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Minimax mean-squared error estimates of quadratic functionals of
smooth functions have been constructed for a variety of smoothness
classes. In contrast to many nonparametric function estimation problems
there are both regular and irregular cases. In the regular cases the
minimax mean-squared error converges at a rate proportional to the
inverse of the sample size, whereas in the irregular case much slower
rates are the rule.

We investigate the problem of adaptive estimation of a quadratic
functional of a smooth function when the degree of smoothness of the
underlying function is not known. It is shown that estimators cannot
achieve the minimax rates of convergence simultaneously over two param-
eter spaces when at least one of these spaces corresponds to the irregular
case. A lower bound for the mean squared error is given which shows that
any adaptive estimator which is rate optimal for the regular case must
lose a logarithmic factor in the irregular case. On the other hand, we give
a rather simple adaptive estimator which is sharp for the regular case and
attains this lower bound in the irregular case. Moreover, we explicitly
describe a subset of functions where our adaptive estimator loses the
logarithmic factor and show that this subset is relatively small.

1. Introduction. The problem of estimating quadratic functionals such
as F(f) = [}f2(¢) dt has been analyzed in density estimation, nonparametric
regression and white noise models. See, for example, Ibragimov and
Khas’minskii (1980), Ibragimov, Nemirovskii and Khas’'minskii (1986),
Donoho and Nussbaum (1990), Fan (1991) and Efromovich (1994). Since the
equivalence results of Brown and Low (1992) and Nussbaum (1994) show
that these statistical models are asymptotically equivalent whenever the
underlying functions are sufficiently smooth, we shall restrict our attention to
the classical filtering model

(1.1) Y,(t) = [f(u) du +n"2B(t), te[0,1],
0

where B(¢) is a standard Brownian motion on [0, 1] and we observe Y, =
(Y, (1), 0<t<1.
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Following Donoho, Liu and MacGibbon (1990), Donoho and Nussbaum
(1990) and Fan (1991), we assume that the estimated function f belongs to
the hyperrectangle H(a, @) = {f: f(t) = X7_6,¢,(2), |6,] <@, 105,11 < Qj 7,
05l < @, j=1,2,...}, where {py(x) =1, ¢, ,(t) =V2 sin@mjt),
@y (8) = V2 cos(2mjt)} is the classical trigonometric basis in L,(0,1) and
0, = (f, ¢;) is the corresponding Fourier coefficient, where (f, ¢) =
[ef(®)p(t) dt denotes the usual inner product in L,(0,1). The interested
reader can easily extend the results in this paper to other familiar classes
such as Lipschitz, Holder and Sobolev classes.

Before we turn to the problem of adaptive estimation, let us recall the
known results for minimax estimation. Fan (1991) shows that the maximum
risk

(1.2) R(a,Q.F,) = sw E{(F, -F(f)}
feH(a,Q)

satisfies the asymptotic equation
R(a) = infR(a,Q, F,)

(1.3) nt, if > 3/4,
p 4@ b/@e=D ] /2 < @ < 8 /4,

where the infimum is taken over all possible estimators F, = F(Y,, a, Q)
and «, =< b, means that there is a constant C such that C"! <a, /b, < C.If
a < 1/2, then consistent estimation is impossible. Moreover, it is known from
Ibragimov and Khas’'minskii (1980) and Efromovich (1994) that R(a) =
4F(Hn (1 + o(1)) for a > 3 /4.

The line (1.3) exhibits the so-called elbow phenomenon in optimal rates
and the existence of two natural cases for quadratic functional estimation:
(i) a regular case, where the rate is proportional to the inverse of sample size,
and (i1) an irregular case when the rate is significantly slower.

Many different rate optimal estimators are already known. We now pre-
sent a projection estimator which is robust in « for the regular case:

J(a)
(1.4) F(n,J(a)) = ¥ [(Y,¢)* —n71].
j=0
The window size (or so-called cutoff) J(«) is defined as
n, if « > 3/4,

(1.5) J(a) = |n2/Ge=D] if1/2 < a < 3/4,

where | x | is the maximal integer which is not greater than x. From now on,
so as to simplify notation, we drop the argument n in functions such as J(a)
whenever this does not lead to confusion.

Note that the estimator (1.4) achieves the optimal rate of convergence of
n~! in the regular case when « > 3/4. This permits us to restrict our

attention only to the case o € (1/2,3/4].
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In this paper we study the problem of estimating F(f), f € H(«, ), using
sequences of estimators which simultaneously minimize the maximum risk
over a range of values «, where 1/2 < a < 3/4. Moreover, we explore the
problem of adaptive sharp-optimal estimation when the error converges with
optimal constant and rate whenever a > 3/4. We shall see that in the
irregular case our problem resembles the problem of adaptive estimation of
linear functionals first studied by Lepskii (1990, 1992). See also Brown and
Low (1992) and Efromovich and Low (1994, 1996).

In Section 2, by combining an inequality of Brown and Low (1992) and
ideas of Ingster (1986), a lower bound is given to the maximum risk subject to
an upper bound on the risk at a particular point. The bounds are developed
for a large class of quadratic functionals over arbitrary orthosymmetric sets.
A simple consequence of this inequality is that there do not exist sequences of
estimators which attain the minimax rate of convergence given in (1.3) for
two different values of « in the range 1/2 < o < 3 /4. More specifically, it is
shown that attaining the minimax rate of convergence on the smaller param-
eter set results in at least an extra logarithmic factor in the maximum risk
over the larger parameter space.

