ž .number generator in Press, Teukolsky, Vetterling and Flannery 1992 . Val-
Ž . Ž .ues of l t solving 2.5 were computed using the Van Wijngaarden]n

wDekker]Brent root-finding procedure Press, Teukolsky, Vetterling and
Ž . xFlannery 1992 , page 359 .

The coverage probabilities are seen to be close to their nominal value of
Ž .0.95, except under heavy censoring and small sample size n s 50 .

4. Proofs.

Ž . �PROOF OF THEOREM 1. Let 0 - p - 1 be fixed. Recall that C p, r s t:
Ž . 4 Ž . Ž .R p, t G r , where R p, t has the form 2.3 . Because the denominator on

Ž .the right-hand side of 2.3 does not depend on t, it suffices to show that the
set

k4.1 I s t : min g h : h g 0, 1 and 1 y h s 1 y p F cŽ . Ž . Ž . Ž .Ł j½ 5½ 5
j: T Ftj

is an interval, where c ) 0 is a constant and

k
r y1jg h ' y2 log h 1 y h .Ž . Ž .Ł j j½ 5

js1

w xSo we only need to show that t , t ; I for any two points t - t1 2 1 2
in I.

U w x Ž .Let t , t g I and t g t , t . Then there exists an h s h , . . . , h that1 2 1 2 l l1 lk
Ž . Ž .attains the minimum in 4.1 for t s t , l s 1, 2, and for which g h F c.l l

TABLE 1
Ž . Ž .Observed coverage probabilities of nominal 95% LR quantile bands for examples a ] c

( ) ( ) ( )a b c

Sample size Censoring rate Censoring rate Censoring rate
n 25% 50% 75% 33% 50% 66% 35% 50% 65%

50 0.9434 0.9587 0.9912 0.9434 0.9418 0.9584 0.9430 0.9538 0.9778
100 0.9518 0.9612 0.9618 0.9539 0.9456 0.9492 0.9518 0.9540 0.9716
200 0.9520 0.9570 0.9550 0.9576 0.9500 0.9455 0.9520 0.9546 0.9610
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Ž . Ž Ž . Ž .. Ž .For 0 F x F 1, let q x s q x , . . . , q x s xh q 1 y x h . Define1 k 1 2

f x s 1 y q x ,Ž . Ž .Ž .Ł j
Uj: T Ftj

w xwhich is a continuous function of x on the interval 0, 1 . Moreover,

f 0 s 1 y h G 1 y h s 1 y pŽ . Ž . Ž .Ł Ł2 j 2 j
Uj: T Ft j : T Ftj j 2

and

f 1 s 1 y h F 1 y h s 1 y p.Ž . Ž . Ž .Ł Ł1 j 1 j
Uj: T Ft j : T Ftj j 1

U w xThus, by the intermediate value theorem, there exists x g 0, 1 such that
Ž U . U Ž U U . Ž U .f x s 1 y p. Set h s h , . . . , h s q x . Then1 k

4.2 1 y hU s 1 y p.Ž . Ž .Ł j
Uj: T Ftj

Ž U . U Ž . Ž U .Because g is a convex function, we have g h F x g h q 1 y x =1
Ž . Ž . U Ž .kg h F c. This, together with 4.2 and the fact that h g 0, 1 , implies that2

tU g I. This proves the theorem. I

The following lemma, needed for proving Theorem 2, relates the asymp-
Ž .totic behavior of l t to the Kaplan]Meier estimator F .n n

Ž . Ž . Ž .LEMMA 2. Let l t be the unique solution of equation 2.5 with p s F t .n 0
Ž . Ž 1r2 .Under the assumptions of Theorem 2, l t s O n andn p

y2 y14.3 l t s ns t log 1 y F t y log 1 y F t q O n ,Ž . Ž . Ž . Ž . Ž . Ž .ˆ Ž .n n 0 p

w y1Ž .x 2 Ž .uniformly in t g 0, F p , where s is defined by 2.2 .ˆ0 0

PROOF. The proof of the first part is very similar to that of Lemma 2.2 of
Ž . Ž .Li 1995a and is omitted. We only mention that it uses inequalities 2.12
Ž . Ž .and 2.13 of Li 1995a and the weak convergence of the Nelson]Aalen

estimator of the cumulative hazard function and the Kaplan]Meier estimator
w y1Ž .x Ž . Ž .in D 0, F p . The proof of 4.3 is exactly the same as that of 2.15 of Li0 0

Ž .1995a . I

PROOF OF THEOREM 2. We first show that
2y1U F pŽ .Ž .0y1 w x4.4 y 2 log R F p , p ª in D 0, p ,Ž . Ž .Ž .0 d 0y1s F pŽ .Ž .0

Ž .where U t is a Gaussian process with mean 0 and covariance function
� Ž . Ž .4 2Ž � 4. 2 Ž .cov U s , U t s s min s, t and s is defined in 1.2 .

