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REGRESSION RANK SCORES ESTIMATION IN ANOCOVA

BY PRANAB KUMAR SEN

University of North Carolina, Chapel Hill

Ž .In semiparametric ANOCOVA mixed-effects models, the role of
regression rank scores in robust estimation of fixed-effects parameters as
well as covariate regression functionals is critically appraised, and the
relevant asymptotic theory is presented.

1. Introduction. To motivate semiparametric analysis of covariance
Ž .ANOCOVA models, consider first the conventional model where for the ith

Ž .observation, Y , Z and t stand for the primary, stochastic concomitant andi t i
Ž .nonstochastic design variates, respectively, and, conditional on Z s z ,i i

1.1 Y s b9t q g 9z q e , i s 1, . . . , n ,Ž . i i i i

where b and g are the regression parameter vectors for the fixed and random
effects components, and the e are independent and identically distributedi

Ž .random variables i.i.d.r.v.’s having a normal distribution with mean 0 and a
Ž . 2finite conditional variance s . The t are given p-vectors not all equal,i

Ž .T s t , . . . , t 9 and the Z are stochastic q-vectors, so that there are p q q1 n i
regression parameters and an additional scale parameter s . The assumed

Ž .joint normality of Z , e yields homoscedasticity, linearity of regression asi i
Ž .well as normality of the conditional distribution in 1.1 . Without this joint

normality, a breakdown may occur in each of these three basic postulations.
On the other hand, the design vectors may still pertain to a linear regression
function. Thus, there is a need to examine thoroughly the robustness aspects
of mixed-effects models with due emphasis on all these factors. Motivated by
these considerations, we consider the following two semiparametric models.

Ž . Ž .MODEL 1. Assume that 1.1 holds and the distribution function d.f.
Ž < .G e z of e given Z s z is independent of z and is continuous almost every-

Ž .where a.e. . Thus, only the normality part of the basic assumption is dropped.

MODEL 2. The linearity of the regression of Y on Z is dropped, and
further, the independence of Z and e is relaxed, so that the conditional d.f.
Ž < .G ?z may no longer be homoscedastic.
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The main motivation for the second model is that, without the joint
Ž .normality of Z, e , there may not be enough justification for a linear regres-

sion of Y on Z or even the homoscedasticity. As an illustrative example,
consider the following: let the conditional density of e, given Z s z, be
Ž . Ž . Ž Ž .. Ž Ž Ž . .. Ž . Ž .1 y h f xrs q hrh z f xr h z s , where h ) 0 is small and h ? is a0 0
nonconstant, nonnegative function, and let the marginal density of Z be a

Žsimilar contaminated normal law. For this mixture outliers in covariates as
.well as primary variate model, one can only appeal to Model 2. In general,

for outliers with elliptically symmetrical d.f.’s, Model 2 works out well.
w Ž .In line with the usual nonparametric setup namely Puri and Sen 1985 ,

xChapter 8 , we may assume that the Z are i.i.d.r.v.’s having a q-variate d.f.i
Ž .F z and let

< <1.2 G y z s G y y b9t z , i s 1, . . . , n ,Ž . Ž . Ž .i i

Ž . Ž . Ž .where G ? is continuous and quite arbitrary as in Model 2 . Thus, 1.2
conforms to a parametric form with respect to the fixed-effects parameters
but to a nonparametric one for the concomitant variates. In order to quantify
further this model in terms of suitable regression functionals, we define
Ž Ž < ..u G ?z , a translation-invariant functional of the conditional d.f. G, such

Ž Ž < .. Ž Ž < .. Ž < .that u G ?y c z s u G ?z y c for every real c. Here G y y c z stands for
the d.f. of the translated variable Y y c. This allows the percolation of thei
linear component b9t in a natural way. As such, we consider the followingi
quasi-parametric model:

< <1.3 u G ?z s u G ?z q b9t , i s 1, . . . , n.Ž . Ž . Ž .Ž .Ž .i i

Thus, with respect to ANOCOVA Model 2, one has a finite-dimensional
parameter b for the design variates but a functional with respect to the
concomitant variates. It is in this generality, we like to study a general class

Ž .of robust estimators of the functionals in 1.3 .
It may be quite natural for us to allow G to be a member of a broad class,

Žso that robustness has to be interpreted in a global sense rather than in a
.local sense where M-estimators are more appropriate . This leads us to the

Ž .preference of the so-called R-estimators and related rank statistics which
are scale-equivariant and possess other asymptotic optimality properties.

Ž .Due to significant contributions of Gutenbrunner and Jureckova 1992 and˘ ´
Ž . Ž .Jureckova 1992 , the regression rank scores RRS estimators have emerged˘ ´

as strong competitors of the classical R-estimators, and certain asymptotic
Ž .equivalence results have also been obtained by Jureckova and Sen 1993 . As˘ ´

such, we shall find it more convenient to deal with such RRS estimators. To
motivate the setup, along with the preliminary notions of RRS in Section 2,
Model 1 is briefly introduced in Section 3. The main results of this study are
reported in Sections 4 and 5 where Model 2 is treated in its full generality.
The concluding section deals with some general remarks to facilitate further
the use of such RRS in ANOCOVA models.
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2. Preliminary notions. For the usual linear model

2.1 Y s Y , . . . , Y 9 s X 0b0 q e, e s e , . . . , e 9,Ž . Ž . Ž .1 n n 1 n

0 Ž .where X is an n = r matrix of known regression constants with r s p q q
and b0 is an r-vector of unknown regression parameters. Koenker and

Ž . Ž .Bassett 1978 formulated regression quantiles as follows. Let a g 0, 1 , the
ith row of X 0 be denoted by x 0, i s 1, . . . , n, and leti