In Section 3 we introduce a rate-optimal estimator. In Section 4 we adopt a
Bayes approach which shed light on the subset of functions where our
estimator loses the extra logarithmic factor and it allows us to conclude that
this subset is relatively small. Proofs are given in Section 5.

2. Lower bounds for adaptive estimators. It might be hoped that a
sequence of estimators could be found which attains the minimax rate of
convergence for mean-squared error over H(a, @) for a range of values of a.
Unfortunately this is not generally the case even for two different values of
a, that is, a € { B4, By}, B1 < By, whenever B; < 3/4.

This result is a straightforward consequence of the following theorem,
which gives a lower bound for the maximum risk subject to an upper bound
for the risk at a particular parameter point.

Recall that the white noise observations (1.1) are equivalent to noisy
observations of the Fourier coefficients given by

(21) n; = 0,; + nfl/ze'

‘s i=0,1,2,...,
where e; are iid standard normal random variables.

Let ® =(0,,0;,...). The set ® is called orthosymmetric if whenever
0 € ®, then (+6,, + 0,,...) € ® for all possible sequences of signs. Minimax
theory over such sets was developed in Donoho and Nussbaum (1990).

Let G(0©) = X7_,q,07, where g; > 0. In particular, if ¢, = 1 for all i, then
G(0) is equal to the quadratic functional F(f) for f = X7_,0,¢/(?).

Define the function w(8) by

(2.2) w(8) = sup{G(0): T7_,6 < 62,0 € d}.
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For any estimate én of G(®), based on (2.1), write

(2.3) R(0,G,) = E{(G(®) - én)z}.

THEOREM 2.1. Assume that ® is orthosymmetric and set S(5) =
{0: X7_,0 <82} If

(2.4) R(0,G,) < &*

for some positive &, then

(2.5) sup R(@,én) > w?(8)[1 - 2exp{n®2}sw 1(8)].
dNS(s)

The proof of Theorem 2.1 is delayed until Section 4. In this section we use
this theorem to show that it is not possible to construct a single sequence of
estimators which achieve minimax rates of convergence over H(«, @) for two
different valeus of « € { 8,, B,} such that 1/2 < B; < 8, < 3/4.

Set a, = c[In(n)n"2]A /A1 for some positive constant ¢ and let

(2.6) B(B) = [In(n)]“F~2/4F= D,

(2.7) T(B) = [J(n, B)[B(B)] /472,
where J( 8) is defined in(1.5).

For each ¢ which defines a, let ®,(¢) ={0®: 0, = +a,,i=0,1,...,J*(B;),
0, =0,i>J*(B} and Z;(c) ={f: f(t) = L7_;0,¢,(x), ® € D (c)}.

COROLLARY 2.1. Let R(«a, @, F'n) be defined by (1.2), where F’n is a sequence
of estimators based on the white noise model (1.1). If 1/2 < B, < B, < 3/4
and

(28) R( BO?Q’Fn) XR( BO)’

then there exists a positive constant ¢, such that for all 0 < c < ¢,
A 2

(2.9) sip  E{(F,—F(f))'} = C*R(B,)B(By),

feH(By, NEF(c)
where C* is a positive constant.
To prove Corollary 2.1, set G(®) = X7_,672. Obviously G(0) = F(f) for
(&) = X7_ 6, ¢;(t). Then, for all ® € ®,(c) simple algebra shows that G(0) x

[In(n)n~2]@F-D/GB-D and 227 6 < c*In(n). Hence, if R(©,G,) <
dn~®Bo=9/@B~1) — Y2 thep

R _ 12
sup R(,Gn) > [cz(ln(n)n_Q)(ZB1 D/ 4k D]
0cd,(c)

X [1 — 4 exp{2¢® 1n(n)}ync_z(ln(n)n_Q)(wlfl)/(wl*l) .
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This inequality together with the assumption B, > 8; > 1/4 means that
for sufficiently small c,

(2.10) sup )R(,Gn) > C[In(n)n 2| “" "2/ 45"V S R(B,)B(By).
0ed, (c

Since ®,(c) is a subset of H(B;, @) N#*(c) for all sufficiently small ¢, we
obtain (2.9) and Corollary 2.1 is proved.

The following adaptive projection estimator shows that the lower bound
given in (2.9) is sharp. See also the discussion in Section 4. Set for 1/2 < 8, <
min{3 /4, B,},

(2.11) R*(By) =2J*(By)n"2,
(2.12) I(J,,d,) =F(n,d,) —F(n,d,),
Jy
(2.13) I(Jy,dy) = Y 62,
Jj=dJo+1

R( By, B1) = {f: I*(J(Bo)s J(B1)) > CoR( By)}

(2.14) N{f: I2(I(Bo)> J*( B1)) < 2In(n)R*( B)(1 + 1,))
2R NR,

where v, = [In(n)]"1/®#1~1) and C, > 1 is an arbitrarily large constant.
Assume that a € {8;, B;} and define the statistic

(215 k- {0, if 12(J( By), J*(By)) < 2In(n) R¥( By),
1, otherwise.

