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HISTOGRAM REGRESSION ESTIMATION USING
DATA-DEPENDENT PARTITIONS1

BY ANDREW NOBEL

University of North Carolina, Chapel Hill

We establish general sufficient conditions for the L -consistency of2
multivariate histogram regression estimates based on data-dependent
partitions. These same conditions insure the consistency of partitioning
regression estimates based on local polynomial fits, and, with an addi-
tional regularity assumption, the consistency of histogram estimates for
conditional medians.

Our conditions require shrinking cells, subexponential growth of a
combinatorial complexity measure and sublinear growth of restricted cell
counts. It is not assumed that the cells of every partition be rectangles
with sides parallel to the coordinate axis or that each cell contain a
minimum number of points. Response variables are assumed to be bounded
throughout.

Our results may be applied to a variety of partitioning schemes. We
established the consistency of histograms regression estimates based on
cubic partitions with data-dependent offsets, k-thresholding in one dimen-
sion and empirically optimal nearest-neighbor clustering schemes. In
addition, it is shown that empirically optimal regression trees are consis-
tent when the size of the trees grows with the number of samples at an
appropriate rate.

Ž . Ž . Ž . d w x1. Introduction. Let X , Y , X , Y , . . . , X, Y g R = yK, K be1 1 2 2
independent and identically distributed random vectors defined on a common
probability space. We may view the random vector X g R d as a collection of
measurements that are related in a stochastic fashion to a response variable

w x Ž .Y g yK, K , whose value is of interest. The joint distribution of X, Y is
assumed to be unknown. We wish to estimate the regression function

< w xr x s E Y X s x g yK , K ,Ž . Ž .

based on a training set of the form

1 T s X , Y , . . . , X , Y .Ž . Ž . Ž .n 1 1 n n

ˆ dŽ .Formally, a regression estimate is any function f ?, T : R ª R that de-n n
ˆpends on the training set. The dependence of f on T will be suppressed inn n
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REGRESSION ESTIMATION 1085

ˆ� 4what follows. A sequence of estimates f is said to be strongly L -consistentn 2
if

ˆ 2< <f x y r x dP x ª 0Ž . Ž . Ž .H n

with probability 1. Here P denotes the distribution of the random vector X.
When the expected value of the integral tends to zero, the estimates are said
to be weakly L -consistent.2

When parametric models are not available, a natural means of estimating
a multivariate regression function is to partition the observation space R d

into cells and then form estimates locally within each cell based on the
response variables. In the simplest case this gives rise to histogram estimates
based on data-independent partitions that consist of infinitely many congru-
ent, rectangular cells. The size and location of the cells depends only on the
cardinality of T , not on the geometrical or numerical properties of itsn
constituent vectors. If the common dimensions of the rectangles shrink at an

Ž .appropriate rate, results of Stone 1977 establish the weak consistency of the
associated regression estimates, regardless of the underlying distribution of

Ž .the data. Devroye and Gyorfi 1985 established the strong consistency of¨
regression estimates based on data-independent cubic partitions, and they
derived exponential bounds for the L -error of the estimates.1

While regression estimates based on data-independent partitions are easy
to implement, statistical practice suggests that estimates based on suitably
chosen data-dependent partitions will provide better small-sample perfor-
mance. For example, if the measurement vectors X , . . . , X fall into two1 n
distinct clusters, a data-dependent partition could allocate the majority of its
cells within these clusters. By considering the response variables Y , ai
data-dependent partition can separate large and small values into separate
cells or can allocate more cells to regions in which the behavior of the
response variables is erratic. The flexibility of data-dependent partitions is
likely to be most beneficial when the dimension d of the measurement
variables is large and the sample size n is moderate.

In what follows we restrict our attention to measurable partitions having
at most a countable number of cells. An n-sample partitioning rule is a

Ž .deterministic mapping c ? that associates each n-length sequencen
Ž . Ž . d dx , y , . . . , x , y g R = R with a partition p of R . When it is applied to1 1 n n

Ž .a training set T , the rule c yields a random partition c T . The depen-n n n n
Ž .dence of c T on T will be suppressed when no confusion will arise. Withn n n

w x Ž .this convention in mind, c x is defined to be the unique cell of c Tn n n
containing the vector x. Given a partitioning rule c and a training set T ,n n
the ordinary histogram regression estimate is defined for each x g R d by

n w xÝ Y I X g c x� 4is1 i i n
2 r x s ,Ž . Ž .n̂ n w xÝ I X g c x� 4is1 i n

Ž .with r x s 0 when both the numerator and the denominator are zero. Noten̂
< <that r is piecewise constant on the cells of c and that r F K. Below weˆ ˆn n n
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present general sufficient conditions for the consistency of such estimates and
assess the satisfaction of these conditions in a number of specific examples.

1.1. Discussion of related work. The simplest data-dependent partition-
w Ž .ing methods are based on statistically equivalent blocks Anderson 1966 ,

Ž .xPatrick and Fisher 1967 , in which each cell contains the same number of
points. When d s 1, statistically equivalent blocks reduce to k-spacing esti-

w Ž .xmates Parthasarathy and Bhattacharya 1961 , where the kth-; 2kth-; . . .
order statistics of X , . . . , X determine the partition of the real line. For a1 n
discussion of these and other related partitioning rules in the context of

Ž .pattern recognition, we refer to the survey paper of Devroye 1988 .
Theoretical evidence for the superiority of data-dependent histogram

Ž . Ž .methods is suggested by Stone 1985 . Stone 1977 gave necessary and
sufficient conditions for the weak L -consistency of regression estimates2
based on data-dependent local averages. His conditions apply to histogram

Ž .estimates based on partitioning rules c X , . . . , X that do not make use ofn 1 n
the response variables Y , . . . , Y .1 n

In many cases of practical interest, histogram regression estimates are
described by binary trees. Regression trees are produced in an iterative
fashion by recursive partitioning schemes that seek at each step to minimize
an empirical criterion function. The consistency of regression tress produced
by means of supervised axis-parallel splitting was established by Gordon and

Ž . Ž .Olshen 1984, 1980 . Gordon and Olshen 1978 established similar results for
classification trees.

