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If u is a positive measure on R* with Laplace transform L, we show
that there exists a positive measure » on R" such that det Lj, = L,. We
deduce various corollaries from this result and, in particular, we obtain
the Rao-Blackwell estimator of the determinant of the variance of a
natural exponential family on R” based on (n + 1) observations. A new
proof and extensions of Lindsay’s results on the determinants of moment
matrices are also given. Finally we give a characterization of the Gaussian
law in R".

1. Introduction. If u is a finite non-negative measure on R, with mo-
ment generating function m(¢) (assumed to be finite on an open interval
containing zero), Lindsay (1989) has shown that the determinant of the
Hankel matrix M,(¢) = (m"*/(¢)), whose entries are derivatives of m(2), is
itself, as a function of ¢, a moment generating function of another finite
non-negative measure v on R. Motivated by this result we consider a general-
ization to measures on R".

Let u be a positive measure on R* with Laplace transform

L,(0) = fRneXpw,X),u(dX)

and cumulant transform %, (0) = log L,(0). We suppose that the set of 6 in
R” such that L,(0) exists has a non-empty interior ®(u) and we denote by
A (R™) the set of such u and by .Z(R") the set of such u which furthermore
are not concentrated on an affine hyperplane of R”. Among the moment
matrices of measures on R", by far the most important is the determinant of

9*L,(0)

L,(0) =
W) =17, 90,

2

i,j=1,...,n

the determinant of the matrix of second order moments. Our main result
shows that this determinant is again a Laplace transform of a positive
measure v on R”. On applying this result to a suitable u, we obtain Lindsay’s
result as Corollary 2.1 and Theorem 2.2. Finally, we apply this to simple
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quadratic natural exponential families in R" developed by Casalis (1992,
1994) as a generalization of the Morris (1982) class. We also apply it to
Wishart distributions on symmetric matrices. The next application deals with
the Rao—-Blackwell estimator of the generalized variance of a natural expo-
nential family in R” in the special case of (n + 1) observations. We conclude
with a characterization of the Gaussian laws in R".

2. Main results. In what follows we use the notation X ® Y to denote
the matrix (x;y;); ;_; . ,, where X = (x,...,x,) and Y = (y,,...,,)" A
prime stands for the first derivative, two primes for the second derivative,
det A for the determinant of the matrix A and u** for the k-fold convolution
of the measure p €.Z(R").

Our main result is the following.

THEOREM 2.1. Let pu €#(R"), X,,...,X, € R" and v be the image of

%(det[xl’ e ’Xn])zl*“‘(dxl) - p(dX,)

by the map
S:(R")" > R", (X;,....X,) > X, + - +X,.
Then
(i) det L (0) = L,(0)
and
(ii) det L(0) = (LM(B))ndet[k;;(ﬂ) +k,(0) ® k,(0)].

As a corollary we obtain a theorem of Lindsay [(1989, Theorem 3A] on the
moment matrices of measures on R.

COROLLARY 2.1 (Lindsay). Let o €.#(R) and let B be the image measure of

1/nDIT, . (x; — x)’(dxy) -+ aldx,) by the map s: R" - R, (xy,..., x,) =
xy + - +x,. Then for every t € O(a),

det

(%)iﬂ_zLa(t)

| = L,(¢).

i,j=1,..., n

The most important consequence of the above results is an extension of the
so-called Lindsay transform [Kokonendji and Seshadri (1992, 1994) and
Kokonendji (1993)] of the first order for measures on R”. Let us denote by

t
L, (0 L(o
o) - [BO) (BO)
L(0) L,9)

the symmetric (n + 1) X (n + 1) matrix for u €#(R"). We then have the
following theorem.
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THEOREM 2.2. Let u €#(R") and let v, be the image measure of

;(det[ L X 1 ])2,u(dX )+ u(dX,)
(n+ 1)! X, X; - X, 0 n
by the map

Sol(Rn)n+1_>Rn’ X, Xq,...,X,) = X, + X, + - +X,.
Then for each 6 € O(u),

6) det %,(0) = L, (0)
and
(ii) det %,(0) = (L,(0))" " det £(0).

The proofs of the theorems rely on the following proposition concerning the
expectation of a determinant. This appears as a problem due to Pélya and
Szego (1972), Vol. I, Part II, Chapter 1, Problem 68, pages 61-62, 247]. It
generalizes a result (Theorem 2A) mentioned by Lindsay.