THEOREM 2.2. Let B, and B, be given such that 1/2 < B; < min{3/4, B,}.
Then the projection estimator (1.4) with adaptive window size J( B;,) satisfies,

(2.16) sup  E,((F(n,J(B;)) = F(f)) | = R(Bo),
fEH(By, Q)
(2.17) sip B {(P(n, J(8)) ~ F(1))'} = R(By),
feEH(By, @NFZ( By, BY)
(2.18) sup  E{(F(n,J(Br)) —F(£))'} = R(B)B(By)-

fEH(B1, NFE( By, B1)
Theorem 2.2 shows that the lower bound (2.9) is in fact rate sharp.
REMARK 2.1. Efromovich and Pinsker (1984) show that

sup  EA{I(J(Bo), T*( B1)) = I(I(Bo), T*( B1))}
(2.19)  feHGBL@

=R*(B)(1 +0(1)).
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Hence, R*( By)is asymptotically equal to the maximum variance of the
statistic J((J( Bo), J*(B1)), which explains its central role in computing k
in (2.15).

REMARK 2.2. The subset H( B, @) \%(B,, B;), where our estimator does
not lose the logarithmic factor, has a simple interpretation. If I%(J(B,),
J(B,) < C,R(B,), then it does not matter whether % is equal to 0 or 1. On
the other hand, if I*(J(By), J*(B,)) = 2In(n)R*( B, X1 + v,), then the prob-
ability that £ = 0 (our estimator made the wrong decision) is sufficiently
small.

REMARK 2.3. In the context of estimating linear functionals, Lepskii
(1990) was the first to find optimal adaptive procedures which have maxi-
mum risk a logarithmic factor greater than the minimax risk. For two
parameters { 8;, B,} Lepskii’s algorithm performs as follows [see the Remark
in Section 2 of Lepskii (1990)]: (i) optimal estimates F(Y, ,B), j=0,1, are
computed; (i1) if the difference Ili’( ,B) — F(Y,, Byl is less than a spemﬁc
threshold level, then we choose F(Y B,) and otherwise we use F( , Bo)-

Our estimator resembles Lepskii’s algorithm, but the difference is that we
compare some specific statistics rather than optimal estimators. This ap-
proach allows us to describe the function subset %' N.%", where our estima-
tor loses the logarithmic factor.

To shed light on how large this subset is, suppose that the function
f(¢) =X;.00;¢,(¢) is generated by a Monte Carlo method, where 6; are
realizations of independent random variables ©; supported on H(a, Q).
We make only one more assumption about these random variables, namely,
that E(X/5), 1,02} > C, max|o, < q;«[L7 5, ,1021n"°, where 0 <6<
min{(48, — 1)~ 1 ,4(4B; — 2X( By, — B /[(4B, — D(4B; — D]} and C; is a posi-
tive constant. In particular, note that if ©;/;7“ are iid and E{®2} # 0, then
our assumption holds with & = 0. Thus, this assumption is extremely mild.

Straightforward calculation shows that

2 J(By) - 1/@B—1)
[Var(zj Ppp+10; )] = C[maxwwﬂzj s+ 10) ] ‘

and
ln( n)R*( '81) - 1Il( n) n(*451+2)/(4l31*1)_
Chebyshev’s inequality then allows us to estimate the probability of the event
fexr"
J(By) 2 1
Pr Y. 07| <2In(n)R*(By)(1+p,)| < Cn [@ho=D =21
J=J(By+1

Hence although our adaptive estimator does lose a logarithmic factor over
a subset of functions, the integrated risk over the priors described above
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converges at the same rate as the corresponding minimax risk. Further
comparisons with a robust Bayes approach are given in Section 4.

3. Adaptive sequence of estimators. In this section the projection
estimator (1.4) is investigated where the window size depends on the data.
The choice of the window size can be most easily described for the case when
we assume that « € {8, B1,.--, Bg) and 3/4 > B, > B; > -+ > Bx > 1/2.

Set J, =J(B,) and J;f = J*(B,), where J and J* are defined by (1.5)
and (2.7). Let

k =min{k: I*(J,, J;") < 3In(n)R*(B)),
1>k, Jjf>Jd,,0<k<K],
R(k) = {f: I2(Jy, J,) > CR( By))
(3.2) N{f: I2(J,_1, i) < 4ln(n)R*( B,))
L7 (k) NZ (k).

The subset %Z(k) for k£ = 1 is similar to #( B,, B;) defined in (2.14), only here
for the simplicity we set v, = 1. Note, that if [ > &, then for sufficiently large
n we get J* > J,.

The optimal properties of the adaptive estimator are then conveniently
summarized by the following theorem.

(3.1)

THEOREM 3.1. Let o € {8y, B,---, Bx}, where { B,} are given and satisfy
the relations 3/4 > By > By > -+ > Bg > 1/2. Then the projection estimator
(1.4) with adaptive window size J( Bg), where k is defined in (3.1), has the
following statistical characteristics:

(1) For a = B,
(3.3) sup  Ep{(F(n, J( ) —F(f)) | = B(By).
feH(By, Q)
(i) Foranyk =2,3,..., K,
(3.4) sup  E{(B(n, ()~ F(F)) | = R(By),

fEH(By,, @NZ(k)

(3.5) sup Ef{(ﬁ‘(n,J( Bl%))_F(f))Q} < R(B)B(B)-
feH(B, NI (k)

The desired extension to the case of unknown smoothness « € (1/2,3 /4]
is straightforward. First, we explicitly describe the procedure and then
explain the underlying idea.

