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We consider a sequential procedure for comparing three treatments
with the goal of ultimately selecting the best treatment. This procedure
starts with a sequential test to detect an overall treatment difference and
eliminates the apparently inferior treatment if this test rejects the equal-
ity of the treatments. It then proceeds with a sequential test of the re-
maining two treatments. We base these sequential tests on the stopping
boundaries popularized by O’Brien and Fleming. Our procedure is simi-
lar in structure to that used by Siegmund in conjunction with modified
repeated significance tests. We compare the performances of the two pro-
cedures via a simulation experiment. We derive analytic approximations
for an error probability, the power and the expected sample size of our pro-
cedure, which we compare to simulated values. Furthermore, we propose a
modification of the procedure for the comparison of a standard treatment
with experimental treatments.

1. Introduction. Large phase III clinical trials frequently compare three
or more treatment options. These trials are extremely costly, and thus a design
that identifies the best treatment with the fewest subjects and with high ac-
curacy is desirable. Furthermore, if there are two equivalent treatments that
are better than the third, this design should eliminate the third, but neither
of the better two. And if all three treatments are equivalent, it should not
eliminate any one. In this paper we investigate a sequential procedure with
these features.

For simplicity, we assume that the treatments produce instantaneous nor-
mally distributed responses with a common known variance. Our goal is to
select the treatment with the largest mean response. Initially, we assume that
all three treatments are on equal footing and should be handled symmetri-
cally. The procedure starts with a sequential test of H0x µ1 = µ2 = µ3, where
µi; i = 1;2;3, are the treatment means. If the stopping boundary of this test is
crossed, there is evidence that the treatments are not equal and so the appar-
ently inferior treatment is eliminated. Once this occurs, a second sequential
test of Hi; j

0 x µi = µj begins, where i and j are the two remaining treatments.
If the stopping boundary for this test is crossed, a best treatment is identified.
These tests are closed, meaning they are truncated at a prespecified maximum
sample size. Siegmund (1993) used this same structure for his procedure.

There has been much work on experimental designs for ranking treatments
and selecting the best of several treatments [see Bechhofer, Santner and
Goldsman (1995)]. Proposals in the literature can be classified according to
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whether they are single staged or multistaged, whether they are closed or
open and whether or not they eliminate inferior treatments during the trial.
Our proposal can be classified as multistaged, closed and eliminating.

The earliest proposal for a multistaged, closed, eliminating procedure ap-
pears to be that of Paulson (1964). He took the indifference-zone approach, in
which he ensured with high probability the correct selection of the best treat-
ment, given that the mean of the best treatment is separated from that of
the second best by some known constant. Bechhofer, Santner and Goldsman
(1995) report that Paulson has recently greatly improved upon his original
procedure. This new procedure compares each remaining treatment with all
other treatments through their sample totals after adjusting for the fact that
some may have been eliminated.

A drawback of the indifference-zone approach is that the distance between
the best and second best treatments is usually not known. Another approach,
initiated by Kao and Lai (1980), ensures with high probability that the mean
of the selected treatment is within a fixed constant of the mean of the best
treatment. Hsu and Edwards (1983) propose a procedure that improves upon
Kao and Lai’s (1980) procedure in that it ensures with high probability that the
eliminated treatments are not the best and that the treatments remaining at
the end of the trial are within certain small distances of the best. A drawback
of this procedure in some applications is that it is not considered an error to
eliminate a treatment equivalent to the best. Other recent similar proposals
are found in Hughes (1993) and Follmann, Proschan and Geller (1994).

The motivation of our design is broader in scope than simply ensuring cor-
rect selection with high probability. Rather, we attempt to simultaneously min-
imize the important errors that could be made in the selection process as well
as the expected sample size. However, if an investigator had some prior notion
of the configuration of the true treatment means, this could be used in choos-
ing the design parameters of our procedure to ensure correct selection with
high probability. Presumably, we could assess the efficiency of our procedure
relative to other procedures that are based on this probability requirement
through this means. Jennison, Johnstone and Turnbull (1982) derive a lower
bound for a measure of efficiency for procedures based on the indifference-zone
probability statement, as well as the probability statement used by Kao and
Lai (1980).

Additionally, our design differs from those described above in using a global
test for treatment differences when more than two treatments are under con-
sideration, rather than pairwise tests. In fact, our procedure can be viewed
as a sequential version of Fisher’s least significant difference procedure for
multiple comparisons. That is, first a global test is carried out, and only if
the null hypothesis is rejected is a pairwise test done. This is in contrast to
the procedure of Follmann, Proschan and Geller (1994), for example, which
reduces to Tukey’s procedure for multiple comparisons in the fixed sample
case.

We base our procedure on the widely used, so-called “O’Brien–Fleming”
stopping boundaries. Siegmund (1985), page 260, points out that these bound-
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aries were proposed by other authors prior to O’Brien and Fleming (1979).
Tests based on them can be viewed as truncated versions of the sequential
probability ratio tests proposed by Wald (1947). They were proposed also by
Rao (1950) and Miller (1970) as sequential versions of locally most powerful
tests. Samuel-Cahn (1974) used them as well. O’Brien and Fleming (1979)
may have contributed to the popularization of these boundaries by extending
them to grouped data. Siegmund (1993) bases his procedure on modified re-
peated significance tests, which are the main competitors of O’Brien–Fleming
tests.

To define these tests, let Yi; j denote the immediate response of patient j
to treatment i, i = 1; : : : ; r, j = 1;2; : : : : Assume that the Yi; j are indepen-
dent and normally distributed with means µi and variance 1. Then the log-
likelihood ratio statistic for testing the null hypothesis of equality of all treat-
ments, H0x µ1 = · · · = µr, is given by T2

n/2n, where T2
n =

∑r
i=1�Yi· −Y··/r�2,

Yi· =
∑n
j=1Yi; j and Y·· =

∑r
i=1

∑n
j=1Yi; j. The O’Brien–Fleming test is based

on a constant boundary for T2
n, the “unnormalized” statistic, and the repeated

significance test is based on a constant boundary for T2
n/n. A clear advantage

of the O’Brien–Fleming procedure is that it is based on fewer design parame-
ters than the modified repeated significance procedure.

We begin in Section 2 by describing our procedure and defining some nota-
tion. Using Monte Carlo simulations, we compare our procedure to the three-
treatment procedure based on repeated significance tests in Section 3. In Sec-
tion 4 we develop analytic approximations for an error probability and the
power of the test, and in Section 5 we derive an approximation for the ex-
pected sample size associated with the three-treatment procedure. In these
two sections, we assess the accuracy of our analytic approximations through
comparisons with values from simulations. In Section 6 we discuss how the
procedure might be modified for the comparison of treatments that are not on
equal footing, and in Section 7 we conclude.

2. Definition of the procedure. LetYi; j denote the immediate response
of patient j to treatment i, i = 1;2;3, j = 1;2; : : : : We assume that the Yi; j

are independent and normally distributed with means µi and variance 1, and
that a large mean response corresponds to a good treatment. In the first stage
of sampling, the observations consist of the triples Yj = �Y1; j;Y2; j;Y3; j�′.
For the mathematical formulation of the procedure, it is useful to change
coordinates via an orthogonal transformation, Xj = CYj, where

C =




6−1/2 6−1/2 −2 · 6−1/2

2−1/2 −2−1/2 0
3−1/2 3−1/2 3−1/2


:

Likewise, let θ1 = 6−1/2�µ1 + µ2 − 2µ3� and θ2 = 2−1/2�µ1 − µ2� be the two
orthogonal contrasts. The null hypothesis of no treatment effect in the orig-
inal coordinates, that is, µ1 = µ2 = µ3, translates into θ1 = θ2 = 0 in the
new coordinates. Let Si; n =

∑n
j=1Xi; j and Sn = �S1; n; S2; n�′. In order to
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make pairwise comparisons between the treatments, it is useful to define the
quantities Xi1; i2

j = 2−1/2�Yi1; j
− Yi2; j

� and S
i1; i2
n = ∑n

j=1X
i1; i2
j . In terms

of X1; j and X2; j, X
1;2
j = X2; j, X

1;3
j = �3−1/2X1; j + X2; j�/2 and X

2;3
j =

�3−1/2X1; j −X2; j�/2. It is useful for future calculations to note that there is
a one-to-one correspondence between events of the type Si1; i2n = maxk; l �Sk; ln �
and the particular sector of the circle in which ωn, the angle between Sn and
the positive x1-axis, is found. The six possible sectors are determined by the
x1-axis and the lines rotated π/3 and −π/3 from the positive x1-axis.