ProOPOSITION 2.1. Let m be a positive measure on R"™ X R" such that
M = [go zX ® Yn(dX, dY) exists. Then

1
det M = — (det[X, X, ])(det[Y, - ¥,])n(dX,,dY,)
n! (RnXRn)n
xn(dX,,dY,).

ProOF OF THEOREM 2.1. Let 0 € O( w). Apply Proposition 2.1 to
n(dX, dY) = exp{{0,X)} u(dX)x(dY)
(8¢ being Dirac measure at X). Then we obtain on the one hand from the
definition of L (0),
M= [ X ®Xexp{(0,X)}n(dX) = L(0),
Rn

while on the other hand, from the definition of v,

1

7 o (etlX X, 1)" exp{<8,X,) + - +(0,X,}u(dX,) - p(dX,)

. Rn n
=L,(90).

This establishes (i).
Since L, (0) = exp(%,(0)) we obtain

L(8) =L,(0)[%,(0) + k,(0) ® k,(0)].
Hence
det L(0) = (LM(G))ndet[k;;(G) +k,(0) ® k,(0)]. a

The proof of Corollary 2.1 relies on the following lemma.
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LemmA 2.1. Let (Qq,%) and (Q,,,) be two measurable spaces, let

g: Q= Q, and f: O, = [0,%) be two measurable maps and let A and A, be
two measures on ), such that

M(dw,) = f(g(wl))/\(dwl)'
Then

g(A)(dwy) = f(wy)8(A)(dw,).

Proor. Let A, be in #7,. Then
SO NP @)
g(M)(4;) =M(e '(4) = [ Fle(@)M(dw)
2 L(e(a)f(g(on)A(da)
2 Lo () g(N)(day)

(5)
= [ f(w)g(M)(dwy).
A,
Here (1) is the definition of g(A;)(A,), (2) is the definition of A;, (3) is a
reformulation, (4) is the transport theorem applied to I, (w,)f(w,) and,

finally, (5) is again a reformulation. O

PrOOF OF COROLLARY 2.1. We first define the map A: R - R*, x —»
(1, x, x2,..., x" 1) and apply Lemma 2.1 with Q, = R", Q, = (R")",

g(xy,...,x,) = (h(xy),...,h(x,)),
1 2
fX,...,X,) = E(det[xl,...,xn])

and
Mdxy,...,dx,) = a(dxy) - a(dx,).

A simple application of the Vandermonde determinant then implies that
M(dxy, ..., dx,) = % il:[j(xi —x;) a(dxy) - a(dx,).
Lemma 2.1 now gives
g(A)(dX,,...,dX,) = %(det[Xl,...,Xn])zg()\)(dxl,...,an),

but
g(N)(dX,,...,dX,) = h(a)(dX,) - h(a)(dX,).
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With the map S: X;,...,X,) —» X; + - +X, applied to g(A;) we obtain,
using Theorem 2.1, the Laplace transform of S(g(A,)), namely, L, ,(0) as

1

f(Rn)n;(det[Xl,...,Xn])z exp{(0,X; + =+ +X,)}A(a)(dX,) - h(a)(dX,)
= det L’}L(Q)(O)

From the definition of A(«) we have

L;.(0) = / eXP{91 + O, + - +9nx"_1}a(dx).
R

Hence

ihj=1,..., n

We now take (64,...,6,) =(0,¢,0,...,0) and obtain

det L, ,)(0,¢,0,...,0) = det

(E)MLa(t)

= Ls0,(0, 25, 0).

Finally note that if p is the projection map (y,,...,y,) — ¥,, then s as
defined in Corollary 2.1 is s = p°Se g. Thus 8 = s(A;) = p(S(g(A,))). Since
L5030, £,0,...,0) = L, 5,2, (t), we have

Ly(t) = det

i,j=1,..., n

(%) no

Proor orF THEOREM 2.2. We apply Theorem 2.1 to dimension n + 1 in-
stead of n with a(dx,...,dx,) = §,(dxy)uldx,,...,dx,). Thus if 6 € O(un)
and 0, € R, we have L,(6,,0) = exp(6,)L,(0) and

L, (6,,8) = exp(6,)

L,(0) (L(0)
L(0) L,(9)
Setting 6, = 0 we obtain (i). The second equality (i) is obtained by observing
that

LM(G) = exp kM(O),

L(0) =L,(0)k,(0),

L(8) =L,(0)[%,(0) + k,(0) ® k,(8)],
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and hence that

et B EOV | e | (ku(9))
L(0) (L)) BL(0)  RL(0) + ki(0) © K (0)

= LZ”(B) det &/,(0). a
3. Applications.