Let N = N(n) be the maximum integer such that dV ! < pl=2/InIn(»),
where d > 2 is a fixed integer. Set </, = d*~1n and note that {J,,..., Jy}is a
collection of window sizes. These N window sizes essentially correspond to
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optimal window sizes for particular values « € { B,, B,---., By), where here
B, = B,(n) are defined as a solution to the equation J( 3,) = J,.

Let £*(n) be the minimal integer & such that J; > n. Recall that J; =
J,[B(B,)]"1/“P:=2) and define the statistics

k =min{k: I*(J¥, Jf) < 8In(n)R*(B,), 1>k, k*(n) <k < K|
(3.6) E, ifk>k*(n),
0, ifk=~k*(n).

_ Define (k) =%'(k) N#"(k), where #'(k) = {f: I%(n, J,) = CR(B,)} and
F' (k) ={f: I*(J} o), i) < 4In(n)R*(B,)}, where t*(k) is any bounded
sequence of integers.

k=

THEOREM 3.2. Let a > 1/2 be unknown and fixed. Then the projection
estimator (1.4) with adaptive window size J( B;) satisfies:

(1) For the regular case, that is, for any a > 3/4,
R 2
(3.7) sup  Ep{(F(n,J(Bp) = F()) } = B(a).
feH(a,®)
(ii) For the irregular case, that is, for 1/2 < a < 3/4,

(38) sup B (F(n, I(87) — F()'} = R(a),
feH(a, Q\R(k(a))
(3.9) sip  E{(F(n,J(8;)) = F(f))'} = B(a)B(a).

feH(a, QNHE(k(a))

Hence, the adaptive projection estimator has an optimal nonadaptive rate
R(a) for risk convergence over all functions f € H(a, @) except for a rela-
tively small (in the sense of the previous section) subset % and only for the
irregular case a < 3/4. Nevertheless, over this subset the recommended
estimate has the optimal adaptive minimax rate R(a)B(«a) of risk conver-
gence in the irregular case a < 3/4 due to the lower bound of Corollary 2.1.

Now we are in a position to discuss the estimator. The underlying idea of
our particular choice of window sizes is that for any « € (1/2,3/4] and
sufficiently large n there exists an integer k(a) = k(n, a) such that a €
(Bi(ay+ 1> Briay] and R(a)/R(By,,)) < 1. Note also that By = 1/2 +
(1/4)[Inln(n)] '(1 + 0(1)). Hence, in this way the set of choices a €
(1/2,3/4] is artificially reduced for each n to the case of N = N(n) =< In(n)
alternative values { 8,} of «, and this case was explored at the beginning of
this section.

In the definition of 15, we use only the set {J;*} of window sizes because for
the considered setting the inequalities J;* > J, are no longer valid simulta-
neously whenever [ > k. Nevertheless, J;* ; = dJ;*(1 + 0(1)) and therefore
the set {J;*} can be used for seeking an optimal window size similar to the
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{J,}. The latter leads only to one complication, namely, separate considera-
tion for the cases @ = 3/4 and a < 3/4, which leads to the two different
cases on the right-hand side of (3.6). The asymptotic equality n /J *(a) = o(1),
which is valid for all « < 3/4, explains the underlying idea of the second line
in (3.6).

4. Discussion.

4.1. Sharp adaptive estimation for the regular case. Define a measure of
efficiency of an adaptive estimator F(Y,) as the ratio betwen the worst-case
error of this estimator and the risk of a minimax estimator:

(41) ¥(F(Y,),a,Q)=R(a,Q,F(Y,))/inf R(a,Q,F(Y,, a,Q)),

where in this section the infimum is taken over all possible estimators
F(Y,, a, ). In other words, we compare the risk of adaptive estimators to the
minimax risk over each H(«, Q).

It follows from the previous sections that

ifoa > 3/4,

4.2) W(F(n, J(Bp), a, Q) = (In(n)) 4 2/4"D " i1/9 < a < 3/4.

We have been interested until now only in optimal rates, and not in
achieving the sharp-optimal constants. However, for the regular case o > 3 /4,
estimation with both optimal constant and rate is possible. The following
results of Efromovich (1994) make this issue more explicit.

Let b, be an arbitrary positive sequence such that b, tends to infinity
slower than any power function of n. For the regular setting « > 3/4, the
sequence b, plays the same role as B(a) played in the irregular case
a < 3/4 considered earlier.

ProposITION 4.1. Let o > 3/4. Then

>o0(1)

(43) inf sup [nEf{(ﬁ(Yn,a,Q)—F(f))z}—zm(f)
feH(a,Q)

and the estimator FA’(nJ |n/b, |) attains this lower bound.
Moreover, let F = F(Y,) be any estimator such that for some a > 3/4,

=0(1).

