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To explore nonlinear structures hidden in high-dimensional data and
to estimate the effective dimension reduction directions in multivariate
nonparametric regression, Li and Duan proposed the sliced inverse regres-
sion (SIR) method which is simple to use. In this paper, the asymptotic
properties of the kernel estimate of sliced inverse regression are investi-
gated. It turns out that regardless of the kernel function, the asymptotic
distribution remains the same for a wide range of smoothing parameters.

1. Introduction. In many statistical applications involving high-dimen-
sional data two tasks will be faced:

1. exploring nonlinear structures such as clusters hidden in data;
2. overcoming the difficulty caused by the sparseness of the data.

Constrained by the three-dimensional physical world in which we live, the
ability to look at more than three variables with human eyes is a real
challenge. Yet, in statistical applications, there is a tendency to trust visual
perception more than mathematical speculation. These issues have led to the
development of dimension reduction techniques, for example, the projection
pursuit (PP) method [cf. Huber (1985)] including PP regression [Friedman
and Stuetzle (1981), Hall (1989) and Zhu and Fang (1992)] and PP clustering
[Friedman and Tukey (1974)], the generalized additive model [Hastie and
Tibshirani (1987)] and so on.
Alternatively, Li (1991) considers the regression model

(1.1) Y =F(Bix,...,B}x, &),

where x is a d-dimensional random vector, the B’s are unknown vectors, the
random variable ¢ is independent of x and F is an arbitrary unknown
function on R**!. This model means that the projection of the d-dimensional
explanatory x onto the k-dimensional subspace, (B1x,..., 8,x), captures all
we need to know about the response variable Y. When k is small, we may
reach the goal of data reduction by estimating the pB’s efficiently.

A method, called sliced inverse regression (SIR), is used to search for the
nonlinear structure in data and to estimate the projection directions B’s. See
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Duan and Li (1991), Hsing and Carroll (1992) and Li (1991) for results on
SIR.

SIR can be used as a descriptive tool for finding interesting structures
without relying on the regression model (1.1). Suppose that X =
(X;1,---» X, 441 i=1,...,n, are iid. (d + 1)-dimensional observations
from X" = (X,,..., X, ,) with density f(X). To explore the structure in the
observations, Li (1989) suggested the following method. First, we choose a
component of X, say X,,, as the dependent variable and consider the rest of X,
X =(Xy,..., X, 1,X,.1,---»X4,1)", as the regressor. Then we look for
the interesting projection of X(™), B! X(™ so that when it is plotted against
X,,, we might find nonlinear structures in the data. For this purpose, Li
suggested a projection index which is defined as the largest possible R-squared
value for fitting a transformation of X, linearly on 8'X™) that is, for any

m=1,...,d+1,
B)(B) = max [Corr(A(Xm)’BTX(m))]Z,
AcZ*X)

where the notation “Corr” means the correlation coefficient of two random
variables and .#%(X) is a class of square integrable functions with respect to
the distribution of X. It is easy to see [also see Li (1989), Theorem 2.1] that for
a given B, A(X,) = E(B"X"™)[X ), and hence

BT Cov(E(X"™IX,,))B
BT Cov(X™)p
where the notation “E” means the expectation.

Hence a projection direction B,, can be found by maximizing B2( ) for a
given m; that is, B,, is such that

(1.2) Bj(B) =

BT Cov(E(X™IX,,)) B
2 =
(13) Bm( Bm) BS:‘II;d BT Cov(x(m)) B

= the largest eigenvalue of A,

where

(1.4) A = {Cov(X™)} "% Cov(E(X™IX,, )){Cov(X™))

assuming that Cov(X™) is a positive-definite matrix. It is well known that
Cov(X(™) can be estimated well by a sample covariance matrix. Hence how to
estimate Cov(E(X"™)|X,)) is the main issue.

The matrix Cov(E(X™|X,,)) can be estimated directly by some nonpara-
metric method such as the k-slice estimate proposed by Li (1991). This
estimate is based on the following procedure. Divide the range of X, into
n/k (rounded to the nearest integer) slices, S;,...,S, /1> Where each slice
contains k& sample points of X, . Within each slice, compute the sample
covariance matrix of concomitants X" associated with X, ’s, denoted by C;,
i=1,...,n/k. Finally, a weighted sum of C,’s is used as an estimate of A.
One can refer to Section 4 of Li (1991) for more details. Hsing and Carroll
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ASYMPTOTICS FOR SLICED INVERSE REGRESSION 1055

(1992) presented the asymptotic normality of Li’s two-slice estimation. The
issue on appropriate choice of k remains debatable; see the discussions in Li
(1991).