Ž .Sufficient conditions for the weak L -consistency of the estimates 22
considered here can be found in Breiman, Friedman, Olshen and Stone
Ž .1984 . Their result may be summarized as follows.

w Ž .xTHEOREM A Breiman, Friedman, Olshen and Stone 1984 . A sequence
c , c , . . . of partitioning rules gives rise to weakly L -consistent estimates r̂1 2 2 n
if the following hold:

Ž .a each cell of c contains at least a log n points, where a ª `;n n n
Ž .b there is a collection of sets CC having finite Vapnik]Chervonenkis di-

w xmension such that c x g CC for every x, every n and every T ;n n
Ž . � Ž w x. 4c P x: diam c x ) g ª 0 with probability 1 for every g ) 0.n

Ž .Under slightly stronger conditions, Gordon and Olshen 1984 established
the strong L -consistency of the estimates r and showed that r ª r almostˆ ˆ2 n n

ˆ� 4surely when the partitions c are nested. Chaudhuri, Huang, Loh and Yaon
Ž .1994 considered regression estimates that are constructed by fitting a
polynomial of fixed degree within each cell of a data-dependent partition,
based on a local least squares criterion. They gave sufficient conditions under
which, with probability tending to 1, such functions give uniformly good
estimates of the regression function, and a prespecified number of its deriva-
tives, on any fixed compact set. Their conditions are similar to those of
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Theorem A, with the exception of an additional regularity assumption that
insures the invertibility of the matrices giving the optimal coefficients within
each cell. We note here that the work cited above applied to unbounded
response variables Y , under various moment restrictions.i

Ž . Ž .Conditions a and b restrict the applicability of Theorem A and related
Ž .results. Condition a is difficult to verify when c is defined through mini-n

mization of an empirical criterion function, as in the tree-structured methods
mentioned above. The required minimization does not generally insure that

Ž .each cell contains a minimum number of points. Condition b requires that
Ž .the cells of m T be of fixed complexity, regardless of the sample size. Inn n

some cases the data may warrant increasing cell complexity as n tends to
infinity. In applying Theorem A to a particular method under study, satisfac-

Ž . Ž . Ž .tion of a , b and c is frequently accomplished by altering the method
through supervisory oversight.

The results of this paper are based in part on combinatorial properties of
partition families and related exponential inequalities. In this respect we

Ž .follow the work of Vapnik and Chervonenkis 1971, 1981 . Application of
these ideas to histogram estimation originated with Breiman, Friedman,

Ž .Olshen and Stone 1984 and in the later work of Zhao, Krishnaiah and Chen
Ž .1990 , who considered histogram density estimates based on data-dependent
partitions with rectangular cells. Adopting an approach similar to that taken

Ž .here, Lugosi and Nobel 1995 established general sufficient conditions for the
consistency of histogram density estimates and classification rules based on
finite, data-dependent partitions.

1.2. Statement of main result. Let P be a family of partitions of R d. For
each set V : R d, define the restricted cell count

< <� 4m P : V s max A g p : A l V / B ,Ž .
pgP

<� 4 <where A g p : A l V / B measures the number of cells of p that intersect
Ž . Ž d .V. The unrestricted cell count is defined by m P s m P: R . The complexity

of P is measured in terms of a combinatorial quantity proposed by Lugosi
Ž .and Nobel 1995 , which is similar to the growth function for classes of sets

Ž . � 4introduced by Vapnik and Chervonenkis 1971 . Let h s x , . . . , x contain1 n
d � 4 � 4n vectors in R . Every element p s A g P induces a partition A l h ofj j

Ž h .the finite set h. Let D x , P be the number of distinct partitions of h that1
are induced by the elements of P. By ‘‘distinct’’ it is meant that the order of
appearance of the individual sets is not important. The partitioning number

3 DU P s max D x n , Pi : x , . . . , x g R dŽ . Ž . � 4Ž .n 1 1 n

is equal to the maximum number of different partitions of any n-point set
that can be induced by members of P.

Ž .EXAMPLE 1. Let UU k be the family of all partitions of R into k nonempty
Ž Ž ..intervals. Then n UU k s k, and for any sequence of numbers x - x - ???1 2
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n n q k y 1Ž Ž ..- x an easy combinatorial argument shows that D x , UU k s . Itn 1 ž /n
U n q k y 1Ž Ž ..follows that D UU k s .n ž /n

EXAMPLE 2. The nearest-neighbor partition of k vectors c , . . . , c g R d
1 k

has k cells A , . . . , A . The cell A contains those vectors x g R d that are1 k i
closer to c than any other c , with ties broken in favor of the vector havingi j

Ž .least index. Let VV k be the family of nearest-neighbor partitions of k
d Ž Ž ..vectors of R . Then m VV k s k. Moreover, it is readily verified that every

Ž . Ž .cell of a partition p g VV k is the intersection of k y 1 half-spaces. It is
w Ž .x dwell known c.f. Cover 1965 that half-spaces in R can intersect n vectors

d Ž .x , . . . , x in at most n different ways. Thus each cell of a partition in VV k1 n
can intersect x , . . . , x in at most nŽky1.d different ways. As every partition1 n

Ž . U Ž Ž .. k 2 dof VV k contains k cells, it follows that D VV k F n .n

Ž .EXAMPLE 3. A tree-structured partition is described by a pair T, t ,
where T is a binary tree and t : T ª R d is a node function that assigns a test
vector in R d to every t g T. Every vector x g R d is associated, through a
sequence of binary comparisons, with a descending path in T : beginning at
the root, and at each subsequent internal node of T, x moves to that child of
its current node whose test vector is nearest to x in Euclidean distance. In
case of ties, x moves to the left child of its current node. For each t g T let Ut
contain those vectors x whose path includes t. Then U s R d when t is thet
root node of T, and if t is an internval node, then U is split between itst
children by the hyperplane that forms the perpendicular bisector of their test
vectors. If t is at distance k from the root, then U is a polytope having att

Ž .most k faces. The partition generated by T, t is comprised of the sets Ut
Ž .associated with the leaves terminal nodes of T.

If at each internal node of T the comparison between the test vectors
labeling its children is based on a single coordinate of x, then each cell of the
resulting partition is a d-dimensional rectangle. Tree-structured partitions of
this sort, based on axis-parallel splits, are the basis for the regression trees

Ž .considered by Breiman, Friedman, Olshen, and Stone 1984 .
Ž .Let TT k contain all the tree-structured partitions generated by binary

Ž Ž ..trees T having k leaves. Clearly m TT k s k. Consider an internal node t
whose children are assigned test vectors u and v. Finding the test vector
closest to x is equivalent to testing the membership of x in a closed
half-space that is bounded by the perpendicular bisector of u and v. A binary
tree T with k leaves has k y 1 internal nodes, and therefore each partition
Ž .T, t is based on at most k y 1 intersecting half-spaces. As each of these
half-spaces can dichotomize n points in at most nd ways, their intersection

Žky1.d U Ž Ž .. Žky1.dcan partition n points in at most n ways. Thus D TT k F h .n

Our principal result is stated below. Analogous conditions for the consis-
tency of histogram classification and density estimates were established by
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Ž .Lugosi and Nobel 1995 . Note that the range of a partitioning rule is a family
of partitions of R d.

