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The consistency of estimating equations has been studied, in the
main, along the lines of Cramér’s classical argument, which only asserts
the existence of consistent solutions. The statement similar to that of Doob
and Wald, which identifies the consistent solutions, has not yet been
established. The obstacle is that the solutions of estimating equations
cannot in general be defined as the maximum of likelihood functions. In
this paper we demonstrate that the consistent solutions can be identified
as the minimax of a function R, whose properties resemble those of a log
likelihood ratio, but which exists in a much wider context. Furthermore,
since we do not need R to be differentiable, the minimax is consistent
even when the estimating equation does not exist. In this respect, the
minimax is a new estimator. We first convey the idea by focusing on the
quasi-likelihood estimate, and then indicate its full generality by provid-
ing a set of sufficient conditions for consistency and studying a number of
important cases. Efficiency will also be verified.

1. Introduction. The quasi-likelihood estimate is defined as the solution
to the quasi-likelihood equation, the optimal estimating equation constructed
under the assumptions of the first two moments and the differentiability of
the mean function. See Wedderburn (1974) and McCullagh (1983). Let X7 =
(X1,...,X,) be random observations with joint distribution P, for some
p-dimensional parameter # in some parameter space ®. About the family of
distributions {P,: 6 € O}, we only know of the first two moments u, =
(Bygs oo )’ = EX and V,={V,,: i,j=1,...,n} = cov,(X, X;). The
quasi-likelihood equation is defined to be

(1) q(0,X) = iy Vy ' (X — 1) = 0,

where [, is the n X p-dimensional derivative matrix. The function on the
left, usually called the quasi-score, is so constructed as to contain the greatest
amount of information among the class of all linear and unbiased estimating
equations in terms of Godambe (1960). See Jarrett (1984), McLeish (1984),
Godambe and Heyde (1987) and McLeish and Small (1992).

If the quasi-score is the gradient vector of a potential function, in other
words, if dQ(0, X) /36 = q(0, X) for some Q(0, X), then Q(6, X) is defined to
be the quasi-likelihood, and its global maximum is the quasi-likelihood
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estimate. In general, however, the quasi-score may not be the gradient of any
potential function, in which cases the quasi-likelihood is not defined. See
McCullagh and Nelder (1989) and McCullagh (1990). Hence, in general, the
quasi-likelihood estimate is only the solution to an estimating equation and
not the maximum of an objective function. Two questions arise: (1) If there
is more than one solution to the quasi-likelihood equation, which are con-
sistent? (2) If the mean u, is not a differentiable function or if the quasi-
likelihood equation has no solution in the parameter space, how should we
draw sensible inference based on the mean-variance assumption?

To make the point clearer, let us draw an analogy with the two main
approaches to consistency in the classical theory of maximum likelihood
estimation. By the first approach [Cramér (1946)], one exhibits the existence
of a sequence of consistent solutions to the likelihood equation. Since it
employs only the properties of the likelihood equation, this approach can be
applied generally to estimating equations which need not correspond to
likelihood functions. By the second approach [Doob (1934); Wald (1949);
Wolfowitz (1949)], one demonstrates that the global maximum of the likeli-
hood function is consistent. The advantages of the Doob—Wald approach are
(i) the consistency does not depend on the differentiability of the likelihood
function or the existence of the likelihood equation and (ii) when the likeli-
hood equation does exist, we know which solutions are consistent in case
there are more than one of them. However, since it appeals to the properties
of likelihood functions, which in general have no direct correspondence for
estimating equations, the Doob—Wald approach seems difficult to apply gen-
erally to estimating equations.

A key property of the likelihood function used in the Doob-Wald approach
is the inequality

(2) E,{log(dP,/dP, )} <0 forallmin®,n + 0,.