In this paper we consider the kernel method for estimating Cov(E(X"™|X, ))
and its eigenvalues and eigenvectors, then A and the associated eigenvalues
and eigenvectors. In our results root n consistency and asymptotic normality
are established. It turns out that the asymptotic variance of our kernel
estimate does not depend on the kernel function used. It remains the same
over a wide range of bandwidth. This theoretical result supports the empiri-
cal finding that SIR is not sensitive to the number of slices used; see Li
(1991).

In the next section we shall state the main results of the paper and leave
the proofs to Section 4. Some lemmas which are needed in the proofs shall be
given in Section 3.

2. Main results. For simplicity of notation, we write Y and Z for X,,
and X™), respectively, for given m and let f(Y) denote the density function
of Y. Put Z and its independent copies Z; as

T .
Z=(Z,....2,)", Z,=(Z Z;), Jj=1,...,n.

1jo2 >

Our objective is to estimate, based on (Z;,Y;)’s, Cov(E(Z|Y)), its eigenvalues

and the corresponding eigenvectors. Define
R(Y) 2 (R(Y),..., Ry(Y)) = (E(Z,IY),...,E(Z,]Y))" 2 K(ZIY),
8(Y) = (&1(Y),..,8a(Y)) = (R(Y)F(Y), ..., Ry(Y)(Y))'
and
= Cov(R(Y)) = Cov(E(ZIY)).

We may estimate R(Y') by a kernel method

1 n
(Y =—h¥ K((Y -Y)r?),
8(Y) = (61(Y),.... 64(V)),
. 1
f(Y) =— ; K((Y-Y)r™)

and
R(Y) = g(Y)/f(Y),

where & is a bandwidth and K(-) is a kernel function.
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However, to avoid technical difficulties due to small values in the denomi-
nator, we have to use a modified version of the kernel estimate. For each fixed
b>0,let

f,(Y) = max{f(Y),b}, £,(Y)=max{f(Y),?b)
and
R(Y)f(Y)
f5(Y)

We shall use R »(Y) =g(Y) /f;(Y) instead of R(Y). Without loss of general-
ity, let EZ = 0. Then an estimate of A; can be constructed as follows:

M= 2 (R ()

R,(Y) = = (Rbl(Y)""7Rbd(Y))T'

To present our main theorem, we need some notation. For a symmetric
(d X d) matrix ¢ = (¢;;))y4«4, let Vech(e) = (¢y1,---, €415 Cogy - - -5
Cag>Ca3,---,Cgq)" be a ([d(d + 1)]/2)-dimensional vector. Define

V(Z,Y) = (3Z:R(Y) + 3Z/Ri(Y))ara
0,2 = N Cov(Vech(V(Z,Y)))A for N € R4+ 1/2,

We now present the main results and put the conditions next to them.

THEOREM 2.1. Under conditions 1 to 6 given in Remark 2.2, as n — «, we
have

2.1) Vn(Ay, Ay = H,

where N' Vech(H) has a normal distribution N(0, ,2) for any N # 0 and the
notation “= " stands for the convergence in distribution.

From Theorem 2.1 we can derive the Vn -consistency of eigenvalues and of
corresponding eigenvectors by using perturbation theory. The result is stated
in the following theorem. First introduce some notation.

Let A,(A) = 2,(A) > -+ = A,(A) = 0 and b;(A) = (b,,(A),..., b, ,A), i =
1,...,d, denote, respectively, the eigenvalues and the corresponding eigen-
vectors of a d X d matrix A.

THEOREM 2.2. Suppose that nonzero A\,(A,)’s are distinct and that condi-
tions 1 to 6 given in Remark 2.2 hold. Then for each nonzero eigenvalue
A (A1) and the corresponding eigenvector b,(A ), we have

Vi (A (Ay,) = A(AY))
(2.2) = Vnb;(A}) (Ay, = ADb(Ay) +0,(VallAy, — A4l)
= bi(Al)THbi(Al)’
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where H is given in Theorem 2.1, and
Vn (b;(Ay,) = bi(Ay))

& b(ADb(A) (A, —A)Db(A)
(2.3) B ‘/_E‘l (L (A = A(AY))

l#i

+ Op(\/;”Aln - A1||)

i b,(A;)b;(A;) Hb,(A,)
1;1 (/\j(Aln) - /\1(A1))

asn — =, where [|A Il =%, _; ;_4la;;| is the l;-norm of A .