THEOREM 1. Let c , c , . . . be fixed partitioning rules, and let P be the1 2 n
range of c . Let the histogram regression estimate r be defined using c andˆn n n

Ž .T as in 2 . Suppose that as n tends to infinity the following hold:n

Ž . y1 Ž . da n m P : V ª 0 for every compact set V : R ;n
Ž . y1 U Ž .b n log D P ª 0;n n
Ž . Ž .c for every g ) 0 and d g 0, 1 ,

w x4 inf P x : diam c x l S ) g ª 0 w. p.1.� 4Ž . Ž .n
Ž .S : P S G1yd

< < 2Then H r y r dP ª 0 with probability 1.n̂

Thus a sequence of partitioning rules gives rise to consistent histogram
regression estimates if the cells of the selected partitions shrink, and if the
rules take values in a sequence of partition families whose restricted cell
counts grow sublinearly and whose partitioning numbers grow subexponen-
tially. Note that no assumptions are made on the distribution of the pair
Ž . d w xX, Y g R = yK, K . The conclusions of the theorem remain valid when

Ž . Ž .conditions a and b are replaced by their natural almost-sure equivalents.
Ž .Condition a of Theorem 1 is significantly weaker than the corresponding

condition of Theorem A, which requires that each cell contain a minimum
Ž . Ž .number of points. Condition b allows the partitions c T to become moren n

complex as the sample size n increases. In particular, the cells of each
partition need not be rectangles, or polytopes with a fixed number of sides.

Ž . Ž . Ž .Conditions a and b of Theorem A can be shown to imply condition b of
Theorem 1.

In many cases of interest, the combinatorial conditions of Theorem 1 can
be incorporated, without need of supervision, into the design of partitioning
rules. In this case the principal task of analysis becomes verification of the

Ž .shrinking cell condition c .

1.3. Outline. A Vapnik]Chervonenkis inequality for partition families, as
well as several of its consequences, is established in the next section. The
proof of Theorem 1 is presented in Section 3. In Section 4 it is shown that the
conditions of Theorem 1 insure the consistency of partitioning regression
estimates based on local polynomial fits of fixed degree. Sufficient conditions
for the consistency of histogram conditional quantile estimates are presented
in Section 5.

The conditions of Theorem 1 are applicable to a variety of partitioning
rules. Cubic partitions with data-dependent offsets are considered in Section
6. Section 7 is devoted to regression estimates in one dimension based on
k-thresholding, a generalization of ordinary k-spacing in which the partition-
ing rule depends on the response variables Y .i
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Multivariate clustering schemes provide natural partitioning rules for
histogram regression. It is shown in Section 8 that estimates based on
empirically optimal nearest-neighbor clustering schemes are consistent when
the number of cluster centers grows with the size of the training set at an
appropriate rate.

It is shown in Section 9 that empirically optimal regression trees are
Ž .consistent when the size k of the tree grows as o nrlog n .n

2. Preliminary results. A nonempty collection FF of measurable func-
d < Ž . <tions f : R ª R is said to be uniformly bounded with envelope L if f x F L

for every x g R d and every f g FF. For each « ) 0 and each sequence of
Ž n .vectors x , . . . , x , the covering number N x , « , FF is the size of the smallest1 n 1

collection GG such that

n1
< <5 min f x y g x - « ,Ž . Ž . Ž .Ý i inggGG is1

Ž .for every f g FF. Any collection GG satisfying 5 is said to be an «-cover for FF
n Ž n .on x . If no finite «-cover exists, then N x , « , FF s `. A class FF will be1 1

called nice if it is uniformly bounded and there is a function f: R ª R such
that

6 N x n , « , FF F f « ,Ž . Ž .Ž .1

d Ž .for every « ) 0, every n and every sequence x , . . . , x g R . When 6 holds,1 n
f will be said to majorize the covering numbers of FF.

DEFINITION. Given a class of real-valued functions GG on R d and a parti-
tion family P, define

GG (P s f s g I : p s A g P , g g GG .� 4Ý j A j j½ 5j
A gpj

Each function f in GG (P is obtained by applying a different function g g GG
within each cell of a partition p g P.

Consider a sequence X , X , . . . g R d of independent random vectors hav-1 2
ˆing a common distribution P. Let P be the empirical distribution ofn

X , . . . , X . For every bounded measurable function f : R ª R, define1 n

Pf s f x dP xŽ . Ž .H
and

n1
P̂ f s f X .Ž .Ýn in is1



REGRESSION ESTIMATION 1091

Our results rely on exponential inequalities concerning the uniform deviation
ˆof P and P over suitable classes of functions. Given a uniformly boundedn

class FF, define
ˆ< <7 L FF s sup P f y Pf .Ž . Ž .n n

fgFF

d w xIf HH is a uniformly bounded class of functions h: R = yK, K ª R, then
define

n1
L̃ HH s sup h X , Y y Eh X , Y .Ž . Ž . Ž .Ýn i inhgHH is1

Ž .REMARK. To ensure measurability of the suprema L FF , we assume thatn
every class FF under consideration contains a countable subclass FF with the0
property that every function in FF is the pointwise limit of a sequence of
functions in FF . We extend this condition to partition families by viewing0
each partition p as a mapping from R d into the set of natural numbers.

PROPOSITION 1. Let GG be class of function of R d whose covering numbers
Ž . Ž .are majorized by f ? , and let P be any partition family with m P - `. For

each sequence x , . . . , x g R d and every « ) 0,1 n

Ž . Ž .m P m PUn nN x , « , GG (P F D x , P f « F D P f « .Ž . Ž . Ž .Ž . Ž .1 1 n

PROOF. Fix x , . . . , x g R d and « ) 0. Call two elements p , p X g P1 n
equivalent if they induce the same partition of x , . . . , x . If f g GG (P, then1 n

� 4there is a partition p s A g P and functions g g GG such thatj j

8 f s g I .Ž . Ý j A j
A gpj

X � 4 < < Ž .Let FF be an «-cover for GG on A s x , . . . , x l A such that FF F f « . Toj j 1 n j j
Ž .each function g appearing in 8 there corresponds an approximating func-j

tion f g FF such thatj j

1
< <g x y f x - « ,Ž . Ž .Ý j i j i

Xn j x gAi j

< X < Xwhere n s A . If we define f s Ý f I , then it is easy to see thatj j A gp j Aj j

n1
X< <f x y f x - « .Ž . Ž .Ý i in is1

˜When the functions f g FF are suitably chosen, every function f g GG (Pj j
defined in terms of a partition equivalent to p can approximated by a similar

X ˜ nestimate f . Thus the collection of all such functions f can be covered on x1
<p < < < Ž . <p <by no more than Ł FF F f « approximating functions. As the partitionsjs1 j

Ž n .in P fall into at most D x , P equivalence classes, the result follows.1
An application of the basic Vapnik]Chervonenkis inequality for classes of

w Ž . Ž .xfunctions cf. Vapnik and Chervonenkis 1981 or Pollard 1984 gives the
following bound.
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LEMMA 1. Let GG be a class of functions with envelope L whose covering
Ž . Ž .numbers are majorized by f ? . If P is a partition family for which m P - `,

then, for every t ) 0,

2yntŽ .m PUP L GG (P ) t F D P f t exp .� 4Ž . Ž . Ž .n n 232 L

PROPOSITION 2. For every uniformly bounded class GG and every partition
family P,

ˆ X< <sup sup P gI y P gI F L GG (P ,Ž . Ž . Ž .Ý n A A n
pgPggGG Agp

X Ž .where GG s GG j yGG contains every function g g GG and its additive inverse.