(4.4) sup [nEf{(ﬁ'(Yn) - F(f))') - 4F(f)

feH(a,Q)

Then there exists no finite constant A such that for all n,

(4.5) sup B, ((F(Y,) = F(f)) } <A.
feH@B/4,Q)
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Denote (only in this section)

n

(4.6) I, = Y 67
j=ln/b,J+1

(4.7) L= X (62-n71),
Jj=ln/b,]+1

(4.8) S = {f:\/F<10 <2\/bnn—’1},

S¢ is the complement of S. Define the estimator

3 F(n,|n/b,|), if [, < /b,n ",
49) g _ [Fuln/bl) it h </
F(n,|n/b,]) +1,, otherwise.

PROPOSITION 4.2. The estimator Fn is adaptively sharp-optimal, that is, it
satisfies the relations

(410)  sup [nEf{(F'n ~F(f)) - 4F(f)] —o(l), a>3/4,

feH(a,Q)
(4.11) e [nEf{(F’n —F(f)) }] <c,
(4.12) sup [nEf{(Fn - F(f))z}] <Cb,.

feHB/4,Q)NS

Hence, any estimator which is asymptotically sharp-optimal for a > 3/4
cannot achieve the optimal rate n~! whenever a = 3 /4. However, this loss is
not so drastic as for the irregular case.

The natural question is whether it is possible to combine these two cases
and give an adaptive estimator which is sharp optimal for the regular case
and rate-optimal for the irregular case in the sense of the minimax lower
bounds.

The answer is that it is possible. In particular, it is not difficult to verify
that the adaptive projection estimator

3 F(n,J(B;)), ifk>1,
(4.13) F(Y,) = ﬂ( (Bi)) £i o

n?

is (i) sharp-optimal for the case a > 3/4, that is, (4.10) is valid for this
estimator as well as for F,; (ii) adaptively optimal for @ = 3 /4, that is, (4.11)
and (4.12) are valid for F(Y,) as well as for F,; (iii) adaptively optimal for
1/2 < a < 3/4 in the sense of the lower bound of Section 2, that is, (3.8) and
(3.9) are valid for F(Y,) as well as for F(n, J(B;)). The proof is straightfor-
ward and we leave it to the interested reader.
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Hence, we have obtained the desired measure of efficiency:

1+ 0(1), if a > 3/4,
(4.14) W(F(Y,),a,Q) < Cln if a =3/4,
C[In(n)]** 27"V if1/2 < a < 3/4.

Recall that b, tends to infinity as slow as desired as n — .

4.2. Bayes approach. A comparison of Theorem 3.2 and the lower bound
of Corollary 2.1 shows that the suggested data dependent projection estima-
tor attains the lower bound and, hence, in this sense, is optimal. Another
adaptive optimality property can be given in terms of a minimax Bayes
perspective. Such an approach has been taken by Heckman and Woodroofe
(1991).

For any prior distribution u supported on H(a,®) and any estimator
5, = 6,(Y,, a,Q) of F(f) write

(4.15) rs( 1, 8,) =E{(5, ~ F(1))’},

where E, denotes expectation with respect to the probability model (1.1) and
the prior wu.
The Bayes risk corresponding to w can then be written as

(4.16) Ry(n,pn) = infrg(p, 8,).
8'L

In particular, if #(a, @) is a collection of distributions u such that Prﬂ{ fe
H(a,Q)} = 1, then

(4.17) sup  Ry(n,n) = R(a),
neP(a,q)

where R(«) is the conventional minimax risk defined in (1.3).
Now for a < 3/4 let #,(a, @) be a subset of #(«, @) defined by

(4.18) #,(a,Q) =#(a,Q) N {p:Pr,{f €#(k(a))} < C/B(a)},

where the subset %(k(a)) is defined in Section 3. We showed in Section 2
how to construct a particular u € #,(a, Q).

The maximum Bayes risk for the collection of priors £,(a, @) has the
same rate of risk convergence as the ordinary minimax risk, that is, the
minimax risk

(4.19) sup Rgz(n,p) <xR(a).
neP (a, Q)

The following assertion is an obvious corollary to Theorem 3.2 which shows
that the suggested data dependent projection estimator is Bayes minimax
over the subset Z,(a, Q).
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COROLLARY 4.1. Under the conditions of Theorem 3.2, a projection estima-
tor (1.4) with adaptive window size J( B;) is Bayes minimax, that is, for any
a>1/2,

(4.20) sup  B,{(F(n,I( ;) —F(f))z} = R(a).

,u,Eﬁn(Dl, Q)

This result gives a new insight into the phenomena of minimax adaptive
estimation.

5. Proofs.

Proor OF THEOREM 2.1. The proof is based on three main ideas. First, by
a convexity argument it is sufficient to consider estimators which are only
functions of Y2 Y7,.... Equation (2.5) then follows from Theorem 1 of
Brown and Low (1992) and the following lemma.

Recall, that if X is a normal random variable with mean 6 and variance
o2, then X? has a noncentral y2 distribution with density

foo(¥) = (1/2V27my0® Jexp{—(y + 02)/205?)
X [exp{e\/;/crz} + exp{—e\/;/az}].

LEmMA 5.1.  Let f;, , be the density of a noncentral x? distribution given
by (5.1). Then

(5.2) = 2 () ol (y) dy < exp(6/at).