Ž . Ž y1Ž . . Ž Ž ..By 2.4 , we can write y2 log R F p , p s c l t , where0 n

x x
c x s y2 r y 1 log 1 q y r log 1 qŽ . Ž .Ý j j½ 5ž / ž /r y 1 ry1 j jŽ .j : T FF pj 0
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Ž . Ž . y1Ž .and l t is determined by 2.5 with t s F p . It can be verified thatn 0
Ž . XŽ . YŽ . 2Ž y1Ž ..c 0 s c 0 s 0 and c 0 s 2s F p rn. A Taylor series expansion ofˆ 0
Ž .c t about t s 0 then gives

2 Z2 y1s F p l t c jŽ . Ž . Ž .ˆ Ž .0 n n 3y14.5 y 2 log R F p , p s q l t ,Ž . Ž . Ž .Ž .0 nn 6

< < < Ž . < Ž 1r2 .where j F l t s O n .n n p
< y1 n Ž .y1By the Glivenko]Cantelli theorem, sup n Ý I Z G t y0 F t F F Ž p . is1 i0 0

Ž . < n Ž . Ž .P Z G t ª 0 a.s. as n ª `. Because r s Ý I Z G T and P Z G t s1 j is1 i j 1
w Ž .xw Ž .x w xw Ž y1Ž ..x w y1Ž .x1 y F t 1 y G t G 1 y p 1 y G F p ) 0 for all t g 0, F p ,0 0 0 0 0 0

Ž . Ž y1 . � y1Ž .4we have r s O n and 1rr s O n uniformly in j g j: T F F p .j p j p j 0 0
Ž 1r2 .This, together with j s O n , impliesn p

Zc jŽ .n 3
l tŽ .n6

3 33
2 l t r y 1 r q j y r r y 1 q jŽ . Ž . Ž . Ž .n j j n j j nF Ý 3 33 y1 r y 1 q j r q jŽ . Ž .Ž .j : T FF p j n j nj 0 0

4.6Ž .

s O n3r2 O ny3Ž . Ž .Ýp p
y1Ž .j : T FF pj 0 0

s O ny1r2 .Ž .p

Ž . Ž . Ž . 2Ž .It follows from 4.3 , 4.5 , 4.6 and since s t is uniformly consistent forˆ
2Ž . w y1Ž .xs t on 0, F p , that0 0

y2 log R Fy1 p , pŽ .Ž .0

21r2 y1n log 1 y F F p y log 1 y pŽ . Ž .� 4Ž .n 0 y1r2s q O nŽ .py1ž /s F pŽ .ˆ Ž .0

q O ny1r2 .Ž .p

Ž . wMoreover, by Theorem 4.2.2 of Gill 1980 and the functional d-method see
Ž .xGill 1989 ,

1r2n log 1 y F t y log 1 y F t U t� 4Ž . Ž . Ž .n 0 y16

in D 0, F p ,Ž .0 0ds t s tŽ . Ž .ˆ

Ž .leading immediately to 4.4 .
Ž .Now we prove part a . Note that

U s 2
04.7 s bB ( ,Ž . Ž .d 2ž /s 1 q s
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Ž . � Ž .41r2where b x s 1r x 1 y x , since both sides are Gaussian processes with
the same mean and covariance function. Therefore,

y1 w xlim P F p g C p , r for all p g p , pŽ . Ž .Ž .0 1 2
nª`

y1s lim P sup y2 log R F p , p F y2 log rŽ .Ž .0ž /nª` w xpg p , p1 2

y1U F pŽ .Ž .0 's P sup F y 2 log ry1ž /s F pŽ .Ž .w x 0pg p , p1 2

0B tŽ . 's P sup F y 2 log r ,1r2ž /t 1 y t� 4Ž .w xtg t , t1 2

Ž .as required, where the second equality is from 4.4 , the last equality is from
Ž . Ž .4.7 and t and t are defined by 2.6 .1 2

Ž .To prove part b , we only need to note that

lim P Fy1 p g C p , r s lim P y2 log R Fy1 p , p F y2 log rŽ . Ž . Ž .Ž . Ž .Ž .0 0
nª` nª`

2y1U F pŽ .Ž .0s P F y2 log ry1s F pž /Ž .Ž .0

s P x 2 F y2 log r ,Ž .1

Ž .where the second step is from 4.4 and the last equality follows from
Ž . Ž .U t rs t being standard normal for t ) 0. I
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