Cox and Hinkley (1974) gave the consistency argument of Doob and Wald a
concise and accurate summarization: The defining property of the maximum
likelihood estimate,

(3) log py(X) = log p,(X),

is incompatible with (2) unless 6 converges to 6,. If this incompatibility could

be derived without the use of a likelihood function, then it seems one might

be able to obtain a Doob—Wald type result for general estimating equations.
Our starting point is a function introduced in Li (1993), which is derived

from the projection of an approximate log likelihood ratio. It takes the simple

form

T, Ty,
(4) R(0,m) = 3(my = 1) Vi H(X = ) + 3(my — 1) Vi (X = m1y),
where the dependence of R on the data X and the sample size n is

suppressed, and 6 and 7 are two parameter values in ©@. The following
properties motivate the idea of the present paper:

(5) (i) R(6,m) = —R(m,0), (ii) E,{R(6,,m)) <0 foralln# 6,.
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From these it follows that
(6) sup E,{R(0y,m)} = 1nf supE AR(6,m)}.

7]60

This leads us naturally to estimating 6, by the minimax 6 of R(6,7). In
symbols, 9 is any parameter value that satisfies the relation

(7) sup (R(6,7)} = inf ::I(;{R(e’”fl)}-

nE@

The idea of the minimax approach to the consistency of quasi-likelihood
estimation, which will be the focus of the present paper, can be summarized
as: (6) and (7) are incompatible unless 6 converges to 6,. This approach
makes no differentiability assumptions. Consequently, the consistency does
not depend on the existence of the quasi-likelihood equation (1). Furthermore,
it will be shown that all the minimax points of R(6,n) are consistent; this
avoids the ambiguity that occurs when there are multiple solutions to the
quasi-likelihood equation and when the quasi-score does not integrate to a
potential function. Under mild assumptions, the minimax 6 has the same
efficiency as the quasi-likelihood estimate. Under further mild assumptions, 6
is necessarily a solution to the quasi-likelihood equation (1). In either case,
the minimax approach provides us with a specific estimate that is consistent
and efficient, rather than merely indicative of the existence of such an
estimate.

Evidently the maximum likelihood estimate itself can be considered as the
minimax of the log likelihood ratio, because (3) is equivalent to

(8) sup {log p,(X) — log p(;(X)} = inf sup {log p,(X) — log p(,(X)}.
neo =G nEO

Indeed, for any function f,(X), the minimax point of f,(X) — f,(X) is simply
the maximum point of f,(X). However, for general estimating equations, it is
often impossible to find a suitable function L(6, n) that can be decomposed as
f,(X) — f,(X) and that satisfies inequality (2). The functions similar to (4),
on the other hand, can be constructed for fairly general classes of estimating
equations. In this sense, the minimax approach generalizes the idea of Doob
and Wald.
From (5) and the weak law of large numbers it follows that

P{R(6,,7m) <R(6,,0y)} -1,

9
®) P{R(6,60,) > R(6,,6,)} > 1 foreach 6+ 6,,n# 6,.

See Li (1993). Using these inequalities we can distinguish, with probability
tending to 1, two sequences of solutions {6,,} and {6,,}, provided that one
converges to the correct parameter value and the other converges to an
incorrect value. This pointwise comparison is the first step toward the
consistency of the minimax, but the latter is a stronger statement, which
requires the global properties of R. To achieve this we appeal to the weak
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convergence of the random function n {R — E(R)}. In this respect, the
method used here is closely related to that of Wong (1986), in which, along
with other theoretical development, the consistency of the maximum partial
likelihood estimate is established.

The consistency of estimating equations and that in the context of general-
ized linear models have been studied by a number of researchers. Fahrmeir
and Kaufmann (1985) studied the consistency of the maximum likelihood
estimate based on generalized linear models. For natural link function, they
proved the consistency of the maximum likelihood estimate; for nonnatural
link functions, they proved the asymptotic existence of a sequence of consis-
tent solutions to the likelihood equation. Crowder (1986) studied the behavior
of all existing solutions of an estimating equation. In particular, he gave
sufficient conditions for a set of parameter values to contain all the existing
solutions with probability tending to 1, and for a set to contain no solution
with positive probability in the limit. There has also been research to tackle
the problem of the nonexistence of the quasi-likelihood function. McCullagh
(1990) demonstrated that when the quasi-likelihood equation has multiple
solutions, the confidence interval based on the score test may be misleading.
He suggested the possibility of constructing a quasi-likelihood function by
decomposing the nonconservative quasi-score function into a conservative
part and a residue part. Firth and Harris (1991) observed a similar phe-
nomenon in their multiplicative random effect model and used the profile
quasi-score function for inference purposes. McLeish and Small (1992) intro-
duced the projection of the likelihood ratio onto the Hilbert space spanned by
the products of the observations and studied its properties. Along the lines of
the discussions of McCullagh (1990), Li and McCullagh (1994) constructed a
conservative estimating function that is nearest to the quasi-score in terms of
a metric associated with a prior distribution, and whose potential function
belongs to the linear exponential family. They also looked into the possibility
of incorporating prior information into the quasi-likelihood estimate using
this potential function.