The log-likelihood ratio statistic for testing the hypothesis of no treatment
difference is �Sn�2/2n and the O’Brien–Fleming sequential test stops as soon
as the “unnormalized” version of this statistic, �Sn�2, crosses a certain con-
stant level. Namely, the first stage of our procedure samples X1;X2; : : : until
T1 ∧m = min�T1;m�, where

T1 = inf�nx �Sn� > b1�:(1)

There are three possible outcomes to consider:

1. If T1 < m and Si1; i3T1
=maxk; l �Sk; lT1

�, treatment i3 is eliminated and the sec-
ond stage of this procedure samples Xi1; i2

T1+1;X
i1; i2
T1+2; : : : until T2 ∧m, where

T2 = inf�nx n ≥ T1; �Si1; i2n � > b2�:

If T2 ≤ m and Si1; i2T2
> b2, treatment i1 is selected as the best. If T2 ≤ m

and S
i1; i2
T2

< −b2, treatment i2 is selected as the best. If T2 > m, then
neither i1 nor i2 is selected.

2. If T1 ≥m, �Sm� > b1 and Si1; i3m = maxk; l �Sk; lm �, treatment i3 is eliminated.
If Si1; i2m > b2, treatment i1 is selected as best, whereas if Si1; i2m < −b2,
treatment i2 is selected. If −b2 ≤ S

i1; i2
m ≤ b2, then neither treatment is

selected.
3. If T1 ≥ m and �Sm� ≤ b1, then the null hypothesis of no treatment effect

is not rejected.

The parameters b1 and b2 are chosen to meet several requirements. First,
b1 is chosen so that the significance level for the test of H0x θ1 = θ2 = 0,
given by P0�T1 ≤ m�, equals the desired α. Likewise, b2 is chosen to protect
against the error of eliminating one of two equivalent treatments that are far
superior to the third. In this case, the first stage will terminate early and the
error of eliminating either of the remaining treatments can be approximated
by the significance level of a two-treatment O’Brien–Fleming procedure with
parameters m and b2, which is set to α as well.

Finally, b1 and b2 are chosen to satisfy b2 < b1 31/2/2, which ensures that
with high probability, two treatments that are nearly equivalent can be elim-
inated at the same time. To see this, suppose that treatments 2 and 3 are
equivalent and inferior to treatment 1. Suppose that at time T1, the angle
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between �ST1
� and the positive x1-axis, ωT1

, is slightly less than π/3. Then
treatment 3 is eliminated and treatments 1 and 2 remain under consideration.
Since �ST1

� > b1 and ωT1
is close to π/3, the x2-component of ST1

, S1;2
T1

, is
likely to exceed b1 31/2/2 and thus b2 since b2 < b1 31/2/2. This leads to the
elimination of treatment 2 at T1 as well.

Siegmund’s (1993) modified repeated significance version of this procedure
is based on the stopping rules

T1 = inf�nx n ≥m0; �Sn� > b′1n1/2�
and

T2 = inf�nx n ≥ T1; �Si1; i2n � > b′2n1/2�;
where m0 serves to prevent unreasonably early stopping. Additional param-
eters c1 and c2 replace b′1 and b′2 at time m in order to increase the power
of the procedure. The O’Brien–Fleming procedure has three fewer design pa-
rameters than the modified repeated significance procedure, which is a clear
practical advantage.

3. A comparison of procedures. Table 1 contains the results of a Monte
Carlo experiment designed to compare the performance of the three-treatment
procedure based on both modified repeated significance tests and O’Brien–
Fleming sequential tests. The entries of the table are based on 9999 repeti-
tions when θ2 = 0 and 2500 repetitions when θ2 > 0. The columns labeled “rs”
contain the results from Siegmund’s (1993) repeated significance test simula-
tion found in his Table 1 (the column headed “p1,” which we define below, is
not from his table because he does not simulate this value). They are included
for comparison with the columns labeled “OF” which contain the results of
the simulation based on O’Brien–Fleming tests. The parameters for the re-
peated significance tests are m0 = 10, m = 50, b1 = 3:5, c1 = 2:5, b2 = 2:92,
and c2 = 2:05. The parameters for the O’Brien–Fleming tests are m = 50,
b1 = 18:52 and b2 = 15:31. They are chosen analogously to those used by
Siegmund (1993) so that the probabilities of the errors of declaring a treat-
ment difference when there is none and of eliminating treatment 1 or 2 when
they are equivalent (assuming that treatment 3 is eliminated immediately)
are equal to 0:05. The values of b1 and b2 used for the O’Brien–Fleming test
are taken from Table 2(b) of Jennison and Turnbull (1991). The values of θ1
and θ2 used in the simulations are taken from Siegmund’s (1993) table and
represent various relationships between the three treatments, always subject
to the ordering µ1 ≥ µ2 ≥ µ3. Each group of four �θ1; θ2� pairs in the table
headed by the �θ1;0� pair has the same value of �θ�, up to rounding errors.

The notation introduced by Siegmund (1993) for the important operating
characteristics of this procedure is the following: p1 = P�θ��T1 ≤ m� is the
probability of rejecting the initial null hypothesis of no treatment effect; p2
is the probability of mistakenly eliminating treatment 1 or 2 when they are
equivalent, that is, when θ2 = 0, and of correctly selecting treatment 1 as best
when it is, that is, when θ2 > 0; E1 = E�θ��T1 ∧m� is the expected number
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Table 1
Operating characteristics of the three-treatment procedure

p1 p2 E1 E2 Total

u1 u2 rs OF rs OF rs OF rs OF rs OF

0.00 0.00 0.051 0.047 49.7 49.6 49.9 49.9 149.5 149.5

0.70 0.00 0.996 0.995 0.050 0.050 23.3 26.6 49.2 49.5 121.7 125.6
0.35 0.61 0.998 0.996 0.982 0.978 23.3 26.5 28.7 29.9 80.7 86.3
0.50 0.50 0.996 0.995 0.942 0.933 22.9 26.2 32.2 32.2 87.3 90.6
0.61 0.35 0.996 0.994 0.670 0.674 22.8 26.4 41.2 40.1 105.2 106.6

0.60 0.00 0.972 0.972 0.048 0.047 29.4 30.5 49.4 49.5 128.2 129.5
0.30 0.52 0.975 0.970 0.906 0.912 28.9 30.5 35.2 34.5 99.3 99.5
0.42 0.42 0.967 0.972 0.822 0.813 29.4 30.8 38.2 37.1 105.8 105.0
0.52 0.30 0.971 0.973 0.552 0.537 29.5 30.4 44.0 42.7 117.5 115.8

0.50 0.00 0.890 0.888 0.047 0.049 35.8 35.3 49.6 49.5 135.0 134.3
0.25 0.43 0.878 0.872 0.756 0.734 36.3 35.7 41.8 39.9 119.9 115.5
0.35 0.35 0.877 0.880 0.629 0.637 35.9 35.6 43.1 41.5 122.1 118.6
0.43 0.25 0.882 0.872 0.400 0.393 35.8 35.9 46.2 45.5 128.2 126.9

0.40 0.00 0.708 0.697 0.046 0.048 41.6 40.6 49.6 49.5 140.8 139.6
0.20 0.35 0.711 0.714 0.503 0.507 42.0 40.3 45.8 44.1 133.6 128.5
0.28 0.28 0.712 0.682 0.398 0.423 42.3 40.8 46.9 45.1 136.1 131.0
0.35 0.20 0.699 0.715 0.260 0.263 41.5 40.2 47.9 47.2 137.3 134.6

0.30 0.00 0.452 0.442 0.041 0.039 46.3 44.9 49.6 49.6 145.5 144.1
0.15 0.26 0.435 0.439 0.264 0.253 46.3 45.1 48.5 47.6 143.3 140.3
0.21 0.21 0.449 0.442 0.214 0.234 46.2 45.0 48.6 47.9 143.3 140.8
0.26 0.15 0.430 0.448 0.141 0.134 46.1 44.9 49.2 48.7 144.5 142.3

of triples observed in the first stage of the test, and E2 = E�θ1; θ2��T2 ∧m� is
the total number of triples from the first stage of the test and pairs from the
second stage of the test.