< <2.2 r x s x a I x ) 0 q 1 y a I x - 0 , x g R.� 4Ž . Ž . Ž . Ž . Ž .a

Then the a-regression quantile of b0 is expressed as

n
0 0 rˆ2.3 b a s arg min r Y y x b : b g R .Ž . Ž . Ž .Ýn a i i½ 5

is1

Ž . Ž .Gutenbrunner and Jureckova 1992 considered a set a a , i s 1, . . . , n,˘ ´ ˆni
Ž .of scores, termed the RRS, which are linked to the solution in 2.3 by

Y9a a s max, X 0Xa a s 1 y a X 0X1 ,Ž . Ž . Ž .ˆ ˆn n n n n2.4Ž .
nw xa g 0, 1 , a g 0, 1 .Ž .ˆ n

These RRS are regression-invariant in the sense that, for every b g Rr,
Ž 0 . Ž .a a , Y q X b s a a , Y , and this plays a basic role in the developmentsˆ ˆn n n

on RRS in the recent past. Statistical inference based on RRS generally
Ž .involves linear LRRS statistics. We define these by taking a nondecreasing

Ž .and square-integrable score generating function f: 0, 1 ª R and letting

1ˆ2.5 b s y f a da a , i s 1, . . . , n.Ž . Ž . Ž .ˆHni ni
0

Then LRRS statistics are the usual linear rank statistics with the scores
1Ž . Ž .given by 2.5 . We may set, without any loss of generality, f s H f t dt s 0,0

y1 n ˆso that n Ý b s f s 0.is1 ni
Ž .Let us consider the RRS estimation of b in 1.1 treating g as nuisance

Ž .parameter. Jureckova 1992 incorporated the dispersion measure˘ ´
n

X ˆ2.6 D u s Y y t u b Y y Tu y f ,Ž . Ž . Ž . Ž .Ýn i i ni
is1

and proposed the estimator

˜ p2.7 b f s arg min D u : u g R .� 4Ž . Ž . Ž .n n

Such RRS estimators coincide with R-estimators when there is no nuisance
parameter, and hence, for the estimation of the intercept u , she proposed the
use of signed rank statistics. The regularity conditions for such RRS estima-

Ž .tors are mostly adopted from Jureckova 1992 and Jureckova and Sen˘ ´ ˘ ´
Ž .1996 , and will not be restated for brevity of presentation; only modifications
will be introduced in the respective contexts.
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3. ANOCOVA Model 1. Recall that here e and Z are independent, soi i
Ž < .that the conditional d.f. G e z is independent of z. This enables us to

reproduce virtually the basic techniques in Gutenbrunner and Jureckova˘ ´
Ž . Ž .1992 and Jureckova 1992 to construct RRS estimators of b. Since the Z˘ ´ i
are stochastic, there is a need to modify their regularity assumptions to suit
working with the conditional distributions, given the Z . Generally, in thei

Ž .literature, it is assumed that the d.f. F ? of the Z has a compact support,i
which, in turn, ensures that the Z all belong to a compact set, withi
probability 1; this leads to the fulfillment of all the needed regularity condi-
tions. However, such a compact support is not necessary, and it suffices to
assume that

5 5 r3.1 E Z exists for some r ) r ) 4,Ž . 0

where r may depend on other regularity conditions. Without any loss of0
generality, we may set Ýn t s 0 and set Q s ny1Ýn t tX . Also, let Qis1 i nt t is1 i i n z z
and Q be the sample dispersion matrix of the Z and the covariance matrixnt z i

Ž .of the Z and the t . Then, under 3.1 , it follows that Q converges a.s. to 0i i nt z
and Q to S as n ª `, where S is assumed to be positive definite. Asn z z z z
such, as n ª `, Q Qy1 Q ª 0 a.s. Therefore, whenever lim Q snt z n z z n z t nª` nt t
Q exists, we have Q s Q y Q Qy1 Q ª Q , a.s. as n ª `.t t nt t : z nt t nt z n z z n z t t t
Hence, we may virtually repeat the proof of Theorem 1 and Lemma 1 of

Ž . Ž .Jureckova 1992 with adaptations from Ghosh and Sen 1971 to justify the˘ ´
a.s. convergence of the conditional setup, and conclude that, as n ª `,

n
y1r2 y1 y1˜'3.2 n b f y b s n k Q t f G e q o 1 ,Ž . Ž . Ž . Ž .Ž .Ž . Ýn t t i i p

is1

1 Ž y1Ž .. Ž .where k s H g G a df a is assumed to be positive and finite. This0
first-order asymptotic representation yields that

y2 y1 2˜'3.3 n b f y b is asymptotically NN 0, k Q A ,Ž . Ž .Ž . Ž .n t t f

22 1 2 25 5 Ž .where A s f s H f u du y f . In view of the fact that the conditionalf 0
Ž < . Ž .density g e z does not depend on z, we may note that 3.3 is in complete

Ž .agreement with Theorem 1 of Jureckova 1992 . Hence, for ANOCOVA Model˘ ´
1, RRS estimators work out well, and they possess the same asymptotic
properties as in the ANOVA model. This picture is different in Model 2, and
we mainly focus on that study.

4. ANOCOVA Model 2. As has been explained earlier, here we have a
partial linear model where the fixed-effects parameter b provides a finite-
dimensional linear setup, while the possible nonlinearity of the regression of

Ž < .Y on Z and nonhomogeneity of the conditional d.f. G ?z call for more general
Ž .functionals in 1.3 for which local smoothness conditions appear to be more

appropriate than global linearity or other parametric forms. On the other
hand, the covariates are i.i.d.r.v.’s, and hence the marginal d.f.’s of the Yi
possess adequate information to provide the customary ny1r2 rate of conver-
gence for the estimators of b. The rate of convergence for the estimators of
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Ž Ž < ..u G ?z is presumably slower even if q s 1. To handle this differential
picture, we proceed as follows.