REMARK 2.1. Based on Theorem 2.1, it is not hard to obtain the asymp-
totic distribution for the estimate of A given in (1.4) and the associated
eigenvalues and eigenvectors of A , where the estimate of A is Cov(Z) ~'/*A |, X
Cov(Z) '/* and Cov(Z) is the sample covariance matrix of Z. The perturba-
tion formula as given by (3.29) or (3.36) in Kato (1983), pages 92 and 93,
together with the standard delta argument should suffice; see also Tyler
(1981) and Li (1991). The derivation can be simplified by noting the affine
invariance property of our problem. One needs only to work out
the special case that Cov(Z) = I. In this case A = A; = Cov(R(Y)). We omit
the details.

REMARK 2.2. The following six conditions are required for Theorems 2.1
and 2.2.

1. All g,(y) =R, (»f(y), i=1,...,d, and f(y) are 3-times differentiable
and their third derivatives satisfy the following condition: there exists a
neighborhood of the origin, say U, and a constant ¢ > 0 such that, for any
ueUl,

Oy +u) — FP(>y)] < clul,
le®(y +u) —g®(y)| <clul, i=1,...,d.
2. For each pair 1 <i, ! < d and for any u € U,

|R(y + u)Ry(y +u) = Ri(y)Ry(y)| < clul.

3. ElZ|* <%, i=1,...,d

4. The continuous kernel function K(:) has the following properties:
(a) the support of K(-) is the interval [—1, 1];

(b) K(:) is symmetric about 0;
(© [Y,K(w)du=1,and [} ,u'K(w)du=0,i=1,2,3.

5. Asn —> o, h ~n"°, b ~n ° with the positive numbers c; and c, satisfy-
ing that 1/8 + ¢,/4 <¢; <1/4 — ¢,, and the notation “~ ” means that
two quantities have the same convergence order.

6. Vi LR (Y)R,(Y)I(f(Y) <b)] =o(1)as n — =, for 1 < i, < d, where I(-)
is the indicator function and b satisfies condition 5.
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Conditions 1 and 2 are concerned with the smoothness of the density
function of Y and regression curve R(Y). Condition 3 is necessary for the
asymptotic normality of A, .

3. Some lemmas. To prove succinctly the theorems, we put some lem-
mas in this section. Without any confusion, we shall denote a constant by ¢
which may take different values for each appearance (independent of n)
throughout this section.

LEMMA 3.1 [cf. Rao (1983), Theorem 2.1.8]. Suppose that conditions 1, 2, 4
and 5 hold. Then, as n — =,

(3.1) sup| £(y) —f(y)|=0(h4+n’1/2h’llog n) a.s.
y

The following lemma is a slightly modified version of Theorem 2.37 of
Pollard (1984) [or see Zhu (1993), Theorem 3.1].

LEMMA 3.2. Suppose that conditions 1 to 6 are fulfilled. Then, for any
fixed &> 0,

P{sup|§i(y) —Eg.(y)| > 8n’1/2h’1a}
y

&

_4 1
(3:2) = 20( \/Ed) exp{— 582/(32d(log n)l/z)}
+ 8cd 8 exp(_ndz)

+ E(ZL,)4I(|Zi| > cd~1/2(log n)1/4)’

ool

By this lemma the uniform convergence rate of g,(y) can be achieved.

where

LEMMA 3.3. Suppose that the conditions in Lemma 3.1 are satisfied. Then

(3.3) sup|8,(y) —&;(y)|=0,(h* + n='/?h" " log n).
y

ProOOF. Since the kernel function K is uniformly continuous on [—1, 1],
writing ¢; = sup_, _, . 1/K(w)|, we have

sup (Var(K(%)))l/z < sgp(sz(y ;L Y)f(Y) olY)l/2 <c.

y
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Choose ¢ = log n, then as n — «, we have
(3.4) sup|g;(y) —E&;(y)|=0,(n"'?h " log n).
y