The different shapes of the stopping boundaries of the two tests suggest
that the first stage of the three-treatment test should terminate earlier for the
repeated significance test for larger values of �θ� and earlier for the O’Brien–
Fleming test for smaller values of �θ�. This is the case for the two-treatment
versions of these tests. As indicated in Table 1 in the columns headed “E1,”
this is exactly what occurs in this example. Table 1 indicates also that the two
tests perform comparably with respect to error probabilities and power.

It is more difficult to anticipate the effects of the different boundaries after
the second stage of sampling. Consider the case as in the example when µ1 ≥
µ2 ≥ µ3. It is plausible that the final expected sample sizes will be comparable
for large values of �θ� and small to moderate values of θ2 = 2−1/2�µ1 − µ2�
and for small values of �θ�. This will happen if the large potential sample
size for the second stage of sampling that arises from the early stopping of
the repeated significance test for large �θ� is almost entirely used up by the
large sample size needed to test θ2 = 0 versus small alternatives (where θ2 is
most likely to be the drift of the treatment difference that will be observed in
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the second stage of the test when µ1 ≥ µ2 ≥ µ3). Likewise, it will happen that
the larger initial sample size needed by the O’Brien–Fleming test for large
�θ� is followed by a smaller sample size required by the test for a smaller θ2.
For small �θ�, both tests are likely to use most of the available observations
in the first stage of sampling and so the final expected sample sizes for both
tests will be very close to m.

In the example in Table 1 the simulated final expected sample sizes for
the two tests are comparable for all of the parameter configurations studied;
for each set of θ1 and θ2 the values of E2 are never separated by more than
two units. For all values of �θ�, when θ2 = 0, the final expected sample sizes
for the two tests are most similar. It is also the case that when θ2 > 0 the
simulated values of E2 for the two tests are closest together for �θ� = 0:3 as
compared with other values of �θ�. More of the predicted patterns of behavior
under the different parameter configurations would likely be evident had the
table included larger values of �θ�.

It is also plausible that the repeated significance–based test will maintain
its smaller sample sizes for the case of large values of �θ� and large values
of θ2. In fact, in this example there are only two cases in which E2 for the
repeated significance test is less than or equal to E2 for the O’Brien–Fleming
test: θ1 = 0:35, θ2 = 0:61 and θ1 = 0:5, θ2 = 0:5. As predicted, these are the
two configurations with both the largest �θ� and the largest θ2. Again, had
the table included larger values of �θ�, it is likely that there would have been
more such cases of the repeated significance test stopping earlier than the
O’Brien–Fleming test.

The other comparison of interest to make between the two procedures is of
the expected total observations, 3E1 + 2�E2 −E1�, they each take. This value
leads to a more informative comparison than that based on E2 alone because
it is expressed in interpretable units, that is, the number of observations,
whereasE2 is composed of some triples and some pairs of observations. Table 1
indicates that the two procedures are quite similar in this measure as well;
they are never separated by more than five observations.

In conclusion, this example suggests that the error probabilities and power
of the three-treatment procedure based on repeated significance tests and
O’Brien–Fleming tests are comparable. The basis for a decision as to which
type of stopping rule to use should then be expected sample size, which de-
pends on the specific alternative hypothesis. If the treatment effect is likely
to be large, that is, �θ� ≥ 0:7, then it appears that there will be a slight ad-
vantage to using repeated significance tests. If it is likely to be moderate, that
is, �θ� = 0:5 or �θ� = 0:4, there appears to be a slight advantage to using
the O’Brien–Fleming tests. For other values of �θ�, the two tests appear to
be so similar that it will not matter which is used. Thus, the differences in
expected sample sizes that are found in the two-treatment versions of these
tests emerge in the three-treatment versions as well, although for three treat-
ments they seem to be of lesser magnitude. Although we have considered only
a single simulation study, the behavior of the two-treatment versions of these
tests implies that our results should apply to other parameter configurations.
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4. Analytic approximations: significance level and power. In this
section we derive analytic approximations for two probabilities of interest.
For notational convenience, we now assume that treatment 1 is superior or
equivalent to treatment 2, which is superior or equivalent to treatment 3. The
first probability is the significance level attached to the second stage of the
procedure, namely the error probability of eliminating treatment 1 or 2 when
they are equivalent and superior to treatment 3. The second probability is the
power of the procedure to correctly select treatment 1 as the best when it is
the best. An approximation for the significance level attached to the first stage
of sampling, P0�T1 ≤m�, is found in Betensky (1992).

The basic ingredient for the approximations of both probabilities is an ap-
proximation for the joint probability

Pθ�T1 = n; �Sn� ∈ dξ; ωn ∈ dω�;(2)

where ξ > b1 and θ = �θ1; θ2�.
Letting ξ = b1 + x, the probability in �2� can be approximated informally

by

�1−8�x− b1/n� − ν�2b1/n� exp�2b1x/n��1−8�x+ b1/n���
× exp�θ1ξ cosω+ θ2ξ sinω− ξ2/2n− n�θ�2/2�ξ dξdω/2πn;

(3)

where

ν�µ� = 2µ−2 exp
[
−2

∞∑
n=1

n−18�−�µ�n1/2/2�
]

accounts for the excess over the boundary of the discrete-time process.
The heuristic justification for this approximation follows the same approach

used by Siegmund (1985), Section 9.5, for a similar one-dimensional result for
the square root boundary. By conditioning on �Sn� and ωn, �2� can be written
as

Pθ�T1 = n� �Sn� = ξ; ωn = ω�Pθ��Sn� ∈ dξ; ωn ∈ dω�;
which can be written equivalently as

P0�T1 > n− 1�Sn = �ξ;0��Pθ��Sn� ∈ dξ; ωn ∈ dω�(4)

by the rotational invariance of T1 and the sufficiency of Sn for θ. The con-
ditional probability in �4� can be shown to converge to Pb1/n

�S1i > x for all
i ≥ 1� as a consequence of Lemma 2 of Woodroofe (1978). Furthermore,

Pb1/n
�S1i > x for all i ≥ 1�

=
∫ ∞
x
Pb1/n

�S1i > x for all i ≥ 2�S11 = y�Pb1/n
�S11 ∈ dy�

=
∫ ∞
x
Pb1/n

�S1i > x− y for all i ≥ 1�φ�y− b1/n�dy

=
∫ ∞
x
Pb1/n

�τ̃�x− y� = ∞�φ�y− b1/n�dy;

(5)



A THREE-TREATMENT SEQUENTIAL TRIAL 1773

where τ̃�−x� = inf�nx S1n ≤ −x�. In order to evaluate this integral further,
it is necessary to use the large x approximation for Pµ�τ̃�−x� <∞� given in
(9.65) in Siegmund (1985). That is, as −�x− y� → ∞,

Pb1/n
�τ̃�x− y� = ∞� ∼ 1− ν�2b1/n�e2�x−y�b1/n:

Substituting this approximation in �5�, even though not all values of −�x−y�
are large, enables us to evaluate the integral to be

1−8�x− b1/n� − ν�2b1/n� exp�2b1x/n��1−8�x+ b1/n��;

which may be approximated further by

1−8�x− b1/n� − exp�2b1�x− ρ�/n��1−8�x+ b1/n��(6)

using ν�µ� ∼ exp�−ρµ� and ρ ∼= 0:583 [see Siegmund (1985), page 82]. The
joint probability in �4� is calculated by a simple change of variables from
Cartesian to polar coordinates.

Clearly, the use of this approximation will not lead to mathematically cor-
rect results because of the substitutions made in the above derivation. Never-
theless, it may lead to sufficiently accurate results that are usable in practice.
One way to assess the accuracy of this approximation for the joint probability
is to integrate it numerically over ω and ξ and sum it over n to get an approx-
imation for P�θ��T1 ≤m�. This can then be compared with the approximation
given in Betensky (1992), Theorem 4.6, which is reasonably accurate in many
examples. As indicated in Table 2, the approximation given here slightly un-
derestimates the joint probability (insofar as this can be concluded based on its
numerical integral) and does so slightly more for larger �θ� than for smaller
�θ�.

In Section 4.1 we outline the approximation for the error, P�θ1;0��treatment
1 or 2 is eliminated�, and in Section 4.2 we outline the approximation for
the power, P�θ1; θ2��treatment 1 is selected�. Both of these approximations in-
volve conditioning on T1, �ST1

� and ωT1
, for which the approximation for the

joint probability given in �3� is necessary. In Section 4.3 we compare these
approximations with values from the simulation described in Section 3.