ŽFirst, by an appeal to the conventional ANOVA model covariates ignored
. Ž .and without the normality of the errors , Jureckova’s 1992 methodology is˘ ´

incorporated in deriving some RRS estimators of b. Second, these estimators
Žare incorporated in formulating suitable residuals eliminating the fixed

. Ž .effects which are to be used in a nonparametric smooth estimation of
Ž Ž < ..u G ?z . Since such residuals may no longer be independent or identically

distributed, there are some complications arising in this functional estima-
tion problem. This problem is handled through an alternative approach to
estimating conditional functionals based on perturbed observations, and this
study is relegated to Section 5. Third, we may note that the ANOVA model
based estimators of b do not utilize any information contained in the covari-
ates and hence may not be fully efficient, although they still have the ny1r2

rate of convergence. In the concluding section, we therefore discuss some
possibilities to jack up the asymptotic efficiency of such estimators. In the rest
of this section, we formulate and justify these ANOVA model based estima-
tors for ANOCOVA Model 2.

Ž . Ž .Let H y be the marginal d.f. of Y , so that, by 1.2 ,i i

< <H y s ??? G y z dF z s ??? G y y b9t z dF z ,Ž . Ž . Ž .Ž . Ž .H H H Hi i i4.1Ž .
i s 1, . . . , n , y g R.

Ž . Ž < . Ž . Ž .Thus, H y q b9t s H ??? HB y z dF z s H y , y g R, i s 1, . . . , n. Hencei i

4.2 H y s H y y b9t , i s 1, . . . , n , y g R.Ž . Ž . Ž .i i

This enables us to write formally

4.3 Y s b9t q h , i s 1, . . . , n ,Ž . i i i

Ž .where the h are i.i.d.r.v.’s with the d.f. H ? defined above. This is thei
conventional nonparametric ANOVA model where the covariates are ignored.
Thus, the h may as well be regarded as consisting of two random compo-i

Ž Ž < .. Ž . Ž .nents: u G ?Z and the conditional error e . For this reason, under 1.1 ,i i
the h will have generally larger dispersion than the e , and hence estimatorsi i
of b based on this ANOVA model may have generally larger dispersion than

Ž . Ž . Ž Ž < ..the ones based on 1.1 . On the other hand, if 1.1 does not hold, u G ?Z i
Ž .becomes a functional infinite dimensional , and its estimation entails a

slower rate of convergence. In this section, we present the ANOVA model in
Ž .4.3 side by side with ANOCOVA Model 2 and study the relative efficiency
picture.

˜Ž . Ž .As in 2.7 we consider an RRS estimator b f and proceed as in Section 3n
Ž .with adaptations from Jureckova 1992 . Then we have˘ ´

n
y1r2 y1 y1ˆ'4.4 n b f y b s n k Q t f H h q o 1 ,Ž . Ž . Ž . Ž .Ž .Ž . Ýn 0 t t i i p

is1
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1 Ž y1Ž .. Ž . Ž . Ž .where k s H h H a df a and h y s H9 y is the marginal density of0 0
Ž .h. As a result, parallel to 3.3 , here we have

y2 2 y1ˆ'4.5 n b f y b ª NN 0, k A Q .Ž . Ž .Ž . Ž .n DD 0 f t t

Ž . Ž . Ž .Comparing 3.3 and 4.5 , we conclude that for the ANOCOVA model in 1.1 ,
ˆ ˜Ž . Ž . Ž .the asymptotic relative efficiency ARE of b f with respect to b f isn n

given by

ˆ ˜ 2 24.6 e b ; b s k rk ,Ž . ž /f f 0

Ž . Ž .which depends on the score function f and the densities g ? and h ? , but
Ž .not on the design matrix Q . Keeping 1.1 in mind, we may write W s g 9Z ,t t i i

Ž .center them and assume that they are i.i.d.r.v.’s. Then, under 1.1 , we have
Ž .h s W q e , i s 1, . . . , n, where, conditionally on W s w, e has the d.f. G ei i i i i

Ž .with density g e , and we denote the marginal d.f. and density of W by
Ž . Ž .F* w and f * w , respectively. In order to examine the convolution H

without imposing the normality on either G or F*, we make the following
specific assumption:

4.7 Both F* and G are unimodal and symmetric about 0.Ž .
Ž . Ž .It follows by some routine steps that h 0 F g 0 and

4.8 G $ H , i.e., G is r-ordered with respect to H ,Ž . r

Ž .where we refer to Doksum 1969 for such ordering of d.f.’s. Therefore,

4.9 y1Ž . H G x y x is nondecreasing,Ž .Ž .
so that G is tail-ordered with respect to H. The last ordering, in turn, implies

Ž . y1Ž Ž ..that drdx H G x is greater than or equal to 1 for every x g R, so that

4.10 h Hy1 t F g Gy1 t for every t g 0, 1 .Ž . Ž . Ž . Ž .Ž . Ž .
This tail-ordering property of convolutions of symmetric unimodal distribu-

Ž .tions not necessarily of the same functional form provides us with the
desired clue. Note that, by definition,

1 1y1 y14.11 k rk s h H t df t g G t df t .Ž . Ž . Ž . Ž . Ž .Ž . Ž .H H0 ½ 5 ½ 5
0 0

Ž .Therefore, whenever the score function f t is monotone and square inte-
Ž . Ž . Ž .grable and the d.f.’s F* and G both satisfy 4.7 , we have, by 4.10 and 4.11 ,

4.12 k 2rk 2 F 1, with equality holding only when F* is degenerate at 0.Ž . 0

Ž .Let us study further the ARE in 4.6 when the density g possesses a finite
Ž . 5 5 2 1� Ž y1Ž .. Ž y1Ž ..42Fisher information I g s c s H yg9 G t rg G t dt, whereg 0

Ž . Ž y1Ž .. Ž y1Ž .. Ž .c u s yg9 G u rg G u , u g 0, 1 . Defining c in a similar man-g h
˘ Ž .ner, we have, by a theorem in Hajek and Sidak 1967 , page 17,´ ´