(5.1)

PROOF. A simple calculation yields that .7 = (1/2)exp{62/02} +
exp{— 602/ ?}) and then (5.2) follows from a comparison of the Taylor series
for .7 and exp{62/0?%}. Lemma 5.1 is proved. O

We now continue the proof of Theorem 2.1. Let Y = {Y,, Y3, ...}. Define the
ith sign change operator 7,(0,, 0,,...) by 7,(6,,0,...) = (8y,...,0,_;, —6,,
0;+1,---). Since ® is orthosymmetric if ® € ® and © € S(8), then 7,(0) €
® N S(8) and E, o{(G(r,0) — G, (Y)?} = Eg{(G(O) — G,(7,Y))?}. Hence, by
convexity

1| Fo(G(0) - 6,(1))) + E,{(6(7,0) - G,(n1))’)]
> Eo{G(0) - (1/2)(G.(Y) + G,(7Y)) }.

Thus, to prove (2.5) attention may be restricted to estimators, which are
functions of Y2, Y?,... . Let g, = 1/n and set

@) =TI [ f2 L (Dl () dy.
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Then line (2.4) of Brown and Low (1992) yields that if G, is an estimator
which is only a function of Y,,Y7,...and for which (2.4) holds, then

(5.3) R(0,8,) > G*(0)[1 - 27,(0)s,G 1(0)].
Now by Lemma 5.1,
(5.4) S(09) < exp{ i n20i4}.
i=0

Inequality (2.5) now follows from the definition of w(§) and (5.3) and (5.4).
Theorem 2.1 is proved. O

In the proof of Theorem 2.2 the following lemma plays a central role. Set
o(k,k+r)=E}/*{(I(k,k +r) — I(k, k + 1))’} and note that o(k, & + r) is
a functional of f as well.

LEMMA 5.2. For any natural k,r, any 0 < y< 1 and f € H(a, Q),
(5:5) P.(f -1 > uo) < exp{—(1/2)u*(1 — v)?}, lul < (1/2)yno,
(5.6) P([-1I>uc)<exp{-uony/4}, lul>(1/2)yno,
where I = I(k,k +r), I = Ik, k + 1) and o= o(k, k + r).

This lemma is a corollary of the following well-known exponential inequal-
ity [see Petrov (1987)].

ProposiTION 5.1.  Suppose that X4,..., X, are independent random vari-
ables and S = Y;_, X,. If there exist positive constants gy,..., g, and T such
that

(5.7) E{exp(th)} < exp(gjtz/Z), Jj=1,...,r,tl<T,
then

(5.8) P(IS| > u) < exp(—u?/2G), |ul <GT,
(5.9) P(IS| > u) < exp(—uT/2), lul > GT,

where G = Z§=1gj.

REMARK 5.1. The factor 1/2 in the exponent of the right-hand side of (5.9)
is sharp as may be easily seen by considering a sequence of iid normal
random variables X, X,,..., X,. Therefore this factor is sharp in (5.5) as
well.

Proor or LEMMA 5.2. Note that

k+r
(kk+r)y—I(kk+r)= ¥ [V, —nt—6?]

J
j=k+1
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and (Y, ¢) = 0, + n-1/ 2§j, where ¢ are iid standard normal variables. Hence

k+r
(ke +7r)—I(kk+r)= Y [2n_1/2§j0j +n (o - 1)]

J
Jj=k+1

and it is possible to apply Proposition 5.1 to the independent random vari-
ables X; = 2n"'/%,0, + n~'(£{? — 1). Elementary algebra shows that for any
0<y<l,

E{exp(th)} < exp(gjtz/z), It < yn/2,

where g; = 41 — y)"'/?n"'9? + 2n"*(1 — y)~*. Hence
k+r
(5100 G= Y g =41 -v) *n U(k,k+r)+2m 31— y) "’
Jj=k+1
and using the following equality of Efromovich and Pinsker (1984),
(5.11) E{I(k,k+7r) —I(k,k + 1)’} =4n""U(k,k + 1) + 2rn"2,
(5.5) and (5.6) immediately follow. Lemma 5.2 is proved. O

Equality (5.11) and simple algebra show that the estimate (1.4) with
nonadaptive window size (1.5) is rate-optimal. From Lemma 5.2 we also
obtain the following corollary.

COROLLARY 5.1. For any natural k,r, any q > 0 and f € H(a, Q) there
exists a function C(q) < Cq such that

EYI(k,k+r)—I(k,k+7)'} <C(q)o(k,k+r).
We are now ready to prove the upper bounds given in Theorem 2.2.
Proor oF THEOREM 2.2. Here we use the notation J, = J( B,), J; = J(B;),

J* =J*( By, I =1I(J,,J*) and IA=AIA(J0, J*). In accordance with definition
(2.15) of the adaptive window size J = J( 8;),

supE,«{[ﬁ(na j) - F(f)]2}

1 2
(5.12) < Y sup B x(k =k)|1(0,d,) - I(0,J,) - ¥ 62
k=0 Ik
£R,+R,,

where the supremum is taken over f € H(a, ®) and y(E) is the indicator of
the event E.
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First consider the case a = 8,. Then a rate-optimal window size is J, and
therefore R, < R(a). For estimating R; we use the Holder inequality

R, < sup EY?{ x(I* > 2In(n)R*( 8,)))

1/

[f(O,Jl) -I1(0,J,) - X efrq}

J>dy
£ sup{T,T5,},
where p ' +qg1=1,¢9 > 1.
To estimate T, we note that I < CJ;2**! = o(1)y/In"2(n)R*( B) for all
f € H(a, Q) and that from (2.11) and (5.11) we get o 2(J,, J;) = R*( 8,1 +

0(1)). Hence, for arbitrarily small v and « and sufficiently large n it follows
from Lemma 5.2 that

T, < sup P/?(I — 1> y/2In(n) o (Jy, J§)(1 - 7))
< exp(—In(n)(1 - ¥)*(1 - ) /p).