The rest of the paper will be organized as follows. We will show in Section
2 that all the minimax points of R(6, n) are consistent and, in Section 3, that
they are efficient. In Section 4, we demonstrate under certain conditions that
the minimax points are solutions of the quasi-likelihood equation and we
study the further relations between these two approaches. In Section 5 a
number of possibilities of extending the minimax approach to other classes of
estimating equations are explored.

For simplicity, we refer to a point at which a function obtains its minimax
value as a minimax of that function, and a point at which a function achieves
its maximum value as a maximum of that function. We refer to the corre-
sponding values of the functions as the minimax value and the maximum
value. The maximum or minimax will always mean the global maximum or
minimax. To reduce the number of indices, without further specifications, the
expectation E and probability P are always evaluated at the true parameter
value, which is denoted by 6,. Perhaps it is helpful to mention that the
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quasi-likelihood function Q(6, X), if it exists, is different from the underlying
distribution P, the latter being unknown except for its first two moments.

Finally, the word “efficiency” is used in a semiparametric sense. Thus
when we say that the quasi-likelihood estimate is efficient, we mean it is so
among the solutions of all linear and unbiased estimating equations, and
when we say that the minimax of R is efficient, we mean it is as efficient as
the quasi-likelihood estimate. The term “minimax approach” also needs
clarification. Another suitable name is “the saddle point approach,” which is
not used in order to avoid possible confusion with the term “saddle point
approximation.” It should, however, be understood, that the minimax is not
in the sense of decision theory; in particular, the minimax approach is not
related to what is referred to as the minimax—asymptotic variance method in
the literature.

2. The consistency of the minimax. In order to prove the consistency
of the minimax 6 of R(6, n), we must go beyond the pointwise comparison (9).
In particular, we need to make probability statements about the entire
function R. We first state and explain the assumptions under which the
sequence of random functions {n (R — ER)} converges in probability to 0
uniformly.

With 6, fixed, we denote E{R(6,6,)} by J,(6) and R(6,6,) — J,(0) by
M (6). For now we assume O to be compact. Since n~*M,(6) is a weighted
average of independent random variables with 0 expectations, by the weak
law of large numbers, for each 6, n"'M (0) —, 0 under 6,. The condition for
this is very mild [Serfling (1980), page 27] and we do not count it as an
assumption. We assume (i) the sequence of random functions {n *M (6):
n =1,2,...} is stochastic equicontinuous in ® [see Pollard (1984), page 139]
and (ii) for any compact subset G of O that does not contain 6,,,

e 1

llﬂlilfelgg {n"1d,(0)} > 0.
It is a standard result, as can be verified by applying the Arzela—Ascoli
theorem, that assumption (i), together with the fact that n='M,(67) -, 0 for
some 6" in O, implies that the sequence {n"'M,(0)} is tight in C(®). See
Billingsley [(1968), page 55]. By Prohorov’s theorem, the sequence of func-
tions {n"*M ()}, which we know converges in probability to 0 pointwise in
0, also converges weakly in C(®) to the constant function 0. Hence

supn ' M,(0)| - 0.
00

Also notice that J,(6) in assumption (ii) is simply the quadratic form
Tor
Ju(0) = (1/2)( 1y = 1o,) Vi ' ( 1ty = ttg,)-

THEOREM 1. Let O be compact. Then, under assumptions (i) and (ii)
made in the last paragraph, any parameter value 0 that satisfies the minimax
relation (7) is a consistent estimate of 0,,.
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Proor. Let O, be an open ball centered at 6,. The gist of the argument is
that, on the one hand, there exists a positive number 8’ for which

(10) lim P{n*1 inf supR(6,7) > 5} =1

n—ow 0%060 neE®

and, on the other, for any positive number §,

(11) lim P{rf1 inf supR(60,7) < 8} 1.
n—© 60 ne®

To see this, let A be a subset of ®, which we will take to be either O(,0 or
O\ Oy,. Then

infn 'R(0,0,) > 1nfn M, (0) + 1nfn LT.(6).

A [US
Since the first term on the right is sandw1ched between +n" ! sup,c 4IM,(0)I,
it converges to 0 in probability. This implies, for any 6 > 0,

lim P{ infn 'R(0,0,) > 1nfn_1M L(0) + 1nfn_1J L(0),
n—ow A

(12)

inf M, (0)] < 3} - 1.
0cA

Take A = O. Then inf,_ 4, n'J,(6) = 0. Hence (12) implies that, with proba-
bility tending to 1, inf,_o n 'R(6, 6,) > — 8. However, this event is equiva-
lent to sup, con” 'R(6,,m) < 8, whose probability is apparently not greater
than that in (11). This proves (11) Take A = O\ O, . Then, by assumption
(i1), inf, . 4, n~1J,(8) > 0. Denote this number by 38’ and let the & in (12) be
&’. Then (12) 1mphes that

(13) lim P{ inf n'R(0,0,) > 5'} -1

n— 0¢& Oy,
However, since 1nf9$0 R(0,0,) <inf, ., ,SUP,co R(0, n), (13) implies (10).

Next, let 6 be any minimax solution of R(6, n). Suppose, contrary to the
assertion of the theorem, that lim sup, _, .. P( 6 0,,) > 0. Then,

limsupP{ inf supn™'R(6,7) > 8’}

n— o =3¢ ne o

> 11msupP{ inf supR(60,n) = inf supR(6,n);
0

n—o €0 pco 0o NEO
inf supn 'R(6,7) > 6}
0¢ 0y, ncO

By (10) the limit on the right-hand side reduces to the left side of the next
string of inequalities:

hmsupP{ 1nf supR(6,7n) = inf supR(90, n)} > limsupP(ée’E 000) >

n—o €0 pco o nEO n-o

This contradicts (11). O
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To cover more general parameter spaces, we follow the discussions of Wald
(1949) and Wong (1986) and assume that the parameter space is essentially
compact. The proof of the next corollary is a simple extension of Theorem 1
and will be omitted.

COROLLARY 1. Suppose that © contains a compact subset K whose interior
contains 6,, and there is a positive number & such that

P{rf1 sup R(6,,n) < —8} - 1.
ne G‘)\K

Suppose that the conditions of Theorem 1 are satisfied for K. Then any

minimax solution of R on © is consistent.

The following example shows that the minimax solution of R(6,n) some-
times gives a more reasonable, less ambiguous answer to an estimation
problem than does the solution to the quasi-likelihood equation.

ExampLE 1. Let X,,..., X, be independent random variables each taking
values on the closed interval [0, §]. Suppose that E, X, = 6/2 for each i. Let
the variance g,> = var,(X,) be an unknown function of 6. Assume that g;* is
finite and positive for all possible 6. Observe that

R(6,m) = 87'n(n— 0){0; 22X — 0) + 07 2(2X — n)}.

Here, the parameter space is [0, «), and the sample space varies with 0, so
that X(n) = max{X,,..., X,} < 6. For further discussions of this type of prob-
lems in a parametric setting, see Woodroofe (1972).
First, consider the case 2X < X,,,,. Notice that R(X,,n) < 0 for all n +#

X(n), SO

sup R(X,),m) = R(X(n), X)) =

‘r]E@
If 6+ X, then R(6,7n") > 0 for each X, <n' <6, so sup, .o R(6,7) >0

for 6 # X ,,). Therefore,

(14) supR( M) = 1nf supR(0,7) if2X <X,
7]6.

Next, let 2X > X ) Notice that R(2X,7m) <0 if n#2X, so supne(a R(2X,
n) = R(2X,2X)=0.If X, < 6 < 2X, then R(0,1") > Oforall 6 < n' < 2X,
so sup, c o R(8,m) > 0. Fmally, if 6> 2X, then R(6,7") > 0 for all 2X <
n' < 6, so sup, c ¢ R(8,n) > 0. Therefore,

(15) supR(2X,7) = 1nf supR(B n) if2X>X,.