5 5 24.13 I h s c F I g - `,Ž . Ž . Ž .h
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where equality holds only when F* is degenerate at 0. Thus, k rk s0
�² :4 �² :4 Ž . Ž . Ž .f, c r f, c . As the score functions f ? , c ? and c ? all belong toh g h g

Ž . Ž . Ž Ž .the L -space, we may consider the projections c ? s c c ? q c ? y2 h h g g h

Ž .. Ž . Ž . w Ž . Ž . Ž .x Ž . Ž .c c ? , f ? s d c ? q d c ? y g ? c ? q f ? y d c ? yh g g g g h g h h g g g g

w Ž . Ž .xd c ? y g c ? , where the components are mutually orthogonal andh g h h g g

² : ² : ² : ² :4.14 g s c , c r c , c , d s f , c r c , c ,Ž . h g h g g g g g g g

² : ² :d s f , c y g c r c y g c , c y g ch g h h g g h h g g h h g g

s 0 if c s g c .Ž .h h g g

4.15Ž .

Ž .Note that f ? is partially concordantrdiscordant to c , given c , if dh g h g
Ž . 2is ) - 0. It is projectable on c if d s 0. Further, note that g sg h g h g

2Ž .� Ž . Ž .4 2Ž . ² :2 �5 5 5 542r c , c I h rI g , where r c , c s c , c r c c is less thang h g h g h g h
or equal to 1 with the equality sign holding only when d s 0.h g

Ž .THEOREM 4.1. For a monotone f, whenever I g is - `,

4.16 k 2rk 2 is ) , s , - g 2 , according as d is ) , s , - 0.Ž . 0 h g h g

w Ž .xFor brevity of presentation, the proof is omitted see Sen 1993a .

REMARK. In the normal theory ANOCOVA model, both g and f * are
normal densities, so that h is also normal with scale parameter s G s , theh g

Ž . y2 Ž . y2 Ž .scale parameter of g. In this case I h s s , I g s s and c ? sh g h
Ž . Ž . Ž .s rs c ? , so that r c , c s 1. Therefore, the ARE of the ANOVA esti-g h g h g

Ž .2Ž .mators with respect to the ANOCOVA estimators is given by s rs F 1 .g h
Ž .In general, r c , c s 1 whenh g

1r2y1 y14.17 h H u s I h rI g g G u , u g 0, 1 .� 4Ž . Ž . Ž . Ž . Ž . Ž .Ž . Ž .

ŽIf g and h both have the same functional form with possibly different scale
. Ž .parameters , then 4.17 holds. If g and f * both have infinitely divisible

characteristic functions for which the canonical representations differ only by
Ž .scale factors, then 4.17 holds. But such a characterization does not include

most of the common nonnormal densities where g and f * may not have a
common functional form. Thus, a possible departure from normality of either

Ž .g or f * may distort 4.17 , and hence the ANOVA model based analysis may
become comparatively inefficient relative to ANOCOVA Model 1.

Let us consider next the case where linearity or the homoscedasticity
Ž Ž < .. Ž .condition may not hold. As before, letting u G ?z s u z , we may note that,

Ž . Ž .by virtue of our centering, then u Z s W are i.i.d.r.v.’s having a d.f. sayi i
Ž .F* w , where we assume that the W are centered, too. We denote thei

Ž .conditional d.f. of e, given W s w, by G e , e g R. The functional form of Gw w
may depend on w in a rather arbitrary manner. As a natural generalization
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Ž .of 4.7 , we assume that the following holds:

Ž .i f * is unimodal and symmetric about 0,
Ž . Ž .ii for each w g R, g ? is unimodal and symmetric about 0, andw
Ž . q Ž . Ž .iii for each y g R , G y y w q G y q w is nonincreasing in w gw yw

Rq.

Ž .Let us elucidate condition iii a bit more. By reference to the usual het-
eroscedasticity of the h , conditioned on the W , we may seti i

4.18 g e s sy1 g ers , s s s ) 0 , w , e g R.Ž . Ž . Ž . Ž .w w 0 w w yw

Under homoscedasticity, s s s for all w g R. On the other hand, underw 0
heteroscedasticity, we assume that s G s for all w, so that the variabilityw 0
is a minimum at the center value of w. Suppose now that the s satisfy thew
following growth condition:
4.19 w r w log s F 1 for every w G 0.Ž . Ž . w

Ž .Now 4.18 implies that

1 y w y y sy1 r w s G 1 q w q y sy1 r w sŽ . Ž . Ž . Ž .w w w w
q Ž . ŽŽ . .for every w, y g R , while assumption ii implies that g y y w rs G0 w

ŽŽ . . q Ž .g y q w rs for every w, y g R . Therefore, we may conclude that iii0 w
Ž .holds. Note that these are sufficient but not necessary conditions for iii to

hold. Nevertheless, they bring the relevance of heteroscedastic errors in
Ž .ANOCOVA models, and iii is in a sense a representation for this. Then,

Ž .parallel to 4.9 , we conclude that, under the above conditions, G is tail-0
Ž y1Ž .. Ž y1Ž .. Ž .ordered with respect to H, so that h H t F g G t for every t g 0, 1 .0 0

Note that this tail-ordering of G and H can readily be incorporated in0
extending Theorem 4.1 to the general ANOCOVA Model 2, where we need to

Ž . Ž . Žreplace the homogeneous density g ? by the dominating one g ? and c0 g
. Ž .accordingly . In this setup, if we stick to the linearity of u z , but may not like

Ž .to impose the homogeneity of the g ? , as has been done earlier, then thisw
extension covers the RRS estimation of b for which such an extended
Theorem 4.1 would be applicable. This covers the so-called heteroscedastic
linear models. However, as has already been noticed earlier, in a general
ANOCOVA model, the linearity of the regression on the covariates may not

Ž .be universally true, and the very way the u z have been introduced, we are
faced with nonparametric estimation of such conditional functions. Since
such estimators have typically slower rates of convergence, first, in Section 5,

Ž .we treat b as a nuisance parameter and estimate u z , and then, in the
concluding section, we present a method of improving the ANOVA model
based estimators of b for a general ANOCOVA model.