PROOF. Fix a function g g GG and a parition p g P. Given X s x , . . . ,1 1
X s x , definen n

ˆ ˆp s A g p : P gI G P gI and p s A g p : P gI - P gI .Ž . Ž . Ž . Ž .� 4 � 41 n A A 2 n A A

Then it is easy to see that

ˆ< <P gI y P gIŽ . Ž .Ý n A A
Agp

ˆ ˆs P gI y P gI y P gI y P gIŽ . Ž . Ž . Ž .Ž . Ž .Ý Ýn A A n A A
Agp Agp1 2

ˆ< <s P f y Pf ,n

Ž . Xwhere f s Ý gI q Ý yg I is an element of GG (P. Consequently,Agp A Agp A1 2

ˆ X< <P gI y P gI F L GG (P ,Ž . Ž . Ž .Ý n A A n
Agp

and the result follows as g g GG and p g P were arbitrary. I

Ž .The following inequality extends Lemma 1 of Lugosi and Nobel 1995 .
Although it will not be needed in what follows, it may be of independent
interest.

LEMMA 2. Let GG be a class of functions with envelope L whose covering
Ž . Ž .numbers are majorized by f ? . If P is a partition family with m P - `,

then, for every t ) 0,

2yntŽ .m PUmŽP .ˆ< <P sup sup P gI y P gI ) t F 2 D P f t exp .Ž . Ž . Ž . Ž .Ý n A A n½ 5 232 LpgPggGG Agp

Ž n X. Ž n X . Ž .PROOF. As N x , t, GG F 2 N x , t, GG F 2f t , the stated inequality fol-1 1
lows immediately from Lemma 1 and Proposition 2. I
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LEMMA 3. Let GG be a nice class of functions, and let P , P , . . . be a1 2
sequence of partition families. If

9 ny1 m P : V ª 0Ž . Ž .n

for every compact set V ; R d, and

10 ny1 log DU P ª 0,Ž . Ž .n n

then
11 L GG (P ª 0Ž . Ž .n n

with probability 1.

y1 Ž .PROOF. If the unrestricted cell counts are such that n m P ª 0, thenn
Ž .11 is an immediate consequence of Lemma 1 and the Borel]Cantelli lemma.
In the more general case, fix « ) 0 and let L - ` be an envelope for GG. Select

d Ž c.a compact set V : R such that L ? P V F « , and define the class of
� 4functions GG s gI : g g GG , which is readily seen to be nice. For eachV V

� 4 X � 4 � c4partition p s A g P define its restriction p s A l V j V , and letj n j

X � X 4P s p : p g P .n n

U Ž X . U Ž . Ž X . Ž .It is easily verified that D P F D P and that m P F m P : V q 2.n n n n n n
Ž X .By virtue of the unrestricted case above, L GG , P ª 0 with probability 1.n V n

Now note that

ˆ c c< <L GG , P y L GG , P F LP V q LP V ,Ž . Ž . Ž . Ž .n n n V n n

Ž . Ž X .and as L GG , P s L GG , P for each n,n V n n V n

lim sup L GG , P F lim sup L GG , P q 2«Ž . Ž .n n n V n
nª` nª`

s lim sup L GG , P
X q 2«Ž .n V n

nª`

s 2«

with probability 1. Since « ) 0 was arbitrarily, the result follows. I

LEMMA 4. Let GG be a nice class of functions with envelope L, and let
ˆŽ . Ž . � 4 � 4P , P , . . . be partition families satisfying 9 and 10 . Let f and g beˆ1 2 n n

regression estimates such that, for each n and each training sequence T , then
following hold:

ˆŽ . Ž . Ž .a f ?, T and g ?, T lie in GG (P ;ˆn n n n n
n ˆ 2 n 2Ž . Ž Ž . . Ž Ž . .b Ý f X y Y F Ý g X y Y .ˆis1 n i i is1 n i i

ˆ� 4 � 4Then f is strongly consistent if g is strongly consistent.ˆn n

PROOF. It is well known and easy to verify that, for every bounded
function f : R d ª R,

< < 2 < < 2 < < 212 P f y r s E f X y Y y E r X y Y .Ž . Ž . Ž .
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� 4 �For each element p s A g P , define an associated partition p s A =˜j n j
d ˜w x4 w x � 4yK, K of R = yK, K , and let P s p : p g P . It is readily verified˜n n

that

U ˜ U ˜ w x13 D P s D P and m P : V = yK , K s m P : VŽ . Ž . Ž .Ž . Ž .n n n n n n

d ˜for every compact subset V of R . Let GG contain all those functions h:
d 2 ˜w x Ž . Ž Ž . .R = yK, K ª R of the form h x, y s g x y y , where g g GG. Then GG

Ž .is nice, and it follows from Lemma 3 and equations 13 that

n1 2 2 ˜ ˜ ˜14 sup f X y Y y E f X y Y s L GG (P ª 0Ž . Ž . Ž .Ž .Ž .Ý ž /i i n nnfgGG (P is1n

ˆ ˆ� 4 � 4 Ž .with probability 1. Now consider the estimates f and f . By virtue of 14n n
and the assumptions above,

ˆ 2 ˆ 2 2< < < < < <P f y r s E f X y Y y E r X y YŽ . Ž .n n

n1 2 2ˆ ˜ ˜ ˜< <F f X y Y y E r X y Y q L GG (PŽ . Ž .Ž .Ý ž /n i i n nn is1

n1 2 2 ˜ ˜ ˜< <F g X y Y y E r X y Y q L GG (PŽ . Ž .Ž .ˆÝ ž /n i i n nn is1

2 2 ˜ ˆ ˜< < < <F E g X y Y y E r X y Y q 2L GG (PŽ . Ž .ˆ ž /n n n

2 ˜ ˆ ˜< <s P g y r q 2L GG (P .ˆ ž /n n n

� 4If the sequence g is strongly consistent, then the last term above tends toˆn
zero with probability 1. I