Table 2

Evaluation of Pθ�T1 = n; �Sn� ∈ dξ; ωn ∈ dω� via
Pθ�T1 ≤m�

Approximation for Approximation for
�u� density summed Pu�T1 ≤≤≤ m�

0.7 0.9513 0.9948
0.6 0.9333 0.9696
0.5 0.8562 0.8833
0.4 0.6802 0.6966
0.3 0.4330 0.4397
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4.1. P�θ1;0��treatment 1 or 2 is eliminated�. It is convenient to express the
event �treatment 1 or 2 is eliminated� as the union of the disjoint events
�treatment 1 or 2 is eliminated after stage 1 of sampling� and �treatment 3 is
eliminated after stage 1 of sampling and treatment 1 or 2 is eliminated after
stage 2 of sampling�. Therefore,

P�θ1;0��treatment 1 or 2 is eliminated�
= P�θ1;0��T1 ≤m; ωT1

∈ �π/3;5π/3��(7)

+P�θ1;0��T1 ≤m; ωT1
∈ �−π/3; π/3�; T2 ≤m�:(8)

This follows from the fact that ωT1
∈ �π/3;5π/3� if and only if maxk; lS

k; l
T1
=

S
3;1
T1

, S2;1
T1

, S12
T1

or S3;2
T1

and that ωT1
∈ �−π/3; π/3� if and only if maxk; lS

k; l
T1
=

S
1;3
T1

or S2;3
T1

. The probability in �7� can be written as the joint probability �2�
integrated over ω and ξ and summed over n:

∫ 5π/3

π/3

∫ ∞
b1

m∑
n=1

P�θ1;0��T1 = n; �Sn� ∈ dξ; ωn ∈ dω�:(9)

The approximation for �8� is more complicated than that for �7� because it
involves T2 as well as T1. By conditioning on T1, �ST1

� and ωT1
, it can be

written as

∫ π/3
−π/3

∫ ∞
b1

m∑
n=1

P�θ1;0��T2 ≤m�T1 = n; �Sn� = ξ; ωn = ω�

×P�θ1;0��T1 = n; �Sn� ∈ dξ; ωn ∈ dω�:
(10)

The conditional probability in �10� is easily seen to equal
{

1; if �ξ sinω� ≥ b2;

P0�τ ≤m− n�; if �ξ sinω� < b2;
(11)

where

τ = inf�kx Sk ≥ b2 − ξ sinω or Sk ≤ −b2 − ξ sinω�:(12)

Therefore, in the region �ξ sinω� < b2, the conditional probability in �10� is
approximately equal to

P0�τb2−ξ sinω ≤m− n� +P0�τb2+ξ sinω ≤m− n�
∼= 1−8��m− n�−1/2�b2 − ξ sinω��
+8�−�m− n�−1/2�b2 − ξ sinω+ 2ρ��
+ 1−8��m− n�−1/2�b2 + ξ sinω��
+8�−�m− n�−1/2�b2 + ξ sinω+ 2ρ��;
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where τa = inf�kx Sk ≥ a� and ρ ∼= 0:583. The presence of the term ρ is to
account for the excess over the boundary from the discrete process and is sug-
gested by Siegmund (1985), Section 3.5. This approximation can be substituted
into �10� along with �3� and it can be evaluated numerically to give �8�.

A similar approach based on an approximation for the joint probability �2�
can be used for approximating this error probability in the three-treatment
procedure based on the repeated significance tests studied by Siegmund
(1993). This approach as applied to Siegmund’s problem is discussed in
Betensky (1992) where it is shown to perform well and thus to be a good
alternative to the ad hoc continuity correction he applies to a Brownian
motion approximation.

4.2. P�θ1; θ2��treatment 1 is selected�. It is convenient to express the event
�treatment 1 is selected� as the union of the disjoint events �treatment 3
is eliminated at T1, treatment 2 is eliminated at T2� and �treatment 2 is
eliminated at T1, treatment 3 is eliminated at T2�. Therefore,

P�θ1; θ2��treatment 1 is selected�

= P�θ1; θ2��T1 ≤m; ωT1
∈ �−π/3; π/3�; T2 ≤m; S1;2

T2
≥ b2�(13)

+P�θ1; θ2��T1 ≤m; ωT1
∈ �π/3; π�; T2 ≤m; S1;3

T2
≥ b2�;(14)

where �13� can be written as

∫ π/3
−π/3

∫ ∞
b1

m∑
n=1

Pθ�T2 ≤m; S1;2
T2
≥ b2�T1 = n; �Sn� = ξ; ωn = ω�

×P�θ1;0��T1 = n; �Sn� ∈ dξ; ωn ∈ dω�
(15)

and �14� can be written as

∫ π
π/3

∫ ∞
b1

m∑
n=1

Pθ�T2 ≤m; S1;3
T2
≥ b2�T1 = n; �Sn� = ξ; ωn = ω�

×P�θ1;0��T1 = n; �Sn� ∈ dξ; ωn ∈ dω�:
(16)

The conditional probability in �15� is equal to




1; if ξ sinω ≥ b2;

0; if ξ sinω ≤ −b2;

Pθ2
�τ ≤m− n; Sτ ≥ b2 − ξ sinω�; if �ξ sinω� < b2;

(17)

where τ is defined in �12�. Likewise, the conditional probability in �16� can be
written analogously with �31/2ξ cosω + ξ sinω�/2 replacing ξ sinω, �31/2θ1 +
θ2�/2 replacing θ2 and τ′, replacing τ, where

τ′ = inf�kx Sk ≥ b2 − �31/2ξ cosω+ ξ sinω�/2
or Sk ≤ −b2 − �31/2ξ cosω+ ξ sinω�/2�:
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The probability in �17� may be approximated by

Pθ2
�τb2−ξ sinω ≤m− n�
∼= 1−8��m− n�−1/2�b2 − ξ sinω� − �m− n�1/2θ2�
+ e2�b2−ξ sinω+ρ�θ2

×8�−�m− n�−1/2�b2 − ξ sinω+ 2ρ� − �m− n�1/2θ2�

(18)

and the analogous probability based on τ′ is dealt with similarly. These ap-
proximations together with �3� are substituted in �15� and �16� to approximate
the power.

4.3. Numerical results. Table 3 contains the approximations for the error
probability (i.e., P�θ1;0��eliminate treatment 1 or 2�) and the power (i.e.,
P�θ1; θ2��select treatment 1�) as well as values from the simulation of the
O’Brien–Fleming three-treatment trial described in Section 3. For the param-
eter values in this example (m = 50, b1 = 18:52, b2 = 15:31), the numerical
approximation for the error consisting of the sum of �9� and �10� appears to
be quite accurate. The approximation for the power consisting of the sum of
�15� and �16� performs reasonably well for this example. The values from the
approximation are almost always less than those from the simulation, sug-

Table 3

Error �θ2 = 0� and significance level �θ2 > 0�
from stage 2 of sampling

u1 u2 Monte Carlo Approximation

0.70 0.00 0.050 0.048
0.35 0.61 0.978 0.934
0.50 0.50 0.933 0.889
0.61 0.35 0.674 0.642

0.60 0.00 0.047 0.048
0.30 0.52 0.912 0.873
0.42 0.42 0.813 0.783
0.52 0.30 0.537 0.517

0.50 0.00 0.049 0.047
0.25 0.43 0.734 0.718
0.35 0.35 0.637 0.619
0.43 0.25 0.393 0.381

0.40 0.00 0.048 0.046
0.20 0.35 0.507 0.496
0.28 0.28 0.423 0.407
0.35 0.20 0.263 0.249

0.30 0.00 0.039 0.042
0.15 0.26 0.253 0.249
0.21 0.21 0.234 0.209
0.26 0.15 0.134 0.135
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gesting that the downward bias in the approximation of the joint probability
�2� may be playing a role here.

5. Expected sample size. Two approximations for the expected sample
size after the second stage of sampling are derived in this section. The first
is an analytic approximation valid up to terms of constant order as m → ∞
and is discussed in Section 5.1. It follows the same approach used by Sieg-
mund (1993) to approximate the expected sample size for the three-treatment
trial based on repeated significance tests. However, our approximation is accu-
rate up to terms of constant order, whereas Siegmund’s (1993) approximation
does not include terms smaller than order m1/2. Consequently, our proof is
slightly more complicated than that given in Siegmund (1993). The second
approximation, described in Section 5.2, is based on summing probabilities
and is similar in approach to the approximations developed in Section 4.1.
Like those approximations, this one is not mathematically correct due to a
variety of substitutions made. Nevertheless, it is more accurate than the ana-
lytic approximation for the numerical example considered. In Section 5.3 these
approximations are compared with each other and with values from the sim-
ulation of the O’Brien–Fleming three-treatment trial described in Section 3.