3.1. Quadratic variances. First we give a brief summary of natural expo-
nential families (NEF) in R" and some important properties associated with
them.

To each u €.#(R") and 0 € O( w), the set of probabilities

F=F(p)={P(0,n)(dX);0 € 0(un)},
where

P(0, u)(dX) = exp{¢0,X) — k,(0)}u(dX)

is defined as the natural exponential family generated by w. The measure u
is said to be a basis of F. It is well known that % () is strictly convex and
real analytic on ®( ) and that its first derivative k,,(0), where

k(8) = [ XP(8, 1)(dX)

defines a map from O(w) to My. If F = F(p), then M, = k,(0(w)) is called
the mean domain of F. The map 6 — k;(0) is a bijection between ®(u) and
My, and hence we can consider the inverse of %,(0), namely, ,: My - O(w).
For each m € M; we let P(m,F) = P(y,(m), u) and the bijective map
My = F, m — P(m, F) defines a parametrization of F by the mean.

Since P(m, F) is a distribution in R”, its covariance matrix is

Vp(m) = [Rn(x — m)(X — m)'P(m, F)(dX)

for each m € M.

The (n X n) matrix Vy(m) defined on M is called the variance function of
P(m, F) or F. Note that Vp(m) = k,(¢,(m)). In fact, £,(0) is a Hessian
operator and in the canonical basis has the matrix representation

2
( 9%k, )
39,06, .,

.....

The generalized variance [Wilks (1932)] of F is det %,(6).
Casalis (1994) introduced natural exponential family (NEF) with variance
functions of the form

(3.1) Vy(m) =am ® m + B(m) + c,
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where a € R, B(m) is a matrix (n X n) of elements linear in m and c is a
matrix (n X n) of constants. Casalis calls these NEF simple quadratic. We
choose instead to call the set of NEF with V,(m) as in (3.1) the Casalis class
of NEF; it generalizes the Morris class from R to R". Casalis has made an
exhaustive study and shows that there are exactly (2n + 4) such types. The
following definition makes precise the term “type.”

DEFINITION 3.1. Let u €.#(R™) and let A( ) (called the Jgrgensen set) be
the set of positive numbers A such that there exists a measure u, €.Z(R") for
which L, (8) = (L,(0))" is the Laplace transform of w,. Two NEFs F; and F,
are said to be of the same type if there exist u €e.Z(R"), A € A(n) and an
affinity ¢ in R” such that with i’ = ¢(u,) one has F;, = F(u) and F, = F(u).

Below we give a list of the (2n + 4) types together with their cumulant
transforms and variance functions as given by Casalis. We also include the
value of det £”(0) in each case, the computation of which is straightforward.

1. Poisson—Gaussian types (n + 1): (PG),, k = 0,...,n,

8,(dX,)

exp{—3X0 ;. 127}

(277)(n7k)/2

w(dX) =

)»

1
jeN* J:

(dX,),

where dX; =dx,,...,dx,, dX, =dx,,,,...,dx,, O(u) = M, = R",
k,(0) = i e’ + X7, . 1(67/2), det k(8) = exp(6, + -+ +6,), §; is Dirac
mass at j, X; =(xy,...,2,), X, =(x,,4,---,%,) and Vp(m) =
diag(m,...,m,,1,..., D).