3. Proof of Theorem 1.

DEFINITION. A sequence Z , Z , . . . of random variables defined on the1 2
Ž . U Ž .same probability space as X, Y is said to be of order o 1 , written Z sn

U Ž .o 1 , if as n tends to infinity Z ª 0 with probability 1.n

PROOF OF THEOREM 1. Define an auxiliary function

n w xÝ r X I X g c x� 4Ž .is1 i i n
15 r x s .Ž . Ž .ñ n w xÝ I X g c x� 4is1 i n

< <Note that r F K and that r is piecewise constant on the cell of c . By an˜ ˜n n n
obvious upper bound,

< < 2 < < 2 < < 216 P r y r F 2 P r y r q 2 P r y r .Ž . ˆ ˜ ˆ ˜n n n n

The first term measures the variance of r , while the second term measuresn̂
U Ž .its bias. We show in turn that each is of order o 1 .
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Ž .Consider the first term in 16 . An easy application of Proposition 2 and
Lemma 3 shows that

ˆ U< <17 sup P A y P A s o 1 .Ž . Ž . Ž . Ž .Ý n
pgP Agpn

ˆŽ . Ž .For each cell A g c T let n s nP A be the number of vectors X in A.n n A n i
Ž .By virtue of 17 and the definition of r ,ñ

12< <P r y r F 2 K ? Y y r X P AŽ . Ž .Ž .ˆ ˜ Ý Ýn n i inAAgc X gAn i

1
UˆF 2 K ? Y y r X P A q o 1Ž . Ž . Ž .Ž .Ý Ý i i nnAAgc X gAn i

1
Us 2 K ? Y y r X q o 1Ž . Ž .Ž .Ý Ý i inAgc X gAn i

18Ž .

1
UF 2 K ? sup Y y r X q o 1 .Ž . Ž .Ž .Ý Ý i inpgP Agp X gAn i

ˆŽ .Let Q be the joint distribution of X, Y , and let Q be the empiricaln
Ž . Ž . � 4distribution of X , Y , . . . , X , Y . For each element p s A g P , define1 1 n n j n

� w x4 d w xan associated partition p s A = yK, K of the set R = yK, K , and let˜ j
˜ d� 4 Ž . Ž . Ž . w xP s p : p g P . If h x, y s y y r x is defined for x, y g R = yK, K ,˜n n

Ž .then h is bounded and H h x, y dQ s 0 for every measurable subset A ofA=R
d ˜Ž .R . Rewriting 18 in terms of the distribution Q, the family P and h givesn

2 ˆ U< < < <P r y r F 2 K ? sup Q hI y Q hI q o 1Ž . Ž . Ž .ˆ ˜ Ýn n n B B
˜ BgppgP ˜˜ n

˜ ˜ U� 4F 2 K ? L h , yh (P q o 1 ,Ž .Ž .n n

Ž .where the second inequality follows from Proposition 2. By virtue of 13 and
U Ž .the conditions of the theorem, the first term above is of order o 1 . Thus

< < U Ž .P r y r s o 1 .ˆ ˜n n
Ž . d w xConsider now the second term of 16 . Fix « ) 0 and let g: R ª yK, K

< < 2be a uniformly continuous function such that P r y g - « . Let g ) 0 be
< Ž . Ž . < 1r2 5 5chosen so that g x y g x - « whenever x y x - g . Fix d ) 0 so1 2 1 2

2 Ž .small that 8 K d F « , and let S be any set satisfying P S G 1 y d . Define gn
by averaging g over those X within the cells of c l S,i n

n w xÝ g X I X g c x l S� 4Ž .is1 i i n
g x s .Ž .n n w xÝ I X g c x l S� 4is1 i n

Both r and g are constant on the cells of c . In particular, the definition ofñ n n
r insures thatñ

2 2
r X y r X F r X y g XŽ . Ž . Ž . Ž .Ž . Ž .˜Ý Ýi n i i n i

X gA X gAi i
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for each cell A g c , so that, for each training set T ,n n

2 2ˆ ˆ< < < <19 P r y r F P r y g .Ž . ˜n n n n

Ž . Ž Ž . .2Let GG contain all the functions of the form g x s r x y a , where
w x < < 2 < < 2a g yK, K . Then GG is nice, and it is evident that r y r and r y g are˜ ˜n n

� 4contained in GG (P for each n. Applying Lemma 3 to the sequence GG (P ,n n
one may deduce that

ˆ 2 2 U< < < <P r y r y P r y r s o 1 andŽ .˜ ˜n n n
20Ž .

2 2 Uˆ < < < <P r y g y P r y g s o 1 .Ž .˜n n n

Ž . Ž .It follows from 19 , 20 and the choice of S that

2 ˆ 2 U< < < <P r y r F P r y r q o 1Ž .˜ ˜n n n

2 Uˆ < <F P r y g q o 1Ž .n n

2 U< <F P r y g q o 1Ž .n

2 2 U< < < <F 2 P r y g q 2 P g y g q o 1Ž .n

2 U< <F 2 P g y g q 2« q o 1Ž .n

2 2 U< < < < cs 2 P g y g I q 2 P g y g I q 2« q o 1Ž .n S n S

2 U< <F 2 P g y g I q 3« q o 1 .Ž .n S

2Ž w x . < Ž . Ž . <If x g S and diam c x l S - g , then g x y g x - « . One may there-n n
fore conclude from the last inequality that

< < 2 2 Uw xP r y r F 8 K ? P x : diam c x l S G g q 4« q o 1 .� 4 Ž .Ž .ñ n

As the right-hand side depends on S only through its probability,

< < 2 2 Uw xP r y r F inf 8 K ? P diam c x l S ) g q 4« q o 1 .� 4 Ž .Ž .ñ n
Ž .S : P S G1yd

Ž . < < 2 U Ž .Condition c of the theorem guarantees that P r y r F 4« q o 1 , and theñ
result follows as « ) 0 was arbitrary. I

4. Local fitting with truncated polynomials. The histogram estimate
Ž .r is piecewise constant on the cells of c T and has discontinuities alongn̂ n n

Ž .the boundaries of these cells. If the regression function r ? is known to be
smooth, or if the sample size is large, then more sophisticated local estimates
may be appropriate.

The results of Theorem 1 may be extended in a natural way to regression
estimates based on local polynomial fits. Fitting a suitably truncated polyno-
mial within each cell of c gives estimates with better approximation capa-n
bilities and potentially better performance. Discontinuities along cell bound-
aries remain, but may be corrected if necessary by employing weighted
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averages of estimates from different cells, as in Chaudhuri, Huang, Loh and
Ž .Yao 1994 .