176@
Combining (14) and (15), it is seen that the minimax solution 6 of R(9, n) is

max{2X, X,)). This is a reasonably good estimate of 6 considering that we
have only made an assumption about the mean.
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In the meantime, the solution of g(#, X) = 0 violates the relation X, < 6
as frequently as 2X is less than X0y

3. The efficiency of the minimax. We now demonstrate that 6 is
efficient among all solutions of linear and unbiased estimating equations. As
a preparation, we first show that any 6 that maximizes R(6, ) as a function
of 1 is also consistent. We assume that R(6, n) is continuously differentiable
with respect to either of its arguments. We denote n ! sup, < olldR(0,m) /0|l
by B(6, X), where | -|| is the Euclidean norm in R”. Since JR(6,1n)/d6 is
continuous and O is compact, the function B(6, X) is defined and finite.

LEMMA 1. Suppose that the assumptions of Theorem 1 hold and in some
0,,, B(8, X) is bounded by a random variable By(X), which does not depend
on 6, and satisfies limsup, _, ., EB(X) < . Let 6 be a minimax solution of
R(O n) Then, under the assumptions made in the last paragraph, any
6 = 6(X) that satisfies R(8, 0) = Sup, < o R(6,n) is consistent.

ProOF. Suppose that there is an open ball O, about 6, such that
lim sup, .. P(6 & O, ,) > 0. Then lim sup, . P{supneo R(b,n) =
Sup, ce R(6, 7)) > 0. Hence

(16) limsupP{ sup R(é,n) > 0} > 0.
71$on

n— o

By the Taylor theorem,

. n 7 IR
R(6,7m) =R(6y,m) + (6 — 6,) a_e(m’n)

for some 07 satisfying |67 — 6, < 6 — 0oll. By the Cauchy-Schwarz in-
equality,

sup n 'R(6,7) < sup n"'R(6,,m) + 10 — 6,/B(67, X)
& Oy, & Oy,
< sup n 'R(6,,7m) + 116 — 6, By( X).
né€ Oy,

Since By(X) is bounded in probability, [§ — 6,|B,(X) —p, 0. By (13),
P{n! Sup, c o\ 0, R(6,,m) < —8} — 1 for some & > 0. Hence, as n — o,

P{If1 sup R(6,,n) < 0}
n¢& Oy,

> P{n‘1 sup R(6y,7m) + 16 — 6,ll X By(X) < 0}
¢ Oy,

zP{n1 sup R(6,,m) < =8, 116 — 6,ll X By(X) < 5} - 1.
n¢ Oy,

This contradicts (16). O

Write —E{dq(0,, X)/d0} as I(6,). It is well known that if 6* is the
solution to any linear and unbiased estimating equation, then vn (§* — 6y)
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cannot have asymptotic variance lower than {I(6,)/n} ! in terms of the
Loewner’s ordering of matrices. See McCullagh (1983, 1990). Hence to prove
the efficiency of the minimax 6, it suffices to show that n~'/2I(6,)(0 — 6,)
tends in distribution to a standard p-dimensional normal random vector. In
fact more is true: as will be seen shortly, both 6 and 6 are efficient and they
are asymptotically linearly dependent. To simplify the notation, we will
abbreviate ('*/R/d6" an’X6,n) as R;(0,7), i,j =0,1,2,3. For example,
R,(6,m) = (3R /96 anX 6, n). If we evaluate these derivatives at (0, 7n) =
(6y, 6y), then they will be further abbreviated as R,(6,). For example,
R,,(6y) = (3°R /0% dn)8,, 6,). By antisymmetry of R, R,;(6,) = —R,,(6,).
Also notice that R,,(6,) = 0. We shall assume that the central limit theorem
can be applied to g(6,, X).

THEOREM 2. Suppose:

(a) The conditions in Theorem 1 are satisfied.

(b) Both 6 and 6 are in the interior of 0.