5.1. Analytic approximation of Eθ�T2 ∧m�. The basis for this approxima-
tion for the expected sample size is the following identity given in Siegmund
(1993), Section 4:

Eθ�T2 ∧m� = Eθ�T1 ∧m� +Eθ�T2 −T1y T1 ≤m�
−Eθ�T2 −my T1 ≤m < T2�:

(19)

In analyzing this it is most interesting to assume that µ1 � µ2 ≥ µ3 because
when µ1 is close to µ2 the second stage of sampling will use up most of the
available patients so that Eθ�T2 ∧ m� will be very close to m. Also, as in
Siegmund (1993), we assume that

�θ� = b1/m+ 11/m
1/2(20)

and that

θ2 = b2/m+ 12/m
1/2(21)

which give the relation

θ2 = b2�θ�/b1 + 13/m
1/2;(22)

where 13 = 12 − 11b2/b1.
Every expectation in �19� may be taken over the set ��T1− b1/�θ�� < m5/8�

without changing Eθ�T2 ∧m� by more than an exponentially small amount.
This follows easily from bounding this expectation taken over the complemen-
tary set by

m�Pθ�T1 > b1/�θ� +m5/8� +Pθ�T1 < b1/�θ� −m5/8��
and bounding these probabilities using approximations in Betensky (1992).
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Proposition 1 contains an approximation for Eθ�T1∧m�, Proposition 2 con-
tains an approximation for Eθ�T2 −T1y T1 ≤ m� and Proposition 3 contains
an approximation for Eθ�T2 − my T1 ≤ m < T2�. These three results are
combined via �19� to give an approximation for Eθ�T2 ∧m�.

Proposition 1. Assume that �20� holds. Then, as m→∞,

E�θ��T1 ∧m� = �θ�−1(b1 −m1/2�φ�11� − 118�−11��
− �θ�−1/2+ ρ�θ�8�11�

)
+ o�1�;

(23)

where ρ�θ� = limm→∞Eθ��ST1
� − b1� counts for excess of the discrete process

�ST1
� over the boundary b1 and is approximately equal to 0:583 + �θ�/4 for

small �θ� [see Siegmund (1985), page 228].

Proof. The proof proceeds by writing E�θ��T1 ∧m� as the sum

E�θ��T1� −E�θ��T1 −my T1 > m�
and approximating each component individually. The approximation for the
first term follows from an application of Siegmund’s (1985) Theorem 9.28. The
conditions of this theorem are straightforward to verify. The approximation for
the second term follows from an analysis similar to that used in the proof of
Siegmund’s (1985) Proposition 11.13. Other results that are used are approx-
imations for the distribution of �Sm� given in Betensky (1992), Theorem 4.5,
and for ρ�θ�, the correction for discrete time. 2

In the following results, where applicable, we assume that �20�, �21� and
�22� hold and we let γ = ��θ�b1/m�1/213/θ1.

Proposition 2. As m→∞,

Eθ�T2 −T1y T1 ≤m� = C
{
b

1/2
1 θ1

θ2�θ�3/2
�φ�γ� − γ8�−γ��P�θ��T1 ≤m�

+8�11�
[
8�−γ��ρθ2

θ−1
2 − ρ�θ��θ�−1�

+ �γφ�γ� +8�−γ���θ�−2/2
]}
+ o�1�;

where C = 1 if µ2 � µ3, C = 2 if µ2 = µ3 and ρµ ∼= 0:583+ µ/4.

Remark. For use in practice, we approximate P�θ��T1 ≤m� by

8�11� +
φ�11�

2m1/2�θ� +
φ�11�b1/2

1 e−2ρb1/m

m�θ�1/2��θ� + b1/m�
as in Theorem 4.6 in Betensky (1992). Although this is not a bona fide asymp-
totic approximation, it works well in practice.
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Proof. Up to an exponentially small error, Eθ�T2 − T1y T1 ≤ m� can be
written as

Eθ

(
T2 −T1y T1 ≤m; S1;3

T1
= max

k; l
S
k; l
T1

)

+Eθ

(
T2 −T1y T1 ≤m; S1;2

T1
= max

k; l
S
k; l
T1

)
:

(24)

When µ2 is much larger than µ3, the second term is negligible, whereas when
µ2 is roughly equal to µ3, the two terms are approximately equal. Therefore,
it suffices also to consider the first term in �24�. As in Siegmund’s analysis,
this first term is equal to

m∑
n=1

∫ ∞
0
Pθ�T1 = n; S2; n ∈ b2 − dx�Eθτ�x�(25)

plus an exponentially small error term, where τ�x� = inf�kx S2; k ≥ x�. Be-
cause it suffices to consider the expectation Eθ�T2 ∧m� over the set ��T1 −
b1/�θ�� < m5/8�, it suffices also to consider this component of the expectation,
Eθ�T2 −T1y T1 ≤ m; S1;3

T1
= maxk; lS

k; l
T1
�, over that same set. Therefore, the

effective range of summation in �25� is b1/�θ� −m5/8 < n < b1/�θ� +m5/8.
For n in this range the effective range of integration for x is m1/8 < x < m5/8.
This follows from arguments in Proposition 4.27 of Siegmund (1985). The ex-
pectation Eθτ�x� is approximately equal to �x+ρθ2

�/θ2, where ρθ2
∼= ρ+ θ2/4.

The probability in �25� can be written as
∫ ∞

0
Pθ�S2;T1

∈ b2 − dx�T1 = n; �ST1
� = b1 + r�Pθ�T1 = n; �ST1

� ∈ b1 + dr�

and so the first step in this proof is to approximate the conditional probability

Pθ�S2;T1
∈ b2 − dx�T1; �ST1

��:(26)

Lemma 1. Assume that x = O�m1/2�. Then, as m→∞,

Pθ�S2;T1
∈ b2 − dx�T1; �ST1

��

= �θ�
3/2

b
1/2
1 θ1

φ

(�θ�3/2

b
1/2
1 θ1

(
x+ b113

m1/2�θ�

))

×
[
1− 13θ2

m1/2θ2
1

− b2R13�θ�2
m1/2b1θ

2
1

+ b11
3
3θ2�θ�

2m3/2θ4
1

+ x
(

312
3θ2�θ�2
2mθ4

1

− b2�θ�2
b2

1θ
2
1

− b2R�θ�3
b2

1θ
2
1

)

+ x2 313θ2�θ�3
2m1/2b1θ

4
1

+ x3
(
θ2�θ�4
2b2

1θ
4
1

)
+Op�m−1�

]
dx;

(27)

where R = �ST1
� − b1.
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Remark. Although the effective range of integration for x extends to m5/8,
for the purpose of evaluating �25� up to terms of constant order, it suffices to
assume that x = O�m1/2� and to expand (26) up to terms of order m−1/2.

Proof. The starting point for this approximation is the likelihood ratio
calculation given in Siegmund (1985), page 114, which shows that

Pθ�S2;T1
∈ b2 − dx�T1; �ST1

��

=
exp��θ� �ST1

� cos�sin−1��b2 − x�/�ST1
�� − sin−1�θ2/�θ����

2πI0��θ� �ST1
����ST1

�2 − �b2 − x�2�1/2
;

(28)

where I0 denotes the modified Bessel function and I0�ν� = �2πν�−1/2 exp�ν��1+
O�ν−1��. The rest of the proof consists of extensive Taylor series expansions
using �20� and �21� and the fact that �ST1

� = b1+R, where R is stochastically
bounded. 2

The proof of the proposition concludes with the evaluation of
m∑
n=1

∫ ∞
0
Pθ�T1 = n; �ST1

� ∈ b1 + dr�

×
∫ m5/8

m1/8
b
−1/2
1 θ−1

1 �θ�3/2φ�b
−1/2
1 θ−1

1 �θ�3/2x+ γ�

× �k0 + k1x+ k2x
2 + k3x

3 +Op�m−1���x+ ρθ2
�dx/θ2;

(29)

where the constants k0; k1; k2; k3 are obtained from �27�. It is convenient to
change the variable of integration from x to

y = b−1/2
1 θ−1

1 �θ�3/2x+ γ:
The inner integral in �29� is equal to

b
1/2
1 θ1

θ2�θ�3/2
�φ�γ� − γ8�−γ�� +

ρθ2

θ2
8�−γ�

− b2R

b1θ2
8�−γ� + 1

2�θ�2 �γφ�γ� +8�−γ�� + op�1�

and thus �29� is equal to

b
1/2
1 θ1

θ2�θ�3/2
�φ�γ� − γ8�−γ��P�θ��T1 ≤m�

+8�11��θ−1
2 ρθ2

8�−γ� + �θ�−2�γφ�γ� +8�−γ��/2�

− θ−1
2 �b2/b1�8�−γ�Eθ��ST1

� − b1y T1 ≤m� + o�1�:
Finally, since the excess over the boundary, �ST1

� − b1, and T1 are asymptot-
ically independent [Betensky (1992), Theorem 4.2],

Eθ��ST1
� − b1y T1 ≤m� → ρ�θ�8�11�;
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where ρ�θ� = limm→∞Eθ��ST1
�−b1�. This and another application of �22� give

the result of the proposition. 2

Proposition 3. As m→∞,

Eθ�T2 −my T1 ≤m < T2�

=
∫ ∞

0
�m1/2y+ ρθ2

�φ�12 + y�

×
[
1−8

(
−11�θ�

θ1
+ 12θ2

θ1
− 12

3�θ�
2m1/2θ2

1

+ y
(
θ2

θ1
− 13�θ�2
m1/2θ3

1

)
− y2 �θ�2

2m1/2θ2
1

)]
dy/θ2

+ b1θ1

mθ2�θ�2
�φ�γ� − γ8�−γ��m1/2P�θ��T1 < m; �Sm� < b1�o�1�:

Remark. For use in practice, we approximate P�θ��T1 < m; �Sm� < b1�
by m−1/2φ�11�e−2ρb1/m/��θ� + b1/m� as in Theorem 4.4 of Betensky (1992).

Proof. As in Siegmund (1993), this expectation can be written as

Eθ

(
T2 −my T1 ≤m < T2; S

1;3
T1
= max

k; l
S
k; l
T1

)

+Eθ

(
T2 −my T1 ≤m < T2; S

1;2
T1
= max

k; l
S
k; l
T1

)(30)

up to an exponentially small error. The first term in �30� is equal to
∫ ∞

0
Pθ�T1 ≤m; T2 > m; S

1;3
T1
= max

k; l
S
k; l
T1
; S2;m ∈ b2 − dx�Eθτ�x�;(31)

where τ�x� = inf�kx S2; k ≥ x� and Eθ�τ�x�� ∼ �x + ρθ2
�/θ2. It is easy to see

that the important range for x in this integral is m1/8 < x < m5/8 as well.
It can be shown that the constraints S1;3

T1
= maxk; lS

k; l
T1

and T2 > m can be
eliminated from the probability in �31� without changing �31� by more than
an exponentially small amount. Therefore, the integral in �31� is equal to

∫ m5/8

m1/8
Pθ��Sm� ≥ b1; S2;m ∈ b2 − dx��x+ ρθ2

�dx/θ2

+
∫ m5/8

m1/8
Pθ�T1 < m; �Sm� < b1; S2;m ∈ b2 − dx��x+ ρθ2

�dx/θ2

(32)

plus an exponentially small error. Lemma 2 contains an approximation for the
probability in the first integral in �32� and Lemma 3 contains an approxima-
tion for the second integral in �32�. 2
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Lemma 2. Assume that x = O�m1/2�. Then, as m→∞,

Pθ��Sm� ≥ b1; S2;m ∈ b2 − dx�

∼ φ�12 +m−1/2x�
[
1−8

(
−11�θ�

θ1
+ 12θ2

θ1

− 12
3�θ�

2m1/2θ2
1

+ x

m1/2

(
θ2

θ1
− 13�θ�2
m1/2θ3

1

)

− x2�θ�2
2m3/2θ2

1

+O�m−1�
)]

dx

m1/2
:

Remark. As in Lemma 1, it suffices to expand this probability for x =
O�m1/2� even though x can be as large as m5/8.

Proof. Up to an exponentially small error, this probability can be written
as

Pθ��Sm� ≥ b1; S2;m ∈ b2 − dx�
= φ�12 +m−1/2x��1−8�m−1/2�b2

1 − �b2 − x�2�1/2 −m1/2θ1��m−1/2 dx:

The rest of the proof consists of a sequence of Taylor series expansions, each
of which makes repeated use of the assumptions. 2

Lemma 3. Assume that �20�, �21� and �22� hold. Then, as m→∞,

∫ m5/8

m1/8
Pθ�T1 < m; �Sm� < b1; S2;m ∈ b2 − dx���x+ ρθ2

�/θ2�dx

= b1θ1

mθ2�θ�2
�φ�γ� − γ8�−γ��m1/2P�θ��T1 < m; �Sm� < b1� + o�1�:

Proof. First note that
∫ m5/8

m1/8
Pθ�T1 < m; �Sm� < b1; S2;m ∈ b2 − dx��x+ ρθ2

�dx/θ2

∼
∫ m5/8

m1/8
Pθ�T1 < m; b1 − y < �Sm� < b1; S2;m ∈ b2 − dx��x+ ρθ2

�dx/θ2

because, as shown in the proof of Theorem 4.4 in Betensky (1992), under
the assumption �20�, the major contribution to the joint probability Pθ�T1 <
m; �Sm� < b1� occurs for �Sm� close to b1, and for �Sm� outside of this region,
the joint probability is exponentially small. Therefore, this integral is equal
to
∫ y

0

∫ m5/8

m1/8
Pθ�T1 < m; �Sm� ∈ b1 − dr�Pθ�S2;m ∈ b2 − dx� �Sm� = b1 − r�

× �x+ ρθ2
�dx/θ2



A THREE-TREATMENT SEQUENTIAL TRIAL 1783

for fixed y > 0. Because r is small relative to b1, the result of Proposition 2
may be used to evaluate the integral with respect to x to obtain

∫ y
0
Pθ�T1 < m; �Sm� ∈ b1 − dr�

×
[
b

1/2
1 θ1

�θ�3/2θ2
�φ�γ� − γ8�−γ�� + θ−1

2 ρθ2
8�−γ�

+ �θ�−2�γφ�γ� +8�−γ��/2+ rθ−1
2 �b2/b1�8�−γ� + op�1�

]
:

The integral with respect to r is

b1θ1

mθ2�θ�2
�φ�γ� − γ8�−γ��m1/2P�θ��T1 < m; �Sm� < b1�

+ θ−1
2 �b2/b1�8�−γ�Eθ�b1 − �Sm�y T1 < m; b1 − y < �Sm� < b1� + o�1�:

The result of the lemma now follows from the fact that the last term in this
expression is negligible because b1 − �Sm� < y, y is taken to be fixed and the
joint probability of T1 and �Sm� is O�m−1/2�. 2

The results of Propositions 1, 2 and 3, combined by means of �19�, yield an
approximation for Eθ�T2 ∧m�. Because of the asymptotic relations that are
assumed for this theorem, there are many mathematically equivalent ways
that this approximation could be expressed. It is likely that certain forms of
the approximation perform better on certain numerical examples than oth-
ers. Because this result is accurate up to constant order terms, the proof is
more complicated than the proof of Siegmund’s (1993) analogous result for
the square root boundary up to terms of order m1/2. However, the use of
the straight line boundary does simplify some aspects of this proof because
the value of the process �Sn� at the stopping time T1 is b1 +R rather than
b1T

1/2
1 +R as in the square root boundary case.

5.2. Eθ�T2 ∧ m� via summing probabilities. An alternative approach to
approximating Eθ�T2 ∧m� is by summing probabilities. The expected sample
size Eθ�T2 ∧m� can be written as

m−
m−1∑
n=1

∫ 2π

0

∫ ∞
b1

m−1∑
j=n

Pθ�T2 ≤ j�T1 = n; �Sn� = ξ; ωn = ω�

×Pθ�T1 = n; �Sn� ∈ dξ; ωn ∈ dω�:
(33)

The joint probability in �33� is approximated as in �3� and the conditional
probability is approximated as in �11� by

{
1; if �c� ≥ b2;

Pµ�τb2−c ≤ j− n� +P−µ�τb2+c ≤ j− n�; if �c� < b2;
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where

µ =





θ2; if ωn ∈ �−π/3; π/3�;
�31/2θ1 + θ2�/2; if ωn ∈ �π/3; π�;
�31/2θ1 − θ2�/2; if ωn ∈ �π;5π/3�;

c =





ξ sinω; if ωn ∈ �−π/3; π/3�;
�31/2ξ cosω+ ξ sinω�/2; if ωn ∈ �π/3; π�;
�31/2ξ cosω− ξ sinω�/2; if ωn ∈ �π;5π/3�;

and the probabilities of the form Pµ�τb2−c ≤ j − n� are approximated as in
�18�. The approximation �33� is then computed using multiple numerical in-
tegration.