On the other hand, expanding g,(y) in a Taylor series with the Lagrange
form of the remainder term [or see Rao (1983), page 47] and using condition
1, we can see that

sup|ES;(y) —g:(y)|
y

= sup /%K(y_

Y
R0 - R 1)) Y|

= sup | [K(u){R,(y — uh)f(y = uh) = Ry(y)f(y)} du

= sup fK(u)(gi(z —u) — &(v))(uh)® du /6

y

< c[|K(u)u4|du~h4,
completing the proof. O
4. Proof of Theorem 2.1. Clearly, we need to deal with only the ilth

element

n

% Z( (Y )gl(Y))/fb( ;) of the matrix —— En:(ftb(Y))(f{b(Y))T.

j=1
The proof will be done in several steps. Define
_&i(y)
Rb,i(y) = (%) )
oy 8W&y)
I)(y) f2(y) Ryi(y)Ry(y),
1oy = SNE&EW) T &(N&() _ Ry(9)&(Y) | Bu(2)&i(y)
il(y) = 2 = + ’
' 15 () 1(y) 15(y)
fb(y)
®3) =
IF)(y) = 2sz(y)sz(y)f( )
Step 1. Show that
(4.1) nj=1 5 ()
. Lo
= — Z {IP(Y) + IP(Y) - I$(Y;)} + 0,(1)
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It is easy to see that

1 &[4 YJ 8 YJ 1 & 1 2 3
o 7 S [P - £ o + ) -1
- Jnl + JnZ + Jn3 - Jn4’
where
1 n
= g L{aM(@() - (%) +a(¥)(a(Y) - a(¥))
) - (%)
()Y
L4 (a0 - a)(E(%) - a()
‘/; J=1 fb (Yj) ’
_ 13 (£2() - (%))
Jog = ‘/;J; bi( V) Ryi(Y;) PE(Y)
and
1 &z 2 Ry (V) Ry (Y))
S = ﬁjgl(fb(yj) _fb(Yj)) sz(YJ)
Hence it suffices to show that, for obtaining (4.1),
(4.3) Jul=o0,(1), i=1,..,4
Since

(F2(Y) = F2(Y)) = (A(Y) = £,(Y)) + 2£,(Y)(£(Y) — f(Y)),
() = H(| < f(y) = F(»)] and |R,(¥)] <|Ri(¥)],

then, by Lemmas 3.1 and 3.3 and condition 5, we have

(4.4)

e =

0, [{(h* + n" V21" log n) b~2n1/2

+(h* + n"Y2h" 'log n)2b72n1/2}
(4.5)

<[ L)l |rw))

— Op(n—8c1+202+1/2 + n201+202—1/2(10g n) ) — Op(l),

where the second equation is due to the law of large numbers for
n T IR(Y).
Slmllarly, we can prove (4.3) for J,;, i = 2,3,4.
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Step 2. Show that

" (1(%,) - B[ (1))

ﬁl

-

(4.6) .

- = i{Ri(Yj)Rl(Yj) — E[R(Y)R,(Y)]} + 0,(1).

All we need to do is to show that

Z {(R(Y)R.(Y)) — Rui(Y)Ruu(Y)))

(4.7) nj=1

ﬁl

—E(R,(Y)R(Y) = R,y(Y)Ry(Y))} = 0,(1).
By the independence of Y;’s and b — 0, we have

’ % Y {(R,(Y)R,(Y)) = Ry(Y) Ryu(Y)))

—E(R(Y)R,(Y) = R,(Y) R, (Y)))
= Var(R,(Y)R,(Y) = Ry(Y) Ry (Y))
<ER(Y)R,(Y) - Rbi(Y)Rbl(Y))2

gy B RAY) = Bi(Y) R (V) (V) Y

<2

[ RAY)RHY)F(Y)dY >0 asb -0,
{f(Y)<b}

which implies (4.7), and (4.6) is proved.
Step 3. Show that

n

% L {nr ) — Hzral)

1 1
:ﬁjgl Ry(Y))Ry(Y)) + 521 Ryi(Y)) (( ))
4.8
(4.8) .\ Zusz( ) (( ))
_[E{Rbl(Y)Rb,(Y)+ ZR,”(Y)% ZR, (Y ):((Y))}

+0,(1).
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To analyze n~'/?L}_, I{(Y;), we need only to work on

41(Y))
()

Z RbL(Y)

Approximate this sum by a U-statistic with a varying kernel. Applying the
similar argument used by Stone (1984), Nolan and Pollard (1987), Hardle and
Stoker (1989), and Powell, Stock and Stoker (1989), we have

1o a(y) &(Y)
B E[R’”’(Y' %)
(4.9) 1 =

= ﬁjgluhbi(wlj) - [E[uhbi(wl)] + 017(1)’
where

yszi(Yj) leRbi(y)
fb(Yj) fb(y)

and fi(z,, ¥) is the density function of w, = (Z,,Y). Let f(y)/f,(y) = &,(¥);
we have

1
Uppi(wy;) = ﬁfK((YJ _y)hil)

}f1(zlay) dz, dy

lebi(Yj) n leRbi(y)
fb(Y') fb(y)

1
Uppi(wy;) = ﬁ/K((YJ _y)h_l)

}f1(211y) dz, dy

f;; /h (¥ =)k )RA)f(5) dy
+ EZZJ/ZK((YJ - y)hl)—Rbi}(C;;)y];(y) dy
410 - Rbi(zgzz(%mm N ZZJR;;E?%O@)
—K((Y; ~ ) WR(») F(¥) = R(Y)f(Y;)} dy
LR B R

>

lRi(Y.)Rl(Y.)gg(Yj) + %leRi(Yj)gl?(Yj)

nil nil

FIGN,) + TS (Y).
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In order to show (4.8), it is sufficient to show that

1 n
Var(ﬁ ) Jé?%(Yj)) = Var(J3(Y)) = o(1)

and
1 n
Var(ﬁﬁ Jsigoo) ~ Var(J9(Y) = o(1).

By conditions 1 and 5, there exists a constant ¢ > 0 such that

Var(J3)(Y)) < E(Jrg?g(Y))Z

nil

(4.11) < cf(};:l((yj;)) (flK(u)uldu) f(y)dy-h*

<ch*b ?ER?(Y) = O(n *72%2) = o(1).

Moreover,
R, (Y, —uh)f(Y; — uh) _ R, (Y1) f(Y1)
fo(Yy — uh) f(Y1)

as h — 0 and b — 0. Applying the dominated convergence theorem, we have

var(i r Jé?%(Yj)) = Var(JEU(Y) < (1Y)
n o

_ 1 9 (Rbi(Yl —uh) f(Y, — uh)
(4.12) a5 (&) JEG@ fo(Y1 — uh)
CRyu(YDF(Y) ) du}2
(Y1)
=0(1),
and completing the proof of Step 3 from (4.9) to (4.12).
Step 4. Prove the following three equations:
1 n
7 L) - frrm))
j=
2 & Ryi(Y) Ry (Y)A(Y))
4.13 = —
(412 TP AR AT
Ry (Y)R,, (Y)f(Y)
—E 1
[ Fo(Y) } ontd):
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1 2 Z;Ry(Y)f(Y)  Zj;Ry(Y)f(Y))
T J; Ryi(Y;) R, (Y;) + 21,(Y)) + 2£,(Y)
R(Y)R,(Y)f(Y)
_[E[Rbi(Y)Rbl(Y) + 2fb(Y)
(4.14) +Ri(Y)Rbl(Y)f(Y)}
2£,(Y)
1 =~ 1
- &L (RODRAY) + G2,RAY) + 52,R(Y)
2E[R(TIRT]} +0,(1)
and
ii{R”‘( Ry (Y; )f(}fj)_[E|:Rbi(Y)Rbl(Y)f(Y):|
(a15 1(Y;) fu(¥)

n

1
= 7 L{B(Y)R.(Y) ~ E[R(Y)RUY)]} + 0,(1).

Jj=1

Since the arguments for proving (4.13) to (4.15) are essentially the same as
those used in the proofs of Steps 2 and 3, we omit the details here.
Up to now, we have showed that, combining Steps 1 to 4,

n

T £ (0 a /00 - o)

1 2 (1
= TSR0 + 2R00) ~ E(ROORD)] + 0,0,
where
R, (Y)8,(Y) . Ry, (Y)&.(Y)
(YY) o (Y)
_ Rbi(Y)Rbl(Y)fb(Y) <i <

2 7.(Y) , 1<i,l<d.
Consequently, the last step is to prove that
(4.16) VnE[0,,(Y)] = VnE[R,(Y)R,(Y)] + o(1).

It is easy to see that

6bil(Y) = Rbi(Y)Rbl(Y) +

) ( fz(Y))
0<1-8}(Y) = |1~ 5 |I(f(¥) <b) <I(f(Y) <b).
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Furthermore, by condition 6, we have
‘/EHE[Rbi(Y)Rbl(Y)] o [E[Ri(Y)Rz(Y)] |

fZ(Y))
£,(Y)
< W E|R,(Y)R(Y)I(F(Y) <b)| = o(1).