(¢) In a neighborhood Oy of (6,,0,) in © X O, the partial derivatives
{R,(6,m),1i,j =0,i+j< 3} exists and the sequences

(n 'R (0,m):n=1,2,...}, 0<i,j<3,i+j=3,
are tight in C(Gy), Gy being the closure of O .
Then:

(i) Both n='2I(6,)(0 — 6,) and n~'/1(6,)(6 — 6,) converge in law to the
standard p-dimensional normal random vector. A ;
(i) The asymptotic correlation coefficient between 6 and 6 equals 1.

That 6 and 6 become linearly dependent as the sample size tends to
infinity is not surprising: Otherwise it would be possible to combine the two
estimates to achieve higher information, exceeding the information bound for
quasi-likelihood estimation. Also notice that if 6, is in the interior of @, the
probability that 6 and 6 are both in the interior of ® tends to 1.

PrROOF OF THEOREM 2. The consistency of § and 6, as given in Theorem 1
and Lemma 2, together with the tightness condition (17), suggests that the
following approximation is valid:

(0) _ 12 Rlo(é’é)

n

0 Roy(6,6)
:nl/z(Rm(eo))
R,(6o)
-1 Ry(0o) 0 n1/2(5_ 6o
+{n ( 0 R5(0,) +Op(1)} nl/z(é—eo) ’
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where the zeros on the left are p X 1 vectors and on the right are p X p
matrix blocks, and 0,(1) is a 2p X 2p matrix. By Li (1993), ER,,(6,) = I(6,)
and R,(6,) = —q(6,, X). It follows that

n'/2(6 - 0,) I71(6,) 0 —n"12q(8,, X)
- =n +0,(1).
n'/?(6 — 6,) 0 —I"Y0,) || n%q(6,,X)

Now applying the central limit theorem to the quasi-score function q(6,, X),
and noticing that Eq(6,, X) = 0 and —E{dq(6,, X)/ 30} = I(6,), we find that

n2((6 — 0,)7,(6 — 6,)7)" is asymptotically normally dlstrlbuted with mean
zero and covariance matrix

16,) 0 \ [ 16 —I(6)\[IC6) o0 |
| o —ren] | -16) 16 [\ 0 —1(8y)

(18 T(8y)
ey e |

This proves the theorem. O

4. The relation between the minimax and the quasi-likelihood esti-
mate. In this section we study the relation between the minimax 6 and the
solutions to the quasi-likelihood equations. We will demonstrate that if the
condition
(17) inf supR(0,7n) = sup supR(6,7)

€0 yco nEB 90O
holds, then the minimax is necessarily a solution of (1). Thus the minimax
specifies a consistent solution. Since, by antisymmetry,

inf supR(60,7n) = inf sup{—R(n, )}

00 pco 0€0 yc0
= —sup 1nf{R(n,0)} = — sup 1nf{R(0 )},
pc® M<O ne@® €06

condition (17) is equivalent to inf,_ sup,.e R(6,n) = 0. This condition
holds quite generally in practice. If 6 > 6,, R(6, n) is most likely maximized
at some 7 = 6 < # and the maximum value is positive; if 6§ < 6, then R(6, n)
is most likely maximized at some 1 = 6 > 0 and the maximum value is also
positive. Hence, if the maximum n = 6(6) of R(6, m) moves continuously as 6
moves from the left to the right of 6,, the curve (6, 6(6)) should cross the line
n = 6 at some (8, 6), which is necessarily a minimax. Since R(6,6) =0, (17)
is satisfied. Of course, if the mode n = 6() moves discontinuously, as would
be the case if, as # moves near 6, a point which does not share the same side
of the line 7 = 6 with the mode suddenly becomes a mode, (17) may fail. If it
fails, the minimax 6 need not be a solution to (1). However, even in these
cases, 6 is efficient, as is guaranteed by Theorem 2.
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THEOREM 3(a). Suppose that the minimax 6 of R(6,7) is in the interior of
the parameter space O, that R(0,7) is differentiable with respect to either of
its arguments and that condition (17) holds. Then 6 is a solution to the
quasi-likelihood equation.