2. Multinomial type (M). Let N be a positive integer, let e, be the null
vector and let (ey, ..., e,) be the canonical basis of R". Define

N
n =

n *
5.8
=0

13

Then O(w) =R", Mp={meR"; m;>0, V i, X'_ym; <N}, k(0)=
N log(1 + X7_e%),

(n+1)

det &7, (0) = exp{ TN

k,(0) + 6, + - +0, +nlogN}

and Vy(m) = diag(m,,...,m,) — (m ® m)/N.
3. Hyperbolic (H). For A > 0 we define

m(dX) = VA(Xm)aA+zy;11xi(dy)’

where

b

b= (8 2y )*H) (dy) = 2P+ i /)1
A 0 e; ’ p F(p)(F(p/2))2
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p>0and dX; =dxq,...,dx,_;. Then O(p) ={(6,,...,0,); —7/2 <0,
77/2 and 691 + e +een71 < cos Bn}, MF = (07 m)r171 X R’ k”(e)
—p{log{cos 0, — X1 e%},

<

) (n+1)
det £;,(0) = exp Tku(e) + 6, +--+6, +nlog A
and
n-1 me®m
Vp(m) = diag| my,...,m,_;, A+ Y, m;| + .
i=1

The NEF corresponding to the law of (X;,Y) is F(u,), where X, =
(Xy,..., X, _,) follows a negative multinomial law with parameter A and
conditionally on X, the random variable Y follows the hyperbolic secant
law with parameter (A + Y72 'X).

4. Negative multinomial-gamma types (n + 1). (NM — Ga),: k = 0,1,..., n.
For 0 < k2 < n and A > 0 we define u, by

m(dX) = V/\(dx1)77(/\+2§‘:1xi)(dy) '—lk_!r2ay(dzi)’

where v, is the measure defined in (3), np(dy) =yP 1 /(T(pI; + (y)dy
and a,(dz) =1/ /27y exp(—-2z>/2y) dz.

The NEF corresponding to the law of (X,Y,Z) is F(uw,), where X =
(X3,...,X,) has the negative multinomial law with parameter A, Y condi-
tionally on X has a gamma law with shape parameter (A + £*X,) and
Z=(Z,,4,...,Z,) conditionally on (X,Y) is multinormal with covariance
YI,_,_,. Note that this definition includes an arbitrary parameter in R* for
X, an arbitrary scale parameter for Y and an arbitrary mean parameter for
Z. The limiting cases # =0, 2k =n — 1 and k£ = n have obvious interpreta-
tions when an empty sum is replaced by zero. We then have

9 0 0/€2+2 0112
®(/~'L)= el_e1_“'_ek_0k+l_T“'_?>O ,

My = (0,%) " x RP L

k n 0i2
S D PN |
i=1

k.(0)

i=h+2
n+1
det %;,(0) = exp{Tk“(O) + 6, + - +86, + nlog A}

and
) m® m
Vy(m) = diag(my,...,m,,0,m, {,...,my, ;) + X

We now prove the following theorem.
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THEOREM 3.1. Let u €#(R") such that F = F(u) belongs to the Casalis
class [thus Vy(m) is given by (3.1)]. Let v, be defined from w as in Theorem
2.2. Then F(v,) and F( ) are of the same type.

ProoOF. From the above listing we see by inspection that there exists
(A, b,c) € R" X R X R such that

det £, (0) = exp{bk,(0) + (0,A) + c}.
From Theorem 2.2 we see that

k,(0) = (n + 1)k, (0) + log|det{Vi,(k.(0))}]
=(n+1+0b)k,(0)+(0,A) +c.
Hence

kL (8) = (n + 1+ b)kL(6) +A.

Writing m* = £/, (8) and b* = n + 1 + b, we have

m* — A
m* =b*m + A and Vg, (m*) = b*VFun( )

b*
This shows that F(v,) and F(pu) are of the same type. O

This result generalizes Lindsay’s verification for the Morris families for
n=1

The Casalis class does not cover the whole set of NEF with a quadratic
variance. For instance, let E be the space of (d X d) real symmetric matrices
and let S be the cone in E of positive definite matrices. Consider the
standard Wishart distribution W(2p, 3) concentrated on S with X in S and
p in

1 3 d-—1 d-—1

(3.2) A={=—,1,—,..., — U( ,+OC).
2 2 2 2

Then it is known that the NEF

(3.3) F,={W(2p,2); 2 € S}

has a quadratic variance [Letac (1989)].
We now prove the following theorem.

THEOREM 3.2. Let u €#(E) such that F(u) = F, with F, given by (3.3)
and p in A given by (3.2). Let v, be defined from pn as in Theorem 2.2. Then
F(vy) = F,, where p' = p{1 + (d(d + 1)/2)} + (d + D).