5. Estimation of covariate functionals. Our primary goal is to pro-
Ž . Ž Ž < ..vide nonparametric estimators of u z s u G ?z , treating b as a nuisance

˜ ˜ Ž .parameter. As in Section 3, denote the RRS estimator of b by b s b f ,n n
and consider the aligned observations:

ˆ ˜X5.1 Y s Y y b t for i s 1, . . . , n.Ž . ni i n i
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Ž . y1r2Recall that the residuals in 5.1 have perturbations of the order n , even
for the ANOCOVA model under consideration. Next, consider the set of

Ž .stochastic q q 1 -vectors:

ˆ X5.2 Y , Z , i s 1, . . . , n.Ž . Ž .ni i

Ž . Ž .We intend to incorporate 5.2 in the estimation of u z . Among the possibili-
ties of adopting a kernel and a nearest-neighborhood method of smoothing,
we will pursue the latter one for its comparative simplicity and relatively
wider scope of applicability for moderately large sample sizes. Both of these

w Ž .xmethods share the common asymptotic properties namely Sen 1993b and
hence, apparently, there is no need to present them side by side.

A basic consideration in this estimation problem is the identification of the
stochastic nature of the concomitant variates Z , and, in view of that, it isi

Ž .necessary to formulate the functional u z , allowing z to vary over an
appropriate domain. Choosing a fixed set of points z , j s 1, . . . , k, may notj
serve the estimation purpose well, and hence a stochastic process formulation
appears to be far more rational. We therefore look into the problem of

Ž .estimating u z when z lies in a compact set CC, embedded in the essential
support of the distribution of the concomitant vector Z. Often, such a com-
pactification can be achieved by means of suitable transformations on z.
However, in practice, practical considerations mostly guide us to the choice of
such a compact CC, and, further, compactification may not be that crucial.
Thus, we confine ourselves to the estimation of the functional process:

<5.3 Q CC s u G ?z : z g CC for some compact CC .� 4Ž . Ž . Ž .Ž .

The nearest-neighborhood method can be readily adopted for the estimation
Ž .of the functional in 5.3 . The only point which merits a careful study in this

ˆ Ž .context is the technical difficulty arising from the facts that the Y in 5.1ni
are not independent or identically distributed, so that the usual asymptotic
theory of k-NN methods developed earlier by Bhattacharya and

Ž . Ž .Gangopadhyay 1990 and Gangopadhyay and Sen 1992, 1993 and others,
may not be directly adoptable. In the current context certain uniform conver-
gence results on perturbed empirical distributions provide the access to the
desired asymptotics.

Ž 0 X .To motivate this approach, consider first the case of i.i.d.r.v.’s Y , Z ,i i
i s 1, . . . , n, where Y 0 s Y y b9t , i s 1, . . . , n, so that the Y 0 are not af-i i i i
fected by the regressors t and are i.i.d. Consider a specific point z g CC, andi 0

Ž . q q qconceive of a suitable metric r z, z : R = R ª R . In particular, one may0
Ž .choose a quadratic norm for r ? . Consider then the nonnegative r.v.’s:

5.4 D s r Z , z , i s 1, . . . , n.Ž . Ž .i i 0

Ž .Note that the D are i.i.d.r.v.’s with a d.f. dependent on z , r ? and the d.f. oni 0
� 4Z . In a k-NN method, corresponding to the sequence n of sample size, onei
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� 4 y1may choose a nondecreasing sequence k , such that n k is nonincreasingn n
in n. Typically, we set

w 4rŽqq4. x q5.5 k ; a n for some a g R .Ž . n

Further, let D F ??? F D be the order statistics corresponding to the Dn: 1 n: n i
Ž .defined by 5.4 ; by virtue of the assumed continuity of the d.f. of D, ties

among the D can be neglected with probability 1. Then we define a k-NNi
Ž .stochastic neighborhood of z by0

5.6 nhd z ; r , k s z g CC : r z, z F D .Ž . Ž . Ž .� 40 n 0 n : k n

Now, corresponding to the pivot z , we define the antiranks S , . . . , S , by0 1 n
letting D s D , i s 1, . . . , n. Consider then the set of observationsn: i S i

5.7 Y 0 , ZX , i s 1, . . . , k .Ž . Ž .S S ni

0 Ž .The k-NN empirical d.f. of the Y with respect to the pivot z and metric r ?i 0
is defined as

kn
y1 05.8 G y s k I Y F y , y g R.Ž . Ž . Ý Ž .n , k n Sn i

is1

0 0Ž < .Let us denote the conditional d.f. on Y , given Z s z, by G y z , z g CC and
Ž 0Ž < .. 0y g R. Then we are interested in functionals u G ?z of the d.f. G at0

Ž . 0various z g CC. Typically, u ? is a location parameter of the d.f. G , and0
hence, based on robustness considerations, we propose to use M-, L- and

Ž .R-functionals. Gangopadhyay and Sen 1992, 1993 have considered some
general asymptotics relating to two broad classes of such functionals, namely,
Ž . Ž . w Ž 0Ž < ..i u ? is a conditional quantile functional namely u G ? z s0

� 0Ž < . 4 Ž 0.y1Ž . Ž . Ž . Ž . Žinf y: G y z G a s G a , where a g 0, 1 , and ii u ? is a typi-0
cally, Hadamard or compact differentiable statistical functional. For the case

Ž .of q s 1 i.e., scalar Z , CC is a compact interval on R, and they have studiedi
Ž .the asymptotics for stochastic processes relating to the estimator of Q CC .