Ž . d Ž .For each vector u s u , . . . , u g R and each sequence a s a , . . . , a1 d 1 d
a a1 ad < <of nonnegative integers, let u s u ??? u and a s a q ??? qa . Fix an1 d 1 d

integer k G 0 and let

GG s g x s c a x a : c a g RŽ . Ž . Ž .Ý½ 5
< <a Fk

be the class of kth-order multivariate polynomials on R d. Set L s Kb for
some b G 1, and define the class

G̃G s g ? n l k yl : g g GG , 0 F l F L� 4Ž . Ž .
of truncated polynomials which has envelope L. As GG is a finite-dimensional
vector space of real-valued functions, it follows from Lemma 28 of Pollard
wŽ . x1984 , Chapter 2 that GG is a VC-graph class, and an easy argument shows

˜ wŽ . xthat the same is true for GG. Lemma 25 of Pollard 1984 , Chapter 2 shows
that GG is nice.

Given a partitioning rule c and a training set T , we construct a piece-n n
˜wise polynomial regression estimate by fitting a suitable function g g GG

Ž . Ž .within each cell of c T . For each cell A g c T , letn n n n

2
21 g s arg min g X y YŽ . Ž .Ž .ÝA i i

ggGG X gAi

Ž .be the best kth-order polynomial fit to those pairs X , Y for which X g A,i i i
and set

< <l s b ? max Y : X g A .� 4A i i

w xIf the range yK, K of the response variables Y is known, then define thei
estimate

ˆ � 422 f x s g x n K k yK ? I x g A ;Ž . Ž . Ž . Ž .Ýn A
Agcn

otherwise, define

ˆ � 423 f x s g x n l k yl ? I x g A .Ž . Ž . Ž . Ž .Ýn A A A
Agcn

ˆ ˜Ž .In either case, f x g GG (P . Moreover, the optimality of g and the choicen n A
of truncation level insures that

n n
2 2f̂ y Y F r y YŽ .ˆŽ .Ý Ýn i n i

is1 is1

ˆ� 4for every training set T . The consistency of the estimates f followsn n
immediately from Theorem 1 and Lemma 4. Note that truncation eliminates
the need for regularity assumptions concerning the local least squares fit
within each cell.
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THEOREM 2. Let c , c , . . . be a sequence of partitioning rules satisfying1 2
ˆŽ . Ž .conditions a ] c of Theorem 1. If regression estimates f are defined usingn

ˆ 2Ž . Ž . < <truncated local polynomial fits as in 22 or 23 , then P f y r ª 0 withn
probability 1.

When it is desirable to do so, we may center the polynomial fit within each
Ž . Ž . Ž .cell, replacing g X in 21 by g X y x , where x is the average of thosei i 0 0

vectors lying in A, or some other centrally lcoated point of A.

5. Estimation of conditional medians. For each x g R d and a g
w xyK, K , the conditional cumulative distribution function of Y given X s x
is defined by

<� 4F a, x s P Y F a X s x .Ž .
The conditional median of Y given X s x is defined by

1m x s inf a: F a, x G .Ž . Ž .� 42

Ž .Here we study histogram estimates of m ? that are based on local order
statistics of the response variables.

Ž . Ž .Given a partitioning rule c and a training set T s X , Y , . . . , X , Y ,n n 1 1 n n
define for each x a histogram estimate

1ˆm x s inf a: F a, x GŽ . Ž .ˆ � 4n n 2

Ž .of the conditional median m x , in terms of the corresponding estimate
n w x� 4Ý I Y F a I X g c x� 4is1 i i n

F̂ a, x sŽ .n n w xÝ I X g c x� 4is1 i n

Ž .of the conditional cumulative distribution function. Then m x is just theˆ n
?Ž . @ � w x4k q 1 r2 th-order statistic among the k numbers Y : X g c x . If k isi i n

Ž . � w x4odd, then m x is the ordinary median of Y : X g c x .ˆ n i i n

THEOREM 3. Let c , c , . . . be partitioning rules satisfying conditions1 2
Ž . Ž . da ] c of Theorem 1. If, for P-almost every x g R ,

<24 P m x - Y F m x q « X s x ) 0 for every « ) 0,� 4Ž . Ž . Ž .
< <then P m y m ª 0 with probability 1.ˆ n

Ž . Ž .PROOF. Condition 24 insures that F a, x is increasing in each neighbor-
Ž . < < Ž .hood of a s m x . Fix « ) 0 and note that P m y m F 2« q 2 KP A qˆ n n

Ž .2 KP B , where the setsn

A s x : m x G m x q 2« and B s x : m x G m x q 2«� 4 � 4Ž . Ž . Ž . Ž .ˆ ˆn n n n

Ž .depend on the training set T through m . It is enough to show that P Aˆn n n
Ž . U Ž .and P B are of order o 1 .n

w xFix a number a g yK, K and define the indicator random variable
X � 4 X Ž .Y s I Y F a for each i G 1. The regressions function of Y is F a, x , andi i i
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ˆ Ž .its histogram estimate is just F a, x . Although c is a function of T rathern n n
Ž X. Ž X.than X , Y , . . . , X , Y , the analysis of Theorem 1 still applies: for each1 1 n n

w xa g yK, K ,

ˆ< <25 F a, x y F a, x dP x ª 0Ž . Ž . Ž . Ž .H n

with probability 1.
Ž . Ž .Select numbers y K q « s a - a - ??? - a - a s K q « such0 1 l lq1

d Ž .that a y a - « , for i s 0, . . . , l. For each x g R , let j x be the uniqueiq1 i
� 4 Ž . w . Ž .integer in 1, . . . , l y 1 such that m x g a , a , and define h x sjŽ x . jŽ x .q1

1 Ž . Ž . � 4y F a , x . The definition of m x insures that P h ) 0 s 1. If x g AjŽ x .y1 n2
Ž . Ž .then m x F m x y 2« F a , and thereforeˆ n jŽ x .y1

1ˆ26 F a , x y F a , x G y F a , x s h x .Ž . Ž . Ž . Ž . Ž .n jŽ x .y1 jŽ x .y1 jŽ x .y12

� Ž . 4 Ž .For each d ) 0 define V s x: h x G d . By virtue of 26 ,d

ˆ< <max F a , x y F a , x dP x G h x dP xŽ . Ž . Ž . Ž . Ž .H Hn j j
0FjFl An

G dP A l VŽ .n d

cG d P A y P V ,Ž . Ž .n d

Ž .and it follows from 25 that, for every d ) 0,

lim sup P A F P V cŽ . Ž .n d
nª`

Ž c. � Ž . 4with probability 1. As d ª 0, the probability P V ª P x: h x s 0 s 0, sod

Ž . U Ž . � 4that P A s o 1 . A similar analysis may be carried out for the events Bn n
Ž .using the regularity condition 24 . I

REMARK. An obvious modification of the preceding arguments establishes
Ž .the consistency of histogram estimates for the conditional quantiles m x ,a

Ž . Ž .with a g 0, 1 . One need only require that 24 hold at P-almost every point
Ž .m x .a

6. Cubic partitions with data-dependent offsets. A cubic partition
has congruent, rectangular cells whose dimensions are specified in advance of
the data. Adding an offset vector to each cell of a cubic partition shifts the
cells in the direction of the vector, while maintaining their axis-parallel
orientation. An application of Theorem 1 yields conditions for the consistency
of regression estimates based on cubic partitions with data-dependent offsets.