Proor. Without loss of generality we take u = p,, where

p,(dX) = (det X )P 1@V (X)) dX,

Iy(p)
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where

d-1 i
r(p) = 2w TIE(p = ) 0(u,) = =S,

S being the cone of (d X d) symmetric positive definite matrices and p >
(d — 1)/2. Furthermore,

L,(0)= Lexp{%tr(@X)},up(dX) = (det(—26)) "

so that
k,(0) = —plog(det(—-26)).
Then

det k), (6) = p“@@*D/2(det(—6)) .

To see the above step we use three classical facts:

(a) The differential of S —» R, 6 — —log(det ) is 67 1.
(b) The differential of S - S, 0 — 6 ' isdo = -0 1doo .
(¢) If A is any (d X d) matrix, the determinant of the linear endomor-

phism ¢, of the space of symmetric (d X d) matrices defined by ¢,(M) =
AMA' is det ¢, = (det A)¢* 1.

Hence with n = (d(d + 1))/2 (dimension of E) we have

!

k,(0) = %k”p(ﬁ) + log const,

where p' is defined in Theorem 3.2. Thus F(v,) = F,. O

3.2. Rao—Blackwell estimation of detk;(®). The following theorem pro-
vides the key to obtaining the Rao—Blackwell estimator of the generalized
variance of a NEF generated by w €.Z(R") in the case of (n + 1) observa-
tions.

THEOREM 3.3. Let u €#(R") and let v, be the image measure defined in
Theorem 2.2. Denote by w*"*" the image measure of w(dXy)u(dX,)
w(dX,) by the map S, of Theorem 2.2. Suppose that there exists C(X) such
that

vo(dX) = C(X) " " V(dX).

Then C(X, + X, + -+ +X,) is the Rao—Blackwell estimator of det k() based

on (n + 1) observations X,,...,X,.
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ProOF. From Theorem 2.2 we have, for each 0 € O(w),

det 2" (0 —L”°(0)
€ M( ) B LM*(IHI)(O)
= [ CXy+ o +X,) [TP(0, u)(dX)). D
R +1 i=0

As an illustration of Theorem 3.3 we give below the Rao—Blackwell estima-
tors of the Casalis class as well as the Wishart families.

ExamMpLE 3.1. Cases of the Casalis class.

Case 1. Poisson—Gaussian types (PG),, £ =0,1,...,n, give for x; # 0,
e x, F0,

VO(dX) _ /“Ln+1*6e1+~'+ek(dx) — . -
wr " (dX) Ko 1(dX) '

C(X) = X
Note that it is independent of the Gaussian component.
Case 2. In the multinomial case we have

(n+1XN-1)
L,(0)=N" )

1+ ) exp(6;)
i=1

exp( Y Oi),
i=1

(n+ 1N
LM*(n+1)(0) = )

1+ ). exp(6;)
i=1

Note that v, is concentrated on the tetrahedron 7, in R" with vertices
p=Xi,e,(n+1D(N-De;+p, j=12,...,n, while w1 s concen-
trated on the tetrahedron T, in R" with vertices 0,(n + 1)Ne;, which
contain T,. If X = (x4,..., x,) is in T, then

vo(X) = N"[(n + 1)(N - D]!/(2, = Dl (x, - 1!,

whereas w*"*P(X) = [(n + DN]!/x,! - x,!
Thus

vy (X
C(X) = %(X)
%

N™[(n + (N - D] :
= (T DN x o x, fXeT,

and CX) = 0if X & T,.
Case 3. For the hyperbolic type (H) we have

n—1 —AMn+1)
) - LI"/\(n+1)(0) ’

L son(0) = (cos 9, — ). e’
i=1
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while from Theorem 2.2,

n—1
L,,O(O) = /\”LMHKMD(O)eXp( Yy Oi).

i=1
Hence for x; #0,..., x, # 0,

vo(dX A i) ¥ 0o he (dX
C(X) = ol ) _ (A+1)Xn+1) R ,H( )
Morcn + 1)(dX) M(nﬂ)( dX)
[Observe that the density corresponding to v, suffers a translation for the
support of (x,,..., x,) by one unit because of the factor exp(X?-}6,).]