To estimate T, use Corollary 5.1 to show

(5.13)

(5.14) T,=E}*

[f<o,J1) ~1(0,J;) - ¥ e]} < CqR(By).

J>dg
Now recall that

R(B,) = n-t@A-1/Ep-D
and hence
T, < Cg n~4@A-1D/E8-1)

Thus for sufficiently small positive y, k and ¢! it follows that sup(T, T,) =
o(Dn~! = o(DR(B,). This together with R, = o(DR(B,) and R, < R(B,)
shows that (2.16) holds.

Now consider the second case when o« = B;. Then a rate-optimal window
size is equal to JJ; and hence R; < R( B;). Therefore for completing the proof
it suffices to show that R, satisfies (2.17) and (2.18), where in definition (5.12)
of R, the supremum is taken over the corresponding set of functions f.

First consider the case where f e H(B;, Q) \%#(B,, B,), that is, we are
proving (2.17). There are two different subcases. First, we consider the case
where I%(J,, J,) < CR(B,). Using (5.11) it follows that

sup Ef{(ﬁ(n, Jy) — F(f))z} = supl( Y sz)z + Jn"?

J>dJo

(5.15) 2
= sup[I( Jo, Jy) + J{Zﬁlﬂ]

= R( B1)7
where the supremum is taken over f € {f: I1%(J,, J,) < CR(B8)} N H(B,, }).
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To complete the proof of (2.17) we consider the second case, where 1% =
I%(dJ,, J*) > 2(1 + v )In(n)R*( B). Taking the supremum over H(B;,Q) N
(%" )° it follows that for sufficiently large n,

R, = sup E{ x(1? < 2In(n) R*(£,)) x(I* > 2(1 + »,)In(n) B*( £,))
(5.16) x(F(n,d5) = F(f))'}
< sup B x(I=1> (3,/3)1)(E,(J) — F(f)) )
and using the Chebyshev inequality we see that
(517) Ry < Csup(r,1) E{(I-1) (F(n,J0) = F(f))}.

To estimate the right-hand side of the last inequality we use the Cauchy-
Schwarz inequality and Corollary 5.1. We obtain,

R, < C sup( VnI)sz}ﬂ{(I - IA)4>E}/2{(If‘(n, Jy) — F(f))4}

(5.18) )
< C(u,I) *R¥(B)[I + (J%) ]
Note that
(79777 < RY2(By)[In(n)] # P aD
and

R*(By) = R(By)[In(n)] /77,
Hence it finally follows that for f € H( B, Q) N (#")",

(5.19) R, < Cv %R( B,)[In(n)] " “#~V = CR( B,).

Assertion (2.17) is thus proved. To finish the proof of Theorem 2.2 we have to
show the validity of (2.18). In this case once again the optimal window size is
proportional to /; and therefore R; < R( ;). To estimate R, we note that

R, = sup Ef{(ﬁ(n, J) - F(f))z}

(5.20) < Csup

1%(J,, J*) + Jon~t + ( )y 92)2l
j>dJ*
< Clin(m)R*(By) + (I *# ] <R(B)B(By).

where the supremum is over f € H(B;, Q) N%(B,, B,). Assertion (2.18) and,
therefore, Theorem 2.2, are proved. O

Proor oF THEOREM 3.1. Assume that « = B, and, in the first place,

consider the case £ > k. Due to the definition of E,if =k +¢, ¢t>0, then
for some random integer §, 0 < § < K — k&,

(5.21) I*(Jp_y, IF.5) > 3In(n) R*( Bi.s)-
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Since for f € H(B,, Q),

(5.22) I*(Jj-1, I} 5) < CR( Bi-1)

we obtain that

(5.23) |[(J; |, JF, ) —I(J; 1, JF, Dl = [301 — k In(n)R*(B;, V2,

where hereafter constants k; can be chosen arbitrary small as n — .
Thus, for any integer 0 < ¢ < K — k, it follows from Lemma 5.2, (5.11) and
the inequality (1 — k)0 %(J,,,, I, ,..) < R*(B,.,,,) that

K-—Fk—t
E{x(k=k+t)}= Y E{x(8=s)x(k=F+1t)}

s=0

(5.24) < K_f_texp{(—yz)s(l — k3)In(n)}
=0

< Kexp{—(3/2)(1 — k3)In(n)}.
Also note that, by Corollary 5.1, if ¢ > 1, then
. 2
(5:25)  EY{[10,d,0100) =100, d1, )] ') < Ca*R( Broro).