(4.17) =Vn|E|R(Y)R,(Y)|1 -

Invoking condition 6 again, we obtain

R, (Y)&,(Y)
m[ A (Y) }

ZR, (V) (Y1, Z)F(Y)
7, (Y)
R(Y,) R, (Y) F(Y1) F(Y)
7, (Y)

R(Y = uh) f(Y = uh) Ry (V) A(Y)

7Y

= VnE[R,(Y)R,;(Y)] + \/EfK(u)

_ \/Ef%K((Y— YR dZ, dY,dY

=V [ KX~ Yh ) av, dy

:‘/ZIK(u) dy

(4.18)

Ry (Y)f(Y)
X{R,(Y — uh) f(Y — uh) — Rl(Y)f(Y)}W dudy
R (Y)R,(Y)f(Y)

—Vn [K(@){f,(Y) - F(¥)} Xt dudy

2 VR E[R(Y)R(Y)] + IS0} + o(1).

nil

Moreover, by conditions 1, 4 and 5, we have

(4.19) O < eVn kbt [|K(w) [w*R(Y) (V) dudY

— O(nf4cl+cz+1/2) — 0(1).

Together with (4.18), (4.19) and the expression of (4.15), we need only to show
that

Ryi(Y) Ry (Y)fo(Y)
fo(Y)

(4.20) VnE = VnE[R,(Y)R,(Y)] + o(1).
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For this purpose we express fAb as a sum of five terms, where ¢ is a positive
constant to be specified later:

fo(Y) = A(Y)I(f(Y) = b) + bI((Y) <b)
=f(Y)I(f(Y) > b+ 2¢c(h* + n~/2h"'log n))
+AYI(A(Y) 2b) —I(f(Y) 2 b+ 2¢(h* + n~ /L~ og n))}
+(AY) = F))I(A(Y) = b)
—I(f(Y) 2 b+ 2¢c(h* + n"'/?h " log n))}
+bI(f(Y) <b—2¢c(h* +n "> " log n))
+b{I(f(Y) <b) —I(f(Y) <b) — 2¢(h* + n"/>h " log n)}
2J oY) +do(Y) + (V) + J,10(Y) + J,00(Y).

(4.21)

It is now clear that (4.20) is equivalent to

(4.22) VE[E[J"S(Y)R“(Y)R“(Y)] — VR E[R,(Y)R,(Y)] + o(1)
fo(Y)
and
Ju(Y)Ryi(Y)Ry(Y) | B
(4.23) \/E[E[ ) }_0(1), kE=9,...,12.

One can show (4.22) using the argument for proving (4.18) and (4.19). For
(4.23) we break it into four separate cases to proceed. By Lemma 3.1 there
exists a positive constant ¢ such that

sup| A(Y) — (V)| < 2¢(h* +n " 2h"'logn) as.
y

Since the set {f(Y) > b + 2c(h* + n~*/?h~"log n)} is contained in the set
{f(Y) > b} with probability 1, we can see, by condition 6, that

To(Y) Ryy(Y) Ry (V)
/n|E 7,(Y) }

< VnE{|R(Y)R,(Y)|
X|I(A(Y) 2 b) = I(f(Y) 2 b + 2¢(h* + n~2h" ' log n))|}

(4.24)
= VnE{|R,(Y)R,(Y)|

XI(f(Y) < b+ 2¢(h* + n~ 'k log n), f(Y) = b))
<VnE[R(Y)R(Y)|I(f(Y) <b+2¢c(h* +n '2h 'log n))
=o0(1).
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Using a similar argument for (4.24), we obtain

Tu10(¥Y) Ry (Y) Ry (Y)
VEH £(Y)

Tu(Y) Ryi(Y) Ry(Y)
EH £, (Y) }
Vi |E[Ry(Y)Ry(Y)I(F(Y) < b = 2¢(h* + n"/*h " log n))]|
o(1)

H = 0(1)’

IA

and

\/EH

J2(Y) Ryi(Y) Ry (Y)
v
Vi |E[Ryi(Y) Ry (Y)I(F(Y) < b+ 2¢(h* + n~2h " log n))] |
=o0(1).