Ž .Sen 1994 has a general treatment of this for q G 1. As such, we are
naturally tempted to use a functional of the corresponding empirical d.f. in
Ž .5.8 as the desired estimator. We let

5.9 T z s u G0 , z g CC .Ž . Ž . Ž .n 0 n , k 0n

Ž .In passing, we may remark that the empirical d.f. in 5.8 is specifically based
on the pivot z in the sense that the antiranks S and hence the set of0 i

Ž .observations in 5.7 are all geared to a specific choice of z . As z varies over0 0
CC, they also vary, resulting in different empirical d.f.’s. Based on this con-
struction, we consider the stochastic process:

5.10 W z s k T z y u z , z g CC .� 4Ž . Ž . Ž . Ž .'n n n

The weak convergence of W to a Gaussian random function on CC followsn
Ž . Ž .from general results of Gangopadhyay and Sen 1993 and Sen 1994 . The

Ž . Ž .interesting feature of 5.10 is that, if k satisfies 5.5 , the asymptotic bias ofn
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Ž .W z may not be typically equal to 0, and hence the drift function of such an
Gaussian function may not be null. On the other hand, if we choose k sn
Ž 4rŽqq4..o n , then this asymptotic bias is 0, and hence the drift function is also

null.
Let us now consider a compact KK g R p, containing 0 as an inner point,

and let

5.11 Y 0 b s Y 0 y ny1r2 b9t , i s 1, . . . , n , b g KK.Ž . Ž .ni i i

Ž . Ž . Ž .We introduce the same notation as in 5.4 through 5.6 , and, as in 5.7 , we
consider the set

5.12 Y 0 b , ZX , i s 1, . . . , k .Ž . Ž .Ž .nS i ni

Ž .As such, as in 5.8 , we arrive at the empirical d.f.’s
kn

y1 05.13 G y ; b s k I Y b F y , y g R, b g KK.Ž . Ž . Ž .Ý Ž .n , k n nSn i
is1

At this stage, we may assume that the d.f. of Z, denoted by F, admits a
Ž . Ž .continuously differentiable up to the second order density function f z ,

q Ž .z g R , and that f z is positive for all z g CC. Note that, by definition, the
density function for the D is given byi

5.14 f d ; z s f z dz, d g Rq,Ž . Ž . Ž .HD 0
� Ž . 4Z : r Z , Z sd0

Ž . Ž .so that the differentiability properties of the density f z transmit onto f ?D
as well. Also, note that the conditional d.f. and density of Y 0, given D s di i
Ž .at the pivot z , are, respectively, given by0

0 < 0 <5.15 G y z , d s f z G y z dz f d , z ,Ž . Ž . Ž .Ž .Ž . HD 0 D 0½ 5� Ž . 4Z : r Z , Z sd0

0 < 0 <5.16 g y z , d s f z g y z dz f d , z ,Ž . Ž . Ž .Ž .Ž . Hd 0 D 0½ 5� Ž . 4Z : r Z , Z sd0

defined for y g R, d g Rq and z g CC. We assume that, for every z g CC,0 0
0 Ž < .g ? d, z admits a continuously differentiable first derivative with respect toD 0

w x Ž .d g 0, h for some h ) 0. Also, in 5.13 , to stress the dependence on the
Ž .pivot z , we write the empirical d.f. as G y; b, z . Then we have the0 n, k 0n

following result.

THEOREM 5.1. Under the assumed regularity conditions on t , k andk n
Ž . Ž .f ? , g ? ,D D

1r25.17 sup sup sup k G y ; b, z y G y ; 0, z ª 0 as n ª `.Ž . Ž . Ž .n n , k n , k Pn n
ygRzgCC bgKK

OUTLINE OF THE PROOF. A relatively stronger result for the marginal
w Ž .xempirical d.f. is well known namely Sen and Ghosh 1972 . In that case, as
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Ž .k s n, the factor b9t in 5.11 may generally contribute a drift function inn i
Ž . Ž .5.17 . However, in the current conditional case, k s o n and the covariatesn
Z are i.i.d.r.v.’s, so that their clusterings around a pivot does not stochasti-i

Ž .cally affect the relative partitioning of the centered t ; thus, the drifti
Ž .function is null in the current case. Let us define the antiranks as in 5.7 ,

and, as they are constructed by reference to the pivot z , we write0

5.18 S z s S z , . . . , S z for every z g CC .Ž . Ž . Ž . Ž .� 4n 0 1 0 k 0 0n

Ž .Then we may rewrite 5.13 as
n

y1 0G y , b, z s k I i g S z I Y b F y ,Ž . Ž . Ž .Ž . Ž .Ýn , k n n nin5.19Ž . isl

y g R, b g KK, z g CC .

Let us also denote by

y1r2 < <U y ; b s G y q n b9t Z y G y Z ,Ž . Ž .Ž .ni i i i5.20Ž .
i s 1, . . . , n , b g KK, y g R.

Then, for every b g KK, z g CC and y g R, we have

1r2k G y ; b, z y G y ; 0, zŽ . Ž .n n , k n , kn n

n
y1r2s k I i g S z U y , bŽ . Ž .Ž .Ýn n ni

is1

n
y1r2 0q k I i g S z I Y b F yŽ . Ž .Ž . Ž .Ýn n ni

is1

5.21Ž .

0yI Y F y y U y ; b .Ž .Ž .i ni

Ž . Ž .Since the cardinality of S z is equal to k s o n , the first term on then n
Ž . ŽŽ y1 .1r2 . Ž .right-hand side of 5.21 is easily seen to be O n k s o 1 , while,p n p

conditional on the Z , we may use the central limit theorem on the secondi
Ž . Ž .term and show that it converges in law to a degenerate normal 0, 0

Ž .variable. Therefore, the left-hand side of 5.21 converges in probability to 0.
Ž .This shows that the finite-dimensional distributions of the p q q q 1 -

parameter stochastic process

0 1r2W y , b, z s k G y , b, z y G y , 0, z ,Ž . Ž . Ž .n n n , k n , kn n5.22Ž .
y g R, b g KK, z g CC ,

Ž . 0Ž .are all degenerate. Hence, to prove 5.17 , it remains only to show that W ?n
Ž pqqq1. 0Ž .is tight. If we define by TT s R = KK = CC a subset of R , then W ?n

w xbelongs to the space D TT . Thus, if we define two blocks, say BB and BB ,1 2
belonging to TT, which are not overlapping, then proceeding as in Bickel and

Ž . Ž .Wichura 1971 and using the decomposition in 5.21 , it can be shown that
the multiparameter Billingsley-type inequality holds for the increments

0Ž . 0Ž .W BB and W BB over these blocks. These, in turn, ensure the tightness.n 1 n 2
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0 w xTherefore, W ª to a null functional on D TT , and this completes the proofn DD
Ž .of 5.17 . I

Ž .Consider now the functional formulation of 5.9 , and, side by side, we
write

<5.23 T z ; b s u G ?b, z , b g KK, z g CC .Ž . Ž . Ž .Ž .n 0 n , k 0 0n

Ž . Ž .Assume that the functional u H is Hadamard or compact differentiable at
Ž < .G ?Z , uniformly in z g C; its Hadamard derivative agrees with the influ-0 0

Ž Ž < . .ence function which we denote by u G ?z , y for y g R and every z g CC.1 0 0
Ž .Since 5.9 relates to a location functional, from robustness considerations, it

may be quite appropriate to assume that this influence function is bounded
and monotone in y g R. Theorem 5.1 may then be readily incorporated to
show that, as n ª `,

1r25.24 sup k T z; b y T z, 0 : b g KK, z g CC ª 0.Ž . Ž . Ž .� 4n n n P

ˆ ˆ ˆ'Ž . ŽLet us now define the residuals Y as in 5.1 and note that b s n b yni n n
.b g KK, in probability, for a suitable compact KK. Therefore, if we let

ˆ ˆ5.25 T z s T z, b , z g CC ,Ž . Ž . Ž .n n n

Ž . Ž .then by virtue of 5.24 and 5.25 , we have, for n ª `,

ˆ'5.26 sup n T z y T z, 0 : z g CC ª 0.Ž . Ž . Ž .� 4n n P

Ž . Ž .On the other hand, the weak invariance principle in 5.10 applies to T z, 0 ,n
so that the same weak invariance principle holds for

ˆ ˆ5.27 W z s k T z y u z , z g CC .Ž . Ž . Ž . Ž .' Ž .n n n

Ž .The important feature of 5.27 is that the rate of convergence of the func-
tional estimators does not depend on an initial estimator of b, as long as the

'latter is n -consistent, and the intricate structure of the ANOVA]ANOCOVA
Model 2 and the i.i.d. nature of the covariates allow us to exploit this fully
with the aid of the estimators of b considered in Section 3.

6. Improved estimation of b in ANOCOVA Model 2. Theorem 4.1
reveals that, in general, the ANOVA model based estimator of b is not fully

Žefficient relative to the ANOCOVA Model 2 estimators based on the common
.score function . This picture becomes even more complex in the case where

Ž < . Ž .the d.f. G ?z may violate the homogeneity with respect to z andror the
linearity of the regression on the covariates. Faced with the basic fact that
Ž .u z , z g CC, is an infinite-dimensional nuisance parameter, an optimal esti-

mator of b in this general model is rather difficult to construct. On the other
'hand, since the ANOVA based estimator of b is n -consistent and valid for

ANOCOVA Model 2, too, it may be incorporated in some way or other to yield
a better estimator of b. We intend to pursue such an estimator here.
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The basic idea is simple and is based on the stratification of the concomi-
tant vectors into a number of relatively homogeneous subsets and then
combining the ANOVA model based estimators from these subsets into a
pooled one. The very basic reason that this simple idea of pooling works out
well is that the covariates Z are themselves i.i.d.r.v.’s, independent of thei
design variates, so that their stratification does not affect the allocation of the
design vectors t beyond the normal chance variation level, while the errori
distributions within the strata become relatively more homogeneous and
thereby reduce the margin of errors for the estimates based on them. This
stratification may even be made data oriented. For example, if the Z are reali
valued, one may use the order statistics to define a number of nonoverlapping

Ž . qstrata intervals . We consider here the more general case CC g R and divide
CC into a number of nonoverlapping subsets, say CC , j s 1, . . . , M, where M isj
a fixed positive integer. While a few of these subsets may be partially

Ž q.unbounded namely, the frontier ones when CC s R , the rest of these are all
compact and convex. Let there be n observations in the subset CC , j sj j
1, . . . , M. Generally, the n are stochastic, but under fairly general regularityj
conditions, we may assume that

M

6.1 n rn ª r : 0 - r - 1, 1 F j F M , r s 1.Ž . Ýj j j j
js1

Treat these n as nonstochastic and, pertaining to the subset CC , frame anj j
ˆŽ . Ž .ANOVA model and use an RRS estimator as in 2.7 ; we term it b f forn, j

Ž . Ž .j s 1, . . . , M. Subject to 6.1 , the verification of the classical Anscombe 1952
uniform continuity in probability condition can be carried out as in Sen
Ž . Ž .1981 , Chapter 10, so that, parallel to 4.5 , we would have here

y2 2 y1ˆ6.2 n b f y b ª NN 0, k A Q , j s 1, . . . , M ,Ž . Ž .' Ž .ž /j n , j DD p 0 j f t t

where A2 , Q are defined as before,f t t

1 y16.3 k s h H u df u , j s 1, . . . , M ,Ž . Ž . Ž .Ž .H0 j j h
0

Ž .and H ? is the error d.f. pertaining to the set CC for j s 1, . . . , M. Moreover,j j
Ž .for each j, the Jureckova 1992 linearity of RRS processes can readily be˘ ´

incorporated to estimate the k consistently, and these estimators are0 j
denoted by k , j s 1, . . . , M. We introduce a set of nonnegative weights:ˆ0 j

M
2 26.4 w s n k n k , j s 1, . . . , M .Ž . ˆ ˆÝn j j 0 j r 0 rž /

rs1

The pooled estimator of b is then proposed as

M
Uˆ ˆ6.5 b f s w b f .Ž . Ž . Ž .Ýn n j n , j

js1
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2 M 2 Ž . Ž .Defining k* s Ý r k , we have from 6.1 , 6.2 and by some standardjs1 j 0 j
steps that, as n ª `,

U U 22 y1ˆ'6.6 n b f y b ª NN 0, A rk Q .Ž . Ž .Ž . ž /ž /n DD f t t

Ž . Ž .Comparing 4.5 and 6.6 , we obtain that

ˆ ˆ 2 26.7 ARE b* f ; b f s k* rk ,Ž . Ž . Ž . Ž .Ž . 0

Ž M .2 2which is bounded from below by Ý r k rk . Therefore, whenever thejs1 j 0 j 0
Ž . M Ž .densities h ? satisfy the basic condition that Ý r k G k , 6.7 is boundedj js1 j 0 j 0

Ž .from below by 1. As in Section 4, we may introduce the score functions c u ,j
Ž . ² :y g 0, 1 , corresponding to the densities h , and write k s f, c , j sj 0 j j

1, . . . , M. Then, under the heteroscedastic and some other related models, it
² : ² : Ž .can be shown that f, c G f, c for every j s 1, . . . , M, so that 6.7j h

remains bounded from below by 1. If M is chosen large and the individual rj
Ž .small, then the increase in the ARE in 6.7 is perceptible even more, but this

may also invite a comparatively larger sample size to justify the adequacy of
Ž .the asymptotics on which 6.7 is based. In any case, the proposed pooled

estimator remains relevant for ANOCOVA Model 2 as well.

Acknowledgments. The author is grateful to the reviewers for their
valuable comments on the manuscript and to Dr. Antonio Pedroso de Lima
for his help in preparing the LaTeX version.

REFERENCES

Ž .ANSCOME, F. J. 1952 . Large sample theory of sequential estimation. Proc. Cambridge Philos.
Soc. 48 600]607.

Ž .BHATTACHARYA, P. K. and GANGOPADHYAY, A. K. 1990 . Kernel and nearest neighbor estimation
of a conditional quantile. Ann. Statist. 18 1400]1415.

Ž .BICKEL, P. J. and WICHURA, M. J. 1971 . Convergence criteria for multiparameter stochastic
processes and some applications. Ann. Math. Statist. 42 1656]1670.
Ž .DOKSUM, K. 1969 . Starshaped transformations and power of rank tests. Ann. Math. Statist. 40

1167]1176.
Ž .GANGOPADHYAY, A. K. and SEN, P. K. 1992 . Contiguity in nonparametric estimation of a

Žconditional functional. In Nonparametric Statistics and Related Topics A. K. M. E.
.Saleh, ed. 141]162. North-Holland, Amsterdam.

Ž .GANGOPADHYAY, A. K. and SEN, P. K. 1993 . Contiguity in Bahadur-type representations of a
conditional quantile and application in conditional quantile processes. In Statistics

Žand Probability, a Raghu Raj Bahadur Festschrift J. K. Ghosh, S. K. Mitra, K. R.
.Parthasarathy and B. L. S. Prakasa Rao, eds. 219]231. Wiley Eastern, New Delhi.

Ž .GHOSH, M. and SEN, P. K. 1971 . On a class of rank order tests for regression with partially
informed stochastic predictors. Ann. Math. Statist. 42 650]661.

Ž .GUTENBRUNNER, C. and JURECKOVA, J. 1992 . Regression rank scores and regression quantiles.˘ ´
Ann. Statist. 20 305]330.

˘ Ž .HAJEK, J. and SIDAK, Z. 1967 . Theory of Rank Tests. Academia, Prague.´ ´
Ž .JURECKOVA, J. 1992 . Estimation in a linear model based on regression rank scores. J. Non-˘ ´

paramet. Statist. 1 197]203.
Ž .JURECKOVA, J. and SEN, P. K. 1993 . Asymptotic equivalence of regression rank scores estima-˘ ´

tors and R-estimators in linear models. In Statistics and Probability, a Raghu Raj
ŽBahadur Festschrift J. K. Ghosh, S. K. Mitra, K. R. Parthasarathy and B. L. S.

.Prakasa Rao, eds. 279]291. Wiley Eastern, New Delhi.



REGRESSION RANK ESTIMATION IN ANOCOVA 1601

Ž .JURECKOVA, J. and SEN, P. K. 1996 . Robust Statistical Procedures: Asymptotics and Interrela-˘ ´
tions. Wiley, New York.

Ž .KOENKER, R. and BASSETT, G. 1978 . Regression quantiles. Econometrica 46 33]50.
Ž .PURI, M. L. and SEN, P. K. 1985 . Nonparametric Methods in General Linear Models. Wiley,

New York.
Ž .SEN, P. K. 1981 . Sequential Nonparametrics: Invariance Principles and Statistical Inference.

Wiley, New York.
Ž .SEN, P. K. 1993a . Regression rank scores estimation in ANOCOVA. Technical Report 2117,

Institute of Statistics, Univ. North Carolina.
Ž .SEN, P. K. 1993b . Perspectives in multivariate nonparametrics: conditional functionals and

ANOCOVA models. Sankhya Ser. A 55 516]532.
Ž .SEN, P. K. 1994 . Regression quantiles in nonparametric regression. J. Nonparamet. Statist. 3
237]253.

Ž .SEN, P. K. and GHOSH, M. 1972 . On strong convergence of regression rank statistics. Sankhya
Ser. A. 34 335]348.

DEPARTMENTS OF BIOSTATISTICS AND STATISTICS

UNIVERSITY OF NORTH CAROLINA

CHAPEL HILL, NORTH CAROLINA 27599-7400
E-MAIL: pksen@sphrax.sph.unc.edu