Letting B = X}-{'x; + A;, we obtain
2N (B +al)xy vt x, 4

C(X) - )\1(/\1 + 1) "'()‘1 + n)Bz '

Case 4. For the negative multinomial-gamma type, (NM — Ga),, k =
0,1,...,n, we have for x; # 0,...,x, # 0,

k n 02 —A
| £ $.9)
i=1

i=k+2

so that L, ;(8) = [L,(8)]"*", while from Theorem 2.2,

A n 2 —(A+D(n+1) A
LVO(O) = )‘n[_ E exp(0;) — 0.1 — E _ll exp( Z ei)'
i=1

i—kh+2 2 i=1
Thus we obtain
AT (M + 1))
T((A+1)(n+ 1)

The Rao—Blackwell estimator of det £,(0) is therefore C(X, + -+ +X,) with
C(X) as given above.

n—k+1

C(X) = o xp(Xpp1)

ExaMPLE 3.2. For the Wishart families we observe that (Theorem 3.2)
9d(d+ l)p(d(d+ 1))/2
lﬂd( po)
with p, = p[1 + 3(d(d + D)] + (d + 1), while

vo(dX) = (det X)Po~ 1" DA (X)) (dX)

M*(n+ 1)(dX) _ (det X)po—(d+1)—1—((d—1)/2)IS(X)(dX)

so that
9+ 1y (d(d+ 1))/2I~d(p0 —d-1)
Fd(Po)

C(X) = (det X)“"".
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If X,,..., X, areii.d. random variables with Wishart distribution W(2p, 3)
with § = —37! /2, then from the well-known formula [Muirhead (1982)]

E((det X)) = (det(—20))r2dr%;)p),

we have

Ly(r + mp)
Iy(p)

Since det k;;p(e) = const(det(—260))¢*! for r = d + 1, we obtain

E(det(X, + - +X,,)) = (det(—26))" 29

[E(det(X1 + - +Xq))d+1 = (det kzp) X const.

Thus with ¢ observations X,,..., X, const(det(X; + - +Xq))dJr1 is the
Rao—Blackwell estimator of det k’;p(@). Hence our method is not very efficient
since it gives the estimator only for the case ¢ = 1 + (d(d + 1)/2).

Our results in the case of NEF with simple quadratic variance structure
can be regarded as a partial (since we consider n + 1 observations) general-
ization of the result for Morris families in one dimension, namely, the
Rao—Blackwell estimator of &;(0) is Vi (X, + -+ +X,)/q)q/(q + a), where
Vi(p(m) = am? + bm + ¢ [Letac (1992)].

3.3. Characterization of Gaussian laws in R". Theorem 2.2 also implies

the following remarkable fact about Gaussian laws in R". If X, X,,..., X, €
R”, then
1 1 - 1
v(X,,Xy,...,X,) = mdet X, X, - X,
is the algebraic volume of the tetrahedron with vertices X,,...,X,. Let u in

#(R™) be also a probability; consider the two probabilities in (R")""
Pi-pe-enp,
P, = Kv?P,,

where K is a normalization constant. Denote by @, and @, the respective
images of P, and P, by the map

X0, X, X)) » X, + - +X,.
A reformulation of Theorem 2.2 gives
(3.4) Lo (0) = Lo (0)(det(%(0))/det (k,(0))).

Now suppose that p is Gaussian (with any mean and covariance). Then @,
and @, have the same distribution (obviously a Gaussian one). It is tantaliz-
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ing to think of a converse. For n = 1 it is trivial. For general n, it relies on
the following delicate result of Pogorelov (1978).

THEOREM 3.4. Let f be a C* convex function on R" such that the determi-
nant of the Hessian matrix " is a constant. Then f" itself is a constant.

This is a reformulation of Pogorelov’s result (on page 90). We then have the
following characterization of Gaussian laws in R”:

THEOREM 3.5. Let pu, Q, and @, be as defined above. Assume further that
the Laplace transform of w is finite everywhere in R". Then @, = @, if and
only if u is Gaussian.

Proor. The “if” part is obvious from (3.4). The “only if” part comes also
from (3.4), which gives that @ — det %(8) is a constant. Since 6 — £,(0) is a
real analytic strictly convex function which is defined on all R", Pogorelov’s
theorem applies and k;’L(O) is a constant. This implies that u is Gaussian with
covariance k/,(0) and arbitrary mean. O
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