PrOOF.  Since, by (17), for all 1, R(é n=<0= R(8, 6), the function R(9, -)
is maximized at 6. Hence Ry (6, ) = 0. However, by computation,
Ry,(6,6) = q(§, X). Thus 6 satisfies (1). O

Under stronger regularity conditions, we can obtain further relations
between the minimax approach and the quasi-likelihood approach. For each
0, let T(0, X) be a global maximum of R(6,-). Suppose that 7'(6, X) is a
differentiable function of 6 and that 7'(, X) = 6. These are reasonable
assumptions in the light of the discussions that precede Theorem 3(a). Let
1(6,X)=R(6,T(6, X)). We now describe the relation between the function
1(0, X) and the quasi-score g(0, X).

THEOREM 3(b). Suppose that the assumptions made in the last paragraph
hold.

() If R(6,n) is twice differentiable, then

9%1(6, X) dq(6,X)
00% 00
(i) If the function R(0, n) is thrice differentiable and, for a fixed 0, there is

an open neighborhood O, with closure G, such that the sequence of functions
{n"9%R(6,-)/30 0m*: n = 1,2,...}, is tight in C(G,), then

al(e,X)
= —q(0,X){1+0,(n"'/?)} underP,.

Under P,, T(6, X) is consistent and efficient. Consistency can be proved
along the lines of Lemma 1, and efficiency can be proved by the Taylor
expansion. The details will be omitted. That T'(9, X) is consistent and effi-
cient is itself not of practical interest, for it is not a statistic. However, as will
be seen shortly, the fact that [|7(6, X) — 6]l = O,(n"'/?) serves as a bridge
that relates the functions (6, X) and ¢(6, X).

ProOF OF THEOREM 3(b). (i) Since R {0, T(6, X)} = 0 for all 6,

3%1(0, X) aT(0,X)
T —R20{0,T(0,X)} +R11{9’T(9’X)}T-

By computation, R ;1(9 0) = 0 for all 6. Hence the second term vanishes once
we substitute 8 =  and evoke T'(4, X) = 6. By Theorem 1 of Li (1993), the
first term on the right equals —dq(8, X)/a6.
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(ii) Since R {6, T(6, X)} = 0, 9l(0, X)/00 = R, {6, T(6, X)}. By the
Taylor theorem,

Rlo{e’T(e’X)} =R10(0’6) +R11(0’ 0){T(0’X) - 6}
+3{T(0,X) — 0} Ry,(6,TH{T(6,X) — 6)

for some T satisfying ||T'" — 6| < ||T(8, X) — 6|. By Theorem 1 of Li (1993),
the first term on the right-hand side is —q(60, X). The second term is zero
because R;(6,6) = 0. The third term is O,(1) because, by the discussion
preceding the theorem, Vn {T'(6, X) — 6} is O (1), and by the tightness as-
sumption, n”'R,,(6,T") is 0,(1). O

ExampLE 2. Let X,,..., X, be independent observations with E, X; = 6
and var,(X;) = 6 for 6 > 0. By simple calculation, we find that

1/2 ~
29—)‘() }(X_ 9

) et

The quasi-likelihood function is Q(6, X) = n(X log 6 — 6) + constant. Both
—1(6, X) and Q(6, X) are maximized at 6 = X, as is predicted by Theorem
3(a). The first four derivatives of —1(6, X) at X are 0, —1, 3/10 and —3 /20,
respectively, and those for Q(0, X) are 0, —1, 1/5 and —3 /50, respectively.
At the maximum, the two functions have the same second derivative, as
asserted by Theorem 3(b). Their next two derivatives have the same signs
and their third derivatives are quite close to each other. It is interesting to
compare the estimating equation derived from (6, X) with the quasi-score.
Differentiating [(6, X) with respect to 6, we obtain

_ale,X) n(X—90)

~1(6,X) = %{1 - (

= —{1 - A(0,X)},
90 0+ (e—X){ (6. X))
where
A9 X 2 X(20-X)"" + X3/2 - 29X 1/2
20— x2e-x) '

More generally, suppose that E,X; = 6 and var,(X;) = ¢0, ¢ > 0 being the
dispersion parameter, and « > 0. Then T'(6, X) is one of the solutions for 7 to
the algebraic equation

(X=0)0 " P+ (a—2)n2+ (1 —a)(X+ 0)n+ Xab=0.