So we have shown (4.20), and hence (4.16), completing the proof of Theorem
21. 0

IA

5. Proof of Theorem 2.2. The standard perturbation theory gives the
following chain-rule formulas [see also Sun (1988)]

2% dA,
= bi bia
day, day,
db; _ i b, bl (IA,/day;)b,
aakl m=1 (AL - Am)
m#i

By Theorem 2.1, the perturbation A;, — A; is small when n is large enough.
Then, by a Taylor expansion, we have

\/;(/\i(Aln) - /\i(Al))

= Vnb,(A) (Ar, = ADb(Ay) + Ry(AY),
where R;(A%) = Vnb,(A%)(A,, — A)b,(A%*) — Vnb(A)D(A,, — A)b,(A))
and (A% — A;) — 0 in probability. The proof of (2.2) can be completed by
proving R;(A*%) — 0 in probability. In view of the expansion in (5.1), this is

easily done, so we omit the details. The assertion (2.3) can be proved
similarly. The proof is complete. O

(5.1)

Acknowledgments. The authors are grateful to the editors and referees
for many valuable comments and suggestions for revision. The authors take
this opportunity to thank Prof. K. C. Li for his encouragement, Dr. K. W. Ng
and Prof. S. G. Sun for valuable discussions.



1068 L.-X. ZHU AND K.-T. FANG

REFERENCES

DuaN, N. and L1, K. C. (1991). Slicing regression: a link free regression method. Ann. Statist. 19
505-530.

FrIEDMAN, J. H. and STUETZLE, W. (1981). Projection pursuit regression. J. Amer. Statist. Assoc.
76 817-823.

FrIEDMAN, J. H. and TUKEY, J. W. (1974). A projection pursuit algorithm for exploratory data
analysis. IEEE Trans. Comput. C-23 881-889.

HALL, P. (1989). On projection pursuit regression. Ann. Statist. 17 583-588.

HARDLE, W. and STOKER, T. M. (1989). Investigating smooth multiple regression by the method
of average derivatives. J. Amer. Statist. Assoc. 84 986-995.

HAsTIE, T. and TiBSHIRANI, R. (1986). Generalized additive models. Statist. Sci. 1 297-318.

HsiNg, T. and CARROLL, R. J. (1992). An asymptotic theory for sliced inverse regression. Ann.
Statist. 20 1040-1061.

HUBER, P. (1985). Projection pursuit (with discussion). Ann. Statist. 13 435-475.

Karo, T. (1983). Perturbation Theory for Linear Operation, 2nd ed. Springer, New York.

L1, K. C. (1989). Data visualization with SIR: a transformation based projection pursuit method.
UCLA Statist. Ser. 24.

L1, K. C. (1991). Sliced inverse regression for dimension reduction (with discussion). J. Amer.
Statist. Assoc. 86 316-342.

NoLAN, D. and POLLARD, D. (1987). U-processes: rates of convergence. Ann. Statist. 15 780—-799.

PoLLARD, D. (1984). Convergence of Stochastic Processes. Springer, New York.

PowgLL, J. L., STock, J. H. and STOKER, T. M. (1989). Semiparametric estimation of index
coefficients. Econometrica 57 1403-1430.

Rao, B. L. S. P. (1983). Nonparametric Functional Estimation. Academic Press, Orlando, FL.

STONE, C. J. (1984). An asymptotically optimal window selection rule for kernel density esti-
mate. Ann. Statist. 12 1285-1297.

SuN, S. G. (1988). Analytic expressions for the derivatives of the eigenvalues and eigenvectors of
a matrix. Adv. in Math. (Beijing) 17 391-397 (in Chinese).

TYLER, D. (1981). Asymptotic inference for eigenvectors. Ann. Statist. 9 725-736.

Zuu, L. X. (1993). Convergence rates of the empirical processes indexed by the classes of
functions with applications. J. Systems Sci. Math. Sci. 18 33—41 (in Chinese).

Zuu, L. X. and Fang, K. T. (1992). Projection pursuit approximation for nonparametric regres-
sion. Proceedings of the Order Statistic and Nonparametric: Theory and Methods (P.
K. Sen and I. A. Salama, eds.) 455-469. North-Holland, Amsterdam.

PROBABILITY LABORATORY DEPARTMENT OF MATHEMATICS
INSTITUTE OF APPLIED MATHEMATICS HonG KoNG BAPTIST UNIVERSITY
CHINESE ACADEMY OF SCIENCES 224 WATERLOO RoAD

BEI1JING, 100080 KowLooN

CHINA Hong KoNG