� 4Fix a sequence h of positive numbers for each j s 1, . . . , d. For everyjn
n G 1, define the infinite cubic partition

u s r y 1 h , r h = ??? = r y 1 h , r h : r , . . . , r g ZŽ . Ž .� 4. .n 1 1n 1 1n d dn d dn 1 d

having congruent, rectangular cells with edge lengths h , . . . , h . Let P s1n dn n
� d4u q c: c g R contain all the shifts of u by an arbitrary offset c.n n
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Suppose that d s 1, in which case each cell of u is an interval of lengthn
h . Fix x , . . . , x g R. If p g P , then p and p q h are identical, so inn 1 n n n

Ž n .assessing the partitioning number D x , P it is enough to consider shifts1 n
w .c g 0, h of length at most h . As c increases from 0 to h , the partitionn n n

induced by u q c changes only if the boundary of a cell crosses one of then
points x , . . . , x . This happens exactly n times, once for each x , and it1 n i

Ž n .follows that D x , P F n.1 n
Suppose now that d ) 1. For each j s 1, . . . , d, let the family P j ben

generated by shifts of the partition

ju s R = ??? = r y 1 h , r h = ??? = R: r g Z ,Ž . .½ 5n j jn j jn j

each of whose cells is a slab perpendicular to the jth coordinate axis. By
varying the components of c one at a time, it can be shown that, for each
sequence x , . . . , x g R d,1 n

D x n , P F DU P1 ??? DU P d .Ž . Ž . Ž .1 n n n n n

U Ž 1 .It follows from the case d s 1 above that D P F n, and therefore then n
U Ž . Ž .partitioning numbers D P satisfy condition b of Theorem 1.n n

The other conditions of Theorem 1 lead to restrictions on the constant h jn
that are identical to those required for fixed cubic partitions. The shrinking

Ž .cell condition c is satisfied if and only if

27 lim h ª 0 for j s 1, . . . , d.Ž . jn
nª`

Ž .As for condition a , assume without loss of generality that V is a compact set
w x w xof the form yt, t = ??? = yt, t , with t ) 0. Each cell of p g P has volumen

d Ž .Ł h , and if 27 holds, thenjs1 jn

d2 t q 1Ž .
m P : V FŽ .n dŁ hjs1 jn

when n is sufficiently large. Thus the restricted covering numbers grow
sublinearly if

d

28 n ? h ª ` as n ª `.Ž . Ł jn
js1

The conclusion of the following theorem holds regardless of the joint distribu-
Ž . d w xtion of X, Y g R = yK, K .

THEOREM 4. For each n, let the regression estimate r be based on an̂
Ž . Ž . < < 2shifted version of the partition u . If 27 and 28 hold, then P r y r ª 0ˆn n

with probability 1.

7. K-threshold with variable weights. In this section we consider a
Y-dependent variant of the k-spacing regression estimate of Parthasarathy

Ž .and Battacharya 1961 . Let d s 1, so that X , X , . . . are real-valued, and1 2



REGRESSION ESTIMATION 1101

assume that the distribution P of X has a density with respect to Lebesguei
w .measure. Let F: R ª 0, ` be a nonnegative weight function that is bounded

Ž .away from zero and infinity on every compact set. The partition c T isn n
found by ordering X , . . . , X and then grouping them into intervals based on1 n

Ž .the weights F Y of the corresponding response variables. In scanning fromi
left to right, a new interval is begun when the running sum of the weights
Ž .F Y associated with X in the current interval exceeds a preassignedi i

threshold.
Let k ) 0 be a preassigned threshold value. Let r be the unique permuta-n

� 4 Žtion on 1, . . . , n such that X - X - ??? - X . Such a permutationrŽ1. r Ž2. r Žn.
.exists with probability 1 as P has a density. Set m s 1 and recursively1

define successive threshold times
m

m s 1 q min m G m : F Y G kŽ .Ýrq1 r r Žk . n½ 5
ksm r

n Ž . Ž .until Ý F Y - k . Let c T be a partition of R into intervalsksm r Žk . n n ns
� 4A , . . . , A such that X , . . . , X g A , for j s 1, . . . , s y 1, and1 s r Žm . r Žm y1. jj jq1

Ž .X , . . . , X g A . If the weight function F is identically 1, then c T isrŽm . r Žn. s n ns

the oridinary k-spacing partition of R.
For suitable sequences of threshold values, Theorem 1 shows that his-

togram regression estimates based on c are consistent. The proof, whichn
Ž .makes use of Example 1, is similar to that given in Lugosi and Nobel 1995

for k-spacing density estimates, and is therefore omitted.

THEOREM 5. Let a regression estimate r be formed by averaging responsen̂
Ž . < < 2variables within the cells of c T . If k ª ` and k rn ª 0, then P r y rˆn n n n n

ª 0 with probability 1.

REMARK. In higher dimensions, similar results can be obtained for a
Y-independent version of the partitioning scheme proposed by Gessaman
Ž . Ž .1970 . The Y-independent case is discussed in Lugosi and Nobel 1995 .

8. Nearest-neighbor clustering. Clustering of multivariate data is a
widely used method of statistical analysis. Clustering schemes typically
partition the training set by minimizing an empirical error criterion. In this
section we establish the consistency of regression estimates based on

Ž .nearest-neighbor clustering of the unlabeled measurement vectors X . Leti
5 5 d? be the usual Euclidean norm on R .

A clustering scheme is a function C: R d ª CC that associates every vector
d � 4 dx g R with one of the finite number of cluster centers CC s c , . . . , c : R .1 m

� 4Each clustering scheme has a corresponding partition p s A , . . . , A with1 m
� Ž . 4cells A s x: Q x s c . A clustering scheme is said to be nearest neighborj j

if, for each x g R d,

5 5C x s arg min x y c ,Ž . j
c gCCj
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with ties broken in favor of the center c having the least index. In this casej
the partition of C is the nearest-neighbor partition of its cluster centers. See

Ž . Ž .Hartigan 1975 or Gersho and Gray 1992 for more details concerning
multivariate clustering and its applications.