5.3. Numerical results. Table 4 contains the approximations for the ex-
pected sample size of the three-treatment trial given in Sections 5.1 and 5.2
as well as values from the simulation of the three-treatment O’Brien–Fleming
trial described in Section 3. The analytic approximation is reasonably accu-
rate for this example, for �θ� ≥ 0:4. Given the many appearances of �θ�−1 and
θ−1

2 in this approximation, it cannot be expected to do as well in the region
of small �θ� and θ2 values. In this table the constant C from Proposition 2
is taken to be 2 when µ2 = µ3, that is, when θ2 = 31/2θ1, and is taken to be

Table 4
Expected sample size of stage 2 of sampling: Eθ�T2 ∧m�

u1 u2 Monte Carlo Theorem 1 Numerical integration

0.70 0.00 49.47 49.50
0.35 0.61 29.94 29.49 30.63
0.50 0.50 32.20 31.77 33.18
0.61 0.35 40.06 39.06 40.55

0.60 0.00 49.51 49.50
0.30 0.52 34.50 34.15 35.05
0.42 0.42 37.11 36.44 37.71
0.52 0.30 42.66 41.94 43.15

0.50 0.00 49.50 49.52
0.25 0.43 39.94 39.10 40.02
0.35 0.35 41.54 40.63 41.83
0.43 0.25 45.45 44.96 45.48

0.40 0.00 49.53 49.56
0.20 0.35 44.07 42.36 44.23
0.28 0.28 45.11 43.78 45.44
0.35 0.20 47.24 47.04 47.34

0.30 0.00 49.63 49.63
0.15 0.26 47.58 41.87 47.54
0.21 0.21 47.86 43.44 47.96
0.26 0.15 48.70 44.17 48.70
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1 otherwise. This should imply that the approximation is most accurate for
those �θ1; θ2� pairs with θ2 = 31/2θ1. In fact, although the approximation is
accurate for all �θ1; θ2� pairs, this does appear to be the case for large �θ�.
However, for smaller values of �θ�, the approximation seems to be slightly
more accurate for the other �θ1; θ2� pairs. This may just be an artifact of �θ�
and θ2 values that are too small. Actually, with some more effort, the constant
C could probably be defined more precisely as a function of θ1 and θ2. Also, it
is possible that alternative, equivalent expressions of the approximation could
lead to improved numerical results.

Although the approximation given in Section 5.2 is relatively slow compu-
tationally because of the multiple numerical integrations, Table 4 indicates
that it is quite accurate. It has the added advantage over the analytic approx-
imation of being applicable for the θ2 = 0 entries of the table. However, these
entries are the least interesting in the table as they are well approximated
by m.

6. Standard versus experimental treatments. It is often the case that
investigators conduct experiments in which new treatments are compared
with an established standard treatment. In such experimental situations, it
is appropriate to use the one-sided alternative hypothesis that the new treat-
ments are better than the standard. That is, the burden should be on the new
treatments to prove themselves superior to the standard, which is already well
established. It is appropriate also that the experiment should be designed to
stop as soon as there is sufficient evidence that the new treatments are not su-
perior to the standard. There is nothing to be gained by letting the experiment
use its maximum sample size in this situation because there is usually already
a good understanding of the positive and adverse responses to the standard
treatment. Various authors have adapted two-treatment sequential trials to
one-sided alternatives and to stop early to accept the null hypothesis [e.g.,
DeMets and Ware (1980, 1982) and Siegmund (1986)]. Here we extend Sieg-
mund’s (1986) approach to the three-treatment setting for modified repeated
significance tests.

Assume that treatment 3 is the standard treatment. The goal of the first
stage of sampling should be to determine whether either of the new treatments
is superior to the standard. Therefore, the first stage of sampling is defined by
the alternative hypothesis of H1x µ1 > µ3 or µ2 > µ3. It could be argued that
the first stage should also be used to compare treatments 1 and 2. However,
it seems more appropriate for this experimental situation to postpone this
comparison until it is determined that either one of these new treatments is
better than the standard. Define

T1 = inf�nx n ≥m0; S
1;3
n ≥ b1n

1/2 or S1;3
n ≤ −b2n

1/2 + δn
or S2;3

n ≥ b1n
1/2 or S2;3

n ≤ −b2n
1/2 + δn�;

(34)

and stop the first stage of sampling at min�T1;m�. IfT1 ≤m and Si;3T1
≥ b1T

1/2
1

or if T1 > m and Si;3m ≥ c1m
1/2, then conclude that treatment i is superior
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to treatment 3, where i = 1 or 2. If T1 ≤ m and Si;3T1
≤ −b2T

1/2
1 + δT1, then

conclude that treatment i is not superior to treatment 3.
If either new treatment is determined to be superior to treatment 3, elimi-

nate treatment 3 and continue sampling until min�T2;m� where

T2 = inf�nx n ≥ T1; �S1;2
n � ≥ b3n

1/2�;

and declare treatment i to be the best if T2 ≤m and Si; jT2
≥ b3T

1/2
2 or if T2 > m

and Si; jm ≥ c2m
1/2, where �i; j� = �1;2� or �2;1�.

Alternatively, if treatment i is found to be no better than treatment 3 after
the first stage of sampling, eliminate treatment i and continue sampling until
min�T2; j;m� where

T2; j = inf�nx n ≥ T1; S
j;3
n ≥ b1n

1/2 or Sj;3n ≤ −b2n
1/2 + δn�;

where j 6= i; j 6= 3, and declare treatment j to be the best if T2; j ≤ m and
S
j;3
T2; j
≥ b1T

1/2
2; j or if T2; j > m and S

j;3
m ≥ c1m

1/2, and declare no treatment

difference if T2; j ≤m and Sj;3T2; j
≤ −b2T

1/2
2; j + δT2; j.

If it happens that two of the possible boundary crossing events defining
T1 occur at the same time, such as S1;3

T1
≥ b1T

1/2
1 and S2;3

T1
≤ −b2T

1/2
1 + δT1,

then we eliminate treatment 3 because treatment 1 has proven itself better
than treatment 3, and we continue comparing treatments 1 and 2 using T2.
Presumably, treatment 1 will prove itself better than treatment 2 because
treatment 2 does not appear to be any better than treatment 3.

With an appropriate choice of parameters, the proposed procedure should
stop significantly early relative to the original procedure under the null hy-
pothesis. A reasonable goal is for the expected sample size after the second
stage to be roughly 3m/2. At best, with a good choice of parameters, the pro-
posed procedure will not display a significant loss of power or increase in
sample size under the alternative hypothesis of µ1 ≥ µ2 ≥ µ3.

To make this procedure comparable to Siegmund’s (1993) simulation of the
original procedure described in Section 3, the Type I error of declaring a treat-
ment difference when there is none must be set to 0:05/3. This is because the
first stage of sampling for the original procedure stops and rejects H0 when
any one of the three random walks representing the three pairwise compar-
isons crosses an upper or lower boundary. The modified procedure stops and
rejects H0 after either stage of sampling as soon as either one of only two
random walks crosses an upper boundary. Therefore, there are two boundaries
that could be crossed for the modified procedure, versus six for the original
procedure. A good approximation to an overall significance level of 0:05/3 is
achieved by choosing b1 and c1 to be the boundary values that give a signif-
icance level of 0:05/3 for the two-sided two-treatment repeated significance
test.

The other error of interest in the original procedure, the error of eliminating
treatment 1 or 2 when they are equivalent, must be redefined for the modified
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procedure. For this procedure it should be considered an error to eliminate
treatment 1 or 2 only when they are being compared with each other. It is
to be expected that treatment 1 or 2 might be eliminated by treatment 3
when the differences between the treatments are not that great, and so this
is an error of lesser magnitude than if treatment 1 or 2 eliminates the other.
Therefore, b3 and c2 are chosen to be the 0:05 level boundary values for the
two-sided repeated significance test with maximum sample size of m.