If a =0, then T(6, X) equals X and —1(6, X) recovers the normal likelihood
(X - 0)2/24¢).
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5. Remarks on generalizations. The minimax approach can be ex-
tended to cover fairly general classes of estimating equations. We first give a
set of sufficient conditions for the consistency of the minimax.

1. The parameter space O is essentially compact in the sense of Corollary 1.

2. There is a continuous antisymmetric function R: ® X ® X 2 — R! which
satisfies the following conditions.

3. The sequence of random functions {n{R(6, 6,) — ER(6, 6,)}: n = 1,2,...}
is stochastically equicontinuous in 6.

4. Under 6,, the weak law of large numbers applies to n '{R(#, 6,) —
ER(6, 0,)}.

5. Let J(6,n) = E{R(6,n)}. For each compact subset G of ® that does not
contain 6,,

liminf inf {n"J (0, 6,)} > 0.

n—o>e (G
For many estimating equations g(0, X), the construction of R(6, n) resem-
bles that described in the previous sections, and entails the additional
relations

(18) R01(070)=g(0’X)’ ROZ(H’G) =&g(0’X)/(90,

so that the minimax solution of R is as efficient as the consistent solutions
of g.

Cast 1 (Higher order optimal estimating equations). If we know higher
moments, we can construct a higher order optimal estimating equation
similarly as one constructs the quasi-score. See Jarrett (1984), Crowder
(1987) and Godambe and Thompson (1989). The function R(6,7) can be
constructed similarly and it retains the properties (5) and (18); see Li (1993).
Under the additional regularity conditions listed above, the consistency and
efficiency of the minimax solution of R can be established.

CASE 2 [Martingale estimating equations (discrete)]. McLeish and Small
(1988) discussed the following method. Let {X,: n = 1,2,...} be a sequence of
random observations. We want to make inference about some parameters 6
based on the first two conditional moments. Let u;(6) and V,(6) be the

conditional mean and variance of X; given X;,..., X;_;. Then the estimating
function
e ! -1
£(0.X) = X () (0)) (%, = (o)
i=1

is optimal among the “conditionally linear” estimating functions of the form

Y a; (00X, — n,(0)}, where a;(6) is a p-dimensional vector, whose compo-

nents may depend on {X,,...,X, ;}. Consider the function R(6,7) =
*_R.(6,n), where

Ri(0,m) =2 Y (m) — m(0)) Vi (0){X; — pi(0))
+ 27 Y wy(n) — ()} Vi ()X — ()
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In this case, we let J(6, 6,) be the accumulative information
n
J(0,0,) = Y E{R,(6,00)|X;,...,X,_1}.
i=1
The assumptions 4 and 5 should be replaced by the following assumption
about the accumulative information:

4'. For each compact subset G of © that does not contain 6,, thereisa 6 > 0
for which

P{n~' inf J(6,6,) > 8} — 1
\n in (0, 00) > 8 =
and
n~2J(0,6,) —» 0 in probability for all 6 € G.

This condition is an analogue of Wong’s condition made on the accumula-
tive Kullback—-Leibler information of the partial likelihood [Wong (1986)].

Cast 3 (Optimal linear combination of marginal estimating equations).
Suppose that, for each observation X;, there is a preferable unbiased estimat-
ing equation g,(0, X,), which, for example, may be the marginal likelihood
score for X,. Sometimes it may be more realistic or more convenient to
assume the first two joint moments of the marginal estimating equa-
tions than the joint distribution. Assuming that E,{g,(6, X,)} and
cov,{g,(0, X;), g,(0, X;)} are known for each 6 and 7 in O, the optimal linear
combination of these equations [in terms of Godambe (1960)] is

7g,(0, X;) !
%)

8(0,X) = i iEe

i=1j =1

-1
X[COVo{gi(H,Xi),gj(H,Xj)}] gj(e’Xj)'
The function R(6, n) can be defined as R,(6,n) — R(n, 0), where

Ro(0,m) = ¥ Y (E, (0, X))
j=1

i=1
x [covy{g:(0, X,), &;(0, X)}] " £,(0, X,).

It is easy to see that conditions in (5) and condition (18) are satisfied. Thus,
under mild assumptions the minimax approach also applies to this case.

Acknowledgments. I would like to thank a referee and an Associate
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