Ž . 5The risk of a clustering scheme C is commonly measured by R C s H x y
Ž .5 2C x dP, the expected squared distance between a random vector X ; P

and its corresponding cluster center. The empirical risk of C is given by

n12 2ˆ5 5 5 529 R C s x y C x dP s X y C X .Ž . Ž . Ž . Ž .ÝHn n i in is1

Ž . Ž .From a training set T s X , Y , . . . , X , Y and a clustering scheme C onen 1 1 n n
may produce a histogram regression estimate by averaging the response
variables Y within the cells of C. We consider estimates based on empiricallyi
optimal nearest-neighbor clustering schemes.

d Ž . � 5 5DEFINITION. For each x g R and every d ) 0, let B x, d s v: u y v
4- d . The support set of P is defined by

S s x : P B x , d ) 0 for every d ) 0 .� 4Ž .Ž .P

Ž .It is easy to see that S is a closed set and P S s 1.P P

PROPOSITION 3. For each n G 1, let C : R d ª CC minimize the empiricaln n
Ž .risk R C over all nearest-neighbor clustering schemes having k clustern n

5 5 2 dcenters. If E X - ` and k ª `, then, for every compact set V : R ,n

5 5max min u y c ª 0
ugS lV cgCCP n

with probability 1.

5 5 2PROOF. By the monotonicity of ? , the cluster centers of an empirically
optimal scheme must lie within the closed convex hull of X , . . . , X . As this1 n

5 5 2set is compact, the continuity of ? insures that C exists.n
Let u , u , . . . be dense in R d, with u s 0. For each n, let CX be the1 2 1 n

� 4nearest-neighbor clustering scheme with centers u , . . . , u . For each com-1 n
pact set V : R d,

X 2 2 ˆ5 5 5 5R C F R C F max min x y a q x dPŽ . Ž . Hn n n n j n
cxgV 1FjFk Vn

and therefore

5 5 2lim sup R C F x dP .Ž . Hn n
cVnª`

Ž .with probability 1. As V was arbitrary, R C ª 0 with probability 1.n n
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By applying the strong law of large numbers to a countable, dense subset
of S , it may be established thatP

30 P lim inf P B u , d ) 0 for every u g S , d ) 0 s 1.Ž . Ž .Ž .½ 5n P
nª`

Suppose for the moment that there is a compact set V : R d and a number
d ) 0 such that

5 531 P lim sup max min u y c ) d ) 0.Ž . ½ 5
ugS lV cgCCPnª` n

Let CC , CC , . . . be a sequence of codebooks corresponding to a sample point in1 2
� 4this event. As S l V is compact, there exists a sequence of vectors uP nkU cŽ .such that u ª u g S and CC : B u , d for every k. Thus, when k isn P n nk k k

sufficiently large,

d d
UˆR C G P B u , ,Ž .n n nk k k ž /ž /3 3

Ž . Ž .and it follows from 30 and 31 that

P lim inf R C ) 0 ) 0.Ž .½ 5n nª`

Ž . Ž .However, this contradicts the fact that R C ª 0, and we conclude that 31n
cannot hold. I

Ž .THEOREM 6. Let C minimize the empirical risk R C over all nearest-n n
neighbor clustering schemes with k cluster centers. Define r by averagingˆn n

5 5 2the response variables Y within the cells of C . If E X is finite, k ª ` andi n n
y1 2 < < 2n k log n ª 0, then P r y r ª 0 with probability 1.ˆn n

Ž .PROOF. The partition associated with C lies in the family VV k contain-@ n
d Žing all nearest-neighbor partitions of k -vectors in R . Example 3 Sectionn

. Ž Ž .. U Ž Ž .. k n
2 d1.2 shows that m VV k s k and D = k F n . Our assumptions onn n n n

k guarantee thatn

ny1 m VV ª 0 and ny1 log DU VV ª 0.Ž . Ž .k n kn n

Ž .The shrinking cell condition c of Theorem 1 follows easily from Proposi-
tion 3. I

9. Empirically optimal regression trees. Tree-structured partitions
were defined in Example 3 of Section 2. A regression tree is a function f :
R d ª R defined by assigning a number to each cell of a tree-structured

Ž .partition T, t . Alternatively, one may define a regression tree by augment-
Ž .ing the pair T, t with an additional node function a : T ª R, and setting

Ž . Ž .f x s a t for every vector x whose path through T ends at the leaf node t.
Ž .In the notation of Section 2, a k-node regression tree is a function f g GG ( TT k ,

w xwhere GG is the class of constant functions taking values in yK, K .
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Ž . Ž . < Ž .The regression function r ? minimizes the predictive risk J f s E f X
< 2 dy Y over all functions f : R ª R. In practice, when the training set T isn

Ž .given but the distribution of X, Y is unknown, it is common to seek an
ˆestimate f that minimizes the empirical riskn

n1 2
J f s f X y YŽ . Ž .Ž .Ýn i in is1

over a suitable class of regression estimates. Empirically optimal regression
Ž .trees yield consistent estimates of r ? if the size of the trees grows with n at

a controller rate.

ˆ Ž .THEOREM 7. Let f minimize the empirical risk J f over all the k -noden n n
ˆ 2Ž . Ž . < <regression trees f g GG ( TT k . If k ª ` and k s o nrlog n , then P f y rn n n n

ª 0 with probability 1.

PROOF. As k grows without bound, there exists a fixed, tree-structuredn
Ž . dpartition p g TT k such that, for every compact set V : R ,n n

32 max diam A l V ª 0.Ž . Ž .
Agpn

Let g be the histogram regression estimate produced from T by averagingˆn n
the response variables Y within the cells of p .i n

Ž .Under the assumption that k s o nrlog n , the bounds derived in Exam-n
Ž . y1 Ž Ž .. y1 U Ž Ž ..ple 3 Section 1.2 show that n m TT k ª 0 and n D TT k ª 0. Itn n n

Ž . � 4then follows from 32 and Theorem 1 that g is strongly consistent. Since,ˆn
ˆ ˆŽ .for each n, f and g are contained in GG ( TT k , and f is empiricallyˆn n n n

ˆoptimal, the consistency of the estimates f follows from Lemma 4. In

We remark that the partitions p above may be chosen to have rectangu-n
lar cells. Thus the conclusion of the theorem holds for the empirically optimal
regression trees employing axis-parallel splits. It should also be noted that

ˆ Ž .the estimates f need not have shrinking cells in the sense of 4 . When n isn
large, the empirically optimal tree will not divide regions of the measurement
space on which the regression function is constant.
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