In order to compare this modified procedure to Siegmund’s (1993) simula-
tion of the repeated significance three-treatment procedure, the parameters
can be chosen according to the guidelines explained above to be b1 = 3:45,
c1 = 2:45, b3 = 2:92, c2 = 2:05 and δ = 0:75. For simplicity, b2 is chosen to
be equal to b1. The error probability and power, p1, is defined exactly as in
Section 3, except that it may involve both stages of sampling. If treatment 3
eliminates treatment 1 after the first stage of sampling, then no conclusion
regarding the presence of a treatment effect can be made until after the sec-
ond stage of sampling. The error, p2, of eliminating treatment 1 or 2 when
they are equivalent is counted only when they are compared against each
other. The power, p2, and the expected sample sizes E1 and E2 are defined as
for the original procedure. Table 5 lists these operating characteristics, along
with the expected total sample size, for the modified procedure based on a

Table 5
Modified procedure for comparing standard vs. new treatments

u1 u2 p1 p2 E1 E2 Total

0.00 0.00 0.017 17.97 26.02 70.01

0.70 0.00 0.993 0.044 24.27 49.37 123.01
0.35 0.61 0.965 0.961 16.94 32.07 81.08
0.50 0.50 0.990 0.948 19.26 32.84 84.94
0.61 0.35 0.993 0.714 21.60 40.87 103.34

0.60 0.00 0.961 0.041 29.29 49.07 127.43
0.30 0.52 0.890 0.879 18.23 37.08 92.39
0.42 0.42 0.942 0.857 21.91 38.84 99.59
0.52 0.30 0.961 0.625 25.00 43.42 111.84

0.50 0.00 0.863 0.032 32.63 48.36 129.35
0.25 0.43 0.720 0.698 19.50 40.79 101.08
0.35 0.35 0.820 0.712 23.38 42.13 107.64
0.43 0.25 0.859 0.527 27.84 45.00 117.84

0.40 0.00 0.660 0.021 33.24 46.54 126.32
0.20 0.35 0.506 0.480 20.20 40.73 101.66
0.28 0.28 0.599 0.500 24.20 42.65 109.50
0.35 0.20 0.668 0.413 28.33 44.75 117.83

0.30 0.00 0.416 0.012 30.52 42.85 116.22
0.15 0.26 0.276 0.248 20.48 37.80 96.08
0.21 0.21 0.350 0.276 23.79 39.77 103.33
0.26 0.15 0.397 0.242 27.08 41.72 110.52
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simulation. These values should be compared with the values in the columns
headed “rs” in Table 1.

As desired, when there is no treatment difference, that is, θ1 = θ2 = 0, the
value of p1 is 0:017, approximately 0:05/3, and the value of the expected total
sample size is 70:01, approximately 3m/2 = 75. There is no value for p2 listed
in the table because it has no meaning for these parameter values. The values
of p1 are comparable to those from the original procedure for large �θ�, except
that they are slightly lower when µ1 > µ2 = µ3. This is probably because the
treatment 2 versus treatment 3 comparison crosses its lower boundary before
the treatment 1 versus treatment 3 comparison, crosses its upper boundary,
and the treatment 1 versus treatment 3 comparison, which continues in the
second stage, does not have enough time to detect treatment 1 as better than
treatment 3. Also, the values of p1 drop with �θ� because as the treatment
differences decrease in magnitude, the procedure is more likely to stop early
in favor of no treatment difference than to detect very small differences.

The values of p2 when it is an error probability are slightly lower for the
modified procedure for large �θ� and get progressively lower for smaller �θ�.
This is due to the different definitions of p2 for the two procedures. The values
of this error probability are smaller for the modified procedure because it is
counting fewer events as errors than is the original procedure. For large �θ�,
for the original procedure, it is likely that treatment 3 is eliminated after
the first stage of sampling and so the event of treatment 1 or 2 eliminating
the other constitutes the major contribution to p2. However, for smaller �θ�,
this event constitutes less of the contribution to p2 for the original procedure
and so p2 from the modified procedure will represent proportionately less of
p2 from the original procedure. As the power, p2 for the modified procedure
exceeds that for the original procedure throughout the table, except when
µ1 > µ2 = µ3. This may be happening for the same reason that the values of
p1 for these entries are smaller than for the original procedure.

There is quite a bit of freedom in the choice of parameters for this procedure.
Even though the performance of this procedure could surely be improved for
this example, it already is reasonably good. It achieves the goal of stopping
early as soon as there is evidence that the new treatments are not superior to
the standard at no great loss of power.

Alternatively, an adaptation of the O’Brien–Fleming two-sample test could
be extended to the three-treatment procedure by defining the stopping rules

T1 = inf�nx S1;3
n ≥ b1 or S1;3

n ≤ −b2 + δn
or S2;3

n ≥ b1 or S2;3
n ≤ −b2 + δn�;

T2 = inf�nx n ≥ T1; �S1;2
n � ≥ b3�

and

T2; j = inf�nx n ≥ T1; S
j;3
n ≥ b1 or Sj;3n ≤ −b2 + δn�:
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Another possibility is to base a procedure on sequential probability ratio tests
so that

T1 = inf�nx S1;3
n ≥ b1 + δn or S1;3

n ≤ −b2 + δn
or S2;3

n ≥ b1 + δn or S2;3
n ≤ −b2 + δn�;

T2 = inf�nx n ≥ T1; �S1;2
n � ≥ b3�

and

T2; j = inf�nx n ≥ T1; S
j;3
n ≥ b1 + δn or Sj;3n ≤ −b2 + δn�:

Paulson (1962) takes an indifference-zone approach to this problem. A dif-
ferent approach is to apply what has been proposed for comparing several new
treatments with a standard in the fixed sample case. Dunnett (1955) studies
this problem and proposes a procedure that results in narrower confidence
limits for all of the comparisons between the standard treatment and each
new treatment. He recommends that n�d−1�1/2 observations be taken on the
standard treatment, where there are d−1 experimental treatments, and n ob-
servations taken on each of the experimental treatments. An example in which
this approach was taken is the Coronary Drug Project [Coronary Drug Project
Research Group (1973)]. This study allocated 2.5 times as many patients to
the placebo treatment as it did to any of the five active treatments. This ra-
tio was chosen similarly to Dunnett’s to minimize the variance for the five
placebo versus experimental comparisons to be made of five-year mortality.
This approach could be adapted to the three-treatment sequential procedure
and it is likely to lead to better estimates of treatment differences. It is not so
obvious, however, what the effects would be on total sample size.

7. Discussion. We have examined a procedure for sequentially selecting
the best of three treatments that is truncated at a maximum sample size
and that eliminates an apparently inferior treatment when there is sufficient
evidence to do so. Our procedure is based on the popular O’Brien–Fleming
stopping boundaries. We have compared it to that investigated by Siegmund
(1993) based on repeated significance boundaries. We have derived analytic
approximations for various operating characteristics of interest. These provide
insight into the roles of the various parameters that define the procedure. In
so doing, they are useful for both the design and analysis of such procedures.
In addition, we have proposed several modifications to our procedure for the
comparison of a standard treatment to experimental treatments, when early
stopping in favor of the null hypothesis may be desirable.

It is straightforward to apply this procedure and the approximations to
grouped responses, which is a more realistic scenario than continuous moni-
toring, via an appropriate change of scale. Betensky (1995) has extended this
procedure to censored survival data which are more common than instanta-
neous normal responses.

Woodroofe and Coad (1995) have recently used “very weak expansions” in-
troduced by Woodroofe (1986, 1989) to define a confidence region for the treat-
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ment effect vector at the end of the trial. This greatly increases the usefulness
of the procedure in practice. Woodroofe and Coad (1995) find that their approx-
imations are slightly better for our O’Brien–Fleming-based procedure, than for
the repeated significance–based procedure of Siegmund (1993).

To make this procedure even more useful in practice, it is necessary to
develop it for the case of unknown and perhaps unequal variances among
the treatment groups. This extension would make unequal sampling from the
treatment groups feasible, and raises the possibility of an adaptive sampling
plan. It seems likely that the methods of Siegmund (1985), Section 5.4, could
be applied to this end, although the analytic approximations will certainly be
more complicated.

Another extension of interest is the comparison of more than three treat-
ments. An analogous procedure could be defined, based on global sequential
tests at each stage. Beyond the first stage, analytic approximations seem im-
practical, although some crude results may be possible.
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