Thus, using (5.24) and (5.25) and the Holder inequality we obtain for
sufficiently large n that

Ry(f) éEf{X(l% > k)(B(J;) —F(f))z}

K-Fk . R 9
= L E{x(k=k+0)(F(Ji0) (D))

K-k .
Y EYPx(k=F+1))
t=1

<
(5.26) . 2
XE;}/q{[I(O’ Jk+t) - I(O’ Jk+t) - I( Jk+t’°°)] }
K-k
<C ¥ [Kexp{=(3/2)(1 = x3)In(n)/p}][¢°R(B;...)]
t=1
K-k
< Cq2Kn*3(1*K3)/2p Z n = 4CBL— D/ ABry i~ Da
t=1
Setting p = 5/4, k3 = 1/10 and ¢ = 5 we obtain that
(5.27) sup R(f) <Cn ' x,
feEH(By, Q)

where here k, > 8/100. Hence the case k >k has no influence on risk
convergence.
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Now consider the case £ < k. Due to (3.1), for sufficiently large n,
(5.28) (b <k) < x(F(J3, JF) < 3In(n)R*(B,))
that yields

Ry(f) 2 B { x(k < B)(F(J;) = F()))
= B {x(k <B)[(F(I7) = F (1)) = (53, I9)] '}
< 2B, {(F(J) = F(£))'} + 2(3In(n)R*( £))

< CB(By)R(B)-

Hence, to complete the proof, it suffices to show that R,(f) < CR(g,) for
fe H(B,, @\ (#'(k) N#"(k)), that is, to prove (3.4). For f e (#'(k))° this
is obvious. For fe€ (#'(k)) due to (5.20) we obtain that y(k <Fk) <
x(I(Jy, JF) = [(Jy, JF) > cl(J;, Ji)), where here ¢ = (Y4 — v/3)/2. This in-
equality, together with (5.11) and the inequality

(5.29)

A 2
Ef{[I(Jk,t, J) = I(Jyy, I3)] } <CR*(B,), O<t<k,
yields that for all € (%" (k))°,

k
Ry(f) = ¥ E{x(k=k = 0)§(I°(J,-, If) > 41n(n) R*(By))
[P = F(D]}

<

k
t=

E{ x(h =k = ) x(I*(J,, I7) > 4In(n)R*(B)) X

< (I IE) = I T
> eln(n)R*(B))[F(J, ) = F(f) =19, )]}

To estimate the right-hand side of the last inequality we use the
Cauchy—Schwarz inequality, Lemma 5.2 and Corollary 5.1. This yields

k
Ry(f) <C ¥lexp{—(1/4)(1 — kg)cln(n)}

(5.30) X[E}/z{[ﬁ(J,j‘) ~R( f)]4} n El/Z{X(’% =k — t)f‘i(c]kfta Jlf}]

< CK exp{— (1/4)(1 — «,)¢ In(n)}B( B,) R( B;) = o()R( B,).
Theorem 3.1 is proved. O

Proor oF THEOREM 3.2. In the first place, note that if a < 3/4, then
k(a) » © as n — ». Hence, discarding from the consideration in (3.6) the
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cases 1 <k < k*, where k* is the maximum integer such that J;* < n, has no
impact on the choice of the considered adaptive window size.

Let us use the shorthand % = k(n, a), that is, @ € (B,, B;.1] and consider
the case k >k +t,, where #, is a given positive integer. Similar to
(5.21)—(5.23) and using the same notation we obtain that if k >k +t,, then

2(JF, JF, ) > 3In(m)R*(B;, ) and I%(JjF, JF, ) < CIn(n)R*(B,). These
two inequalities yield for sufficiently large ¢, that

(5.31) II(JF, JFos) = (I, Jfs) = [3(1 = k)In(n) R*( Bgys)]”

Using (5.31) instead of (5.23) and then straightforwardly repeating
(5.24)—-(5.26) we obtain that E {X(k >k + t)F(n, J;) — F(f)? <
CN(n)n~'~* for sufficiently 1arge to- Combining this with inequality
R(B,,,) < Cd'R(B,), which is valid for all 0 < ¢ < ¢,, we get

(5.32) E{ x(k>k)(F(n, ;) = F())'} < CR(B,)-

Now consider the case k < k. Similar to (5.28) and (5.29) we prove (3.9).
The case f€%'(k(a)) is obvious for proving (3.8). Hence, to complete the
proof it suffices to verify (3.8) for f €.%#"(k(a)). Using the Cauchy—Schwarz
inequality, definition (3.6) and simple algebra we obtain that

k 2
L E(x(k =k =0)(F(n,d,) = F(F)) )
k
< V2 y(k =k —
(5.33) L5 (e )
EYF(n,d,_,) + [(Jp,, i) = I(J¢,, i) = F(f))?}

k
< C X B (b = b - 0)R(Bmin{a 42 B 5,).

where the previously discussed inequalities I2(J3, J;) < CB(B,)R(B,) and
I2(J}f,») < CB(B,)R(B,) were also used. Hence, (3.8) is obvious for 0 < ¢ <
t*(k).

To estimate Ef{)((l% =k — t)} for ¢ > t*(k) we note that

x(k=k—t) < x(P(J,, I})
< 3In(n)R*(By) ) x (I2(Jf,, i) = 4In(n)R*( By))
< X1z, Iy = LI, I9)
> (V4 — V3)[In(n) R*( B)] ).
Hence, using Lemma 5.2 and (5.12), we get for ¢ > ¢*(k) that

Ef{)((l% =k —t)} < exp{—«; In(n)} =n""s.
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Substituting these results into the right-hand side of (5.33) and noting that
k < N < c¢In(n) we obtain that

k 2
(534) LB {x(k=k-0)(F(n,J,.) ~F(f))'} = CR(B)

for the considered setting f<.%"(n,k) that means the validity of (3.8).
Theorem 3.2 is proved. O
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