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CONVERGENCE OF DEPTH CONTOURS FOR
MULTIVARIATE DATASETS

By Xuming He1 and Gang Wang2

University of Illinois and DePaul University

Contours of depth often provide a good geometrical understanding of
the structure of a multivariate dataset. They are also useful in robust
statistics in connection with generalized medians and data ordering. If the
data constitute a random sample from a spherical or elliptic distribution,
the depth contours are generally required to converge to spherical or ellip-
tical shapes. We consider contour constructions based on a notion of data
depth and prove a uniform contour convergence theorem under verifiable
conditions on the depth measure. Applications to several existing depth
measures discussed in the literature are also considered.

1. Introduction. The notion of data depth is not new. It is indeed one
of the fundamental issues in multivariate data analysis. Tukey (1975) put
forward a measure of data ordering as follows. The depth of a point x in a one-
dimensional dataset �x1; x2; : : : ; xn� is the minimum of the number of data
points on one side of x. The higher-dimensional depth of a point is the smallest
depth in any one-dimensional projection of the dataset. The main idea of data
depth is to provide an ordering of all points from a center outward. Contours
of depth are often used to reveal the shape and structure of a multivariate
dataset. These contours are analogous to quantiles in the univariate case, and
they permit computation of L-estimators of location-scatter parameters (such
as trimmed means). Recent studies of data depth that are affine invariant
include Liu (1990), Donoho and Gasko (1992), Nolan (1992), Liu and Singh
(1993), Massé and Theodorescu (1994) and Koshevoy and Mosler (1996) among
others. Unlike the univariate case, multivariate ordering can be defined in
different ways, but the following two requirements are usually desirable. First,
for samples from certain class of distributions such as the elliptic ones, the
depth contours should track the contours of the underlying model. Second,
the contours should not be greatly influenced by outliers in the dataset. For
example, contours based on the distance �x−X̄n�′S−1

n �x−X̄n�, where X̄n and
Sn are the sample mean and covariance matrix, are usually not reliable as
they can be fooled easily by a single outlier. The zonoid depth of Koshevoy and
Mosler (1996) centers around X̄n, and therefore has the same pitfall.

There have also been studies of multivariate median and related notation
of depth without imposing affine invariance. For example, the spatial median
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is only rotation equivariant. The confidence balls considered in Beran (1996)
can be viewed as a type of depth contours that are defined on specific scales.
However, we take the view that if a depth measure is to be constructed for a
general purpose in multivariate data analysis, it is desirable that it can track
the natural elliptic contours if the data constitute a random sample from an
elliptic distribution.

It is intuitively clear that the contour convergence follows from convergence
of depth. The technicalities involved however are not always trivial. The pur-
pose of the present paper is to rigorously formalize such connections. We show
that uniform convergence of depth contours is indeed verifiable by uniform
convergence of the depth measure on any compact set.

The rest of the paper is organized as follows. In Section 2 we introduce a
rather general notion of data depth and investigate the analytic and geomet-
ric properties for various depth related objects, all of which are preliminary
to our main result on contour convergence. Convergence to elliptic contours
is emphasized throughout. Section 3 considers applications to several useful
depth measures. The Appendix provides detailed proofs.

2. Preliminaries and main results. Let �x1; x2; : : : ; xn� be a sample
of size n from a p-variate distribution F. We consider any depth measure
Dn�xyx1; x2; : : : ; xn� ≡ Dn�x� for x ∈ Rp that satisfies the following conditions
(D1) and (D2). A relaxation of the convexity condition in (D1) will be discussed
in Example 3.2.

(D1) The set On
c = �xx Dn�x� ≥ c� is convex and closed almost surely for

any c and n.
(D2) limn→∞ Dn�x� = D�x� almost surely for each x.

For the convenience of presentation, we assume the following.

(D3) The contours of D�x� are in the form of �xx e�x� = c� for some e�x�.
For each n, let xn1 ; : : : ; x

n
n be ordered by the corresponding depths Dn�xn1� ≥

· · · ≥ Dn�xnn�, Then, the αth depth contour can be constructed by

�2:1� δ∗�α� = �xx Dn�x� = Dn�xn�αn���:

Let µ̂n be any point with the largest depth, that is, Dn�µ̂n� = maxxDn�x�.
The set

�2:2� Sn�α� = �x x Dn�x� ≥ Dn�xn�αn���

contains �αn� data points closest to µ̂n.
For any e�x� specified in (D3), define

�2:3� δα = �xx e�x� = q�α��; Sα = �xx e�x� ≤ q�α��
for each α ∈ �0;1�, where q�α� is determined by P�Sα� = α.

Depth contours are often used to understand or discover some underlying
features from the data. Elliptic symmetry is one such feature that we can look
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for, as it would allow for more convenient modeling. If F is an elliptic distri-
bution with location-scatter parameter �µ;6�, that is, it has density function
of the form

�2:4� f�x� = �6�−1/2g��x− µ�′6−1�x− µ��;
where µ ∈ Rp, 6 is a p × p positive definite matrix and g is a univariate
function, we have natural elliptic contours for the distribution. To be more
specific, take

�2:5� e�x� = �x− µ�′6−1�x− µ�:
In this case, δα is the αth elliptic contour, and then the conditions (D2) and
(D3) provide the basis for elliptic contour convergence.

If depth measures that are of only rotation invariance are of interest, we
expect convergence of δ∗�α� to spherical contours under spherically symmetric
distributions with e�x� = ��x − µ��. In the rest of the paper, we focus on the
uniform convergence to elliptic contours under the models (2.4) and with e�x�
specified in (2.5) above. We note that only minor modifications are needed if
convergence to spherical or other classes of contours is considered.

Remark 1. The depth contour δ∗�α� as defined by (2.1) can be a p-
dimensional region inRp, whereas the true contour δα is a �p−1�-dimensional
surface. However, if we take the depth contour to be the boundary of Sn�α�,
which is also �p− 1�-dimensional, all our results will remain valid.

To prove contour convergence, we need to strengthen the conditions (D2)
and (D3) by the following conditions (D4) and (D5), respectively.

(D4) On any compact set C ⊂ Rp ,

�2:6� lim
n→∞

sup
x∈C
�Dn�x� −D�x�� = 0 a.s.

(D5) D�x� is a strictly monotone function of e�x�, which implies that for
any c > 0,

�2:7� P�xx D�x� = c� = 0:

In some applications, the convergence of Dn�x� is actually uniform on Rp.
But (2.6) is often easier to verify. For the rest of the section, we also assume
without loss of generality that Dn�x� is nonnegative for each x.

Let Oc = �xx D�x� ≥ c�. First, we need to understand some basic properties
of D�x� and Oc by the following lemmas. Note that the closedness of On

c for
any c is equivalent to upper semi-continuity of Dn�x�, namely

�2:8� lim
r→0

sup
y∈B�x; r�

Dn�y� = Dn�x�

for any x, where B�x; r� = �yx �x− y� < r�.
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Lemma 1. Under the conditions (D1)–(D3), Oc is convex, and D�x� =
h�e�x�� for some nonincreasing function h. Furthermore, with condition (D4),
Oc is closed for any c, and h is left continuous.

Under (D5), we have Sα = Oh�q�α��. We now show that Sn�α� approximates
Sα as n→∞. Denote by � the sample space.

Lemma 2. Suppose that an and bn are two sequences of random variables
such that for some random variable a taking values on �0;∞�, an → a and
bn → a on a positive measure subset of the sample space S ⊂ � as n → ∞.
Then under the conditions (2.6) and (2.7), P�On

an
4Obn

� → 0 almost surely on
the set S, where A 4 B = �A ∪ B� \ �A ∩ B�, the symmetric difference of two
sets.

Lemma 3. Suppose that (D1), (D4) and (D5) are satisfied and the density
function f�x� is everywhere positive. Then limn→∞Dn�xn�αn�� = h�q�α�� uni-
formly in α ∈ �0;1�.

Lemma 4. Under the conditions of Lemma 3, for any c > c′ > 0, almost
surely there exists N = N�c; c′� such that ∪n≥NOn

c ⊂ Oc′ . In particular, the
above sets are bounded almost surely.

Our main result is now given as follows.

Theorem 1. Under the conditions (D1), (D3) and (D4), (D5) holds if and
only if for any α ∈ �0;1� and ε > 0, there exists δ > 0 such that as n→∞,

�2:9� Sα−ε ⊂ On
Dn�xn�αn��+δ ⊂ O

n
Dn�xn�αn��−δ ⊂ Sα+ε a.s.

Furthermore, (D5) implies that the convergence in (2.9) is uniform in α ∈ �0; α0�
for any α0 < 1.

As a consequence, we have for every ε > 0 and α0 < 1, as n→∞,

�2:10� δ∗�α� ⊂ Sα+ε \Sα−ε a.s.

uniformly in α ∈ �0; α0� under conditions (D1), (D4) and (D5). It also implies
that the deepest point µ̂n is an consistent estimator of µ.

Remark 2. Looking dizzy at first glance, (2.9) simply means that the depth
contour which contains �αn� deepest data points contains Sα−ε even when it
is made a little smaller, and is contained by Sα+ε even when it is made a little
larger. Given here as a necessary and sufficient condition for (D5), (2.9) is
just to indicate that the former is almost necessary for contour convergence.
But examples show that (D5) is not necessary for (2.10). Note that the sample
contours are invariant under any monotone transformation ofDn�x�. For some
versions of Dn, the limiting function h satisfying D�x� = h�e�x�� can be flat
on e�x� ∈ �c1; c2�.



DEPTH CONTOURS 499

Remark 3. For contour approximations (2.10) to be uniform in all α ∈
�0;1�, condition (D4) needs to be strengthened to uniform convergence of depth
in the whole space Rp. Consider an example where Dn�x� is non-stochastic. It
is equal to D�x� = �1+ e�x��−1 everywhere except on the strips �xx i ≤ e�x� ≤
i+ a�n; i�� on which it equals the value of D�x� when e�x� = i (i = 1;2; : : :�.
We choose a�n; i� to be such that a�n; i� → 0 as n→∞ for each fixed i, but the
convergence is more and more slowly as i increases. In this case, conditions
(D1)–(D5) are met, but (2.10) is not uniform for larger α.

3. Applications and examples. In this section, several types of affine
invariant measures of depth are considered. Some are generated by location-
scatter estimates, while the others are based on some specific depth measures
found in the literature. In most cases, the uniform consistency of Dn�x� is
the hardest to check. It has to be done for each depth in consideration. The
main contribution of Theorem 1 is to make convergence of contours directly
verifiable through the depth.

Example 3.1. Contours generated by location-scatter estimates. Based
on an elliptic model distribution (2.4), any consistent and affine equivariant
location-scatter estimate �µ̂n; 6̂n� of �µ;6� will automatically provide an
ordering of points by r2

n�x� = �x− µ̂n�′6̂−1
n �x− µ̂�: Let Dn�x� = �1+ r2

n�x��−1:
It is then straightforward to verify that conditions (D1)–(D5) are sat-
isfied with D�x� = �1 + e�x��−1. Equivalently, the resulting contour
δ̂n�α� = �xx r2

n�x� = r2
n;�αn�� converges to the αth elliptic contour, where

r2
n;1 ≤ r2

n;2 ≤ · · · ≤ r2
n;n are the ordered sequence of �r2

n�xi��.
Note that using different scatter matrix estimators that differ only by a

multiplicative constant has no effects on the depth contours here. Therefore
we have Theorem 2.

Theorem 2. If �µ̂n; 6̂� → �µ; c6� almost surely as n→∞ for some constant

c > 0, then for any ε ∈ �0; α�, δ̂n�α� ⊂ Sα+ε \Sα−ε for sufficiently large n.

Even when the form of g in (2.4) is unknown, a class ofM-estimators can be
utilized to give desirable location-scatter estimates. An M-estimator of �µ;6�
is the solution of

n∑
i=1

v1�ei��xi − µ� = 0;

n∑
i=1

�v2�ei��xi − µ��xi − µ�′ − 6� = 0;

where v1 and v2 are properly chosen real-value functions on �0;∞� and ei =
�xi−µ�′6−1�xi−µ�. By choosing the vi �i = 1;2� functions for consistency at a
fixed distribution, say the multivariate normal, the resulting estimate satisfies
the assumption of Theorem 2 at any elliptic distribution; see Maronna (1976)
for details.
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TheM-estimators are little affected by a small number of gross errors in the
dataset. Parameter estimates that are highly robust against multiple outliers
are also available; see Rousseeuw and Leroy (1987) and Davies (1987) for a
class of S-estimators.

Example 3.2 (Data depth based on U-statistics). A class of depth mea-
sures can be defined through U-statistics of the form

�3:1� Dn�x� = average�h�xyxi1; : : : ; xim��;
where the average is taken over all subsets of size m from �1;2; : : : ; n�, and
m is a fixed integer.

Oja (1983) considered a special case where h is the volume of the simplex
formed by x and m = p of the data points. More generally, if h is a contin-
uous and convex function of x, then condition (D1) is satisfied. Arcones and
Giné (1992) considered the uniform convergence of Dn. As a result, contour
convergence can be easily verified.

One notable exception to the convexity requirement of (D1) is the simpli-
cial depth of Liu (1990) with h taken to be the indicator function of �x ∈
S�xi1; : : : ; xip+1

��, where S�xi1; : : : ; xip+1
� is the (closed) simplex formed by the

p+1 data points. Liu (1990) showed that the convergence of Dn�x� to D�x� is
uniform in x, but the set On

c is not necessarily convex. However, if a point x
has depth Dn�x� = a, then there must be a convex set around x as intersec-
tions of simplices over which Dn remains constant at a. This means that On

c

must be a union of convex sets formed by halfspaces. By a well known result
of Vapnik and Červonenkis [(1971), page 266]; see also Lemma 6.6 of Arcones
and Giné (1992)], we know that the total number of convex sets formed by
halfspaces is less than �p+1�np2

. The same proof in the Appendix shows that
(D4) and (D5) imply (2.9). This is because (A.2) holds uniformly over all sets
in the form of On

c [see Theorem 2 of Vapnik and Červonenkis (1971)].

Example 3.3 (Projection depth). Donoho and Gasko (1992) discussed
Tukey’s notion of depth based on a one-dimensional projection. In our notation,
the depth measure corresponds to nDn�x� = min�#�ix u′xi ≤ u′x�x �u� = 1�:
Using the half-space metric, Donoho and Gasko (1992) showed that Dn�x�
converges uniformly to 5�x� = infuP�Hu;x� where Hu;x is the half space
�yx u′y ≤ u′x�. They also verified our condition (D1). Contour convergence
for this depth measure has been studied by Nolan (1992). Uniform contour
convergence would follow from Theorem 1.

The contour construction generated by location-scatter estimates is essen-
tially based on a continuous “outlyingness” measure. It produces exact ellip-
soids as depth contours. They are specially geared for datasets with ellipsoidal
symmetry. Depth measures like the simplicial depth and projection depth are
discrete for a given sample of size n, and they are nonparametric in nature.
Such depth contours track the shape of the datasets and remain informative
in a broader range of problems.
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It is of special interest that the deepest point, µ̂n, serves as a generalized
version of a multivariate median. There is a vast literature in this direction;
see Rousseeuw and Leroy (1987), Arcones, Chen and Giné (1994), Bose and
Chaudhuri (1993), just to mention a few. A global measure of insensitivity of
the median estimate against data contamination is the so-called breakdown
point. Write D�xyF� as the limiting depth measure if the underlying distri-
bution is F, and µ�F� as the maximizer of D�xyF� over x ∈ Rp. Then the
breakdown point of µ�F�, the estimating functional, at the model distribution
F0 can be formulated as

ε∗ = sup�ε > 0; sup
G

�µ��1− ε�F0 + εG�� <∞�:

The breakdown point of the projection method (Example 3.3) is limited to
1/3, since 5�x� achieves its maximum at x = x0 when F = 2/3F0 + 1/3G
with G putting point mass at the point x0 that can be arbitrarily remote.
Donoho and Gasko (1992) gave the same bound for a finite sample version of
the breakdown point. The breakdown point of the center estimate based on
the simplicial depth is still unknown but believed to be positive and dimension
dependent. An argument was given in Niinimaa, Oja and Tableman (1990),
which indicates that the Oja median has a functional breakdown point of
zero. The breakdown points of the location-scatter parameter estimates as we
mentioned in Example 3.1, have been well studied in the robust statistics
literature and will not be pursued here.

APPENDIX

Proofs. We prove the results in Sections 2 when F and e�x� are in the
forms of (2.4) and (2.5) respectively. The ideas of the proofs extend to more
general settings.

Proof of Lemma 1. First, we show that Oc is convex. For any x1, x2 ∈ Oc,
consider x0 = λx1 + �1 − λ�x2 for 0 < λ < 1. By (D2), for any ε > 0, we have
xi ∈ On

c−ε, i = 1, 2 for sufficiently large n. By convexity of On
c−ε, x0 ∈ On

c−ε,
and therefore D�x0� ≥ c− 2ε. Letting ε→ 0 yields x0 ∈ Oc.

Under the additional assumption of �D4�, similar arguments show that Oc

is closed.
By (D3), D�x� = h�e�x�� for some function h. To see that h is nonincreasing,

let e�x1� > e�x2�. Because �xx e�x� = e�x1�� ⊂ OD�x1� and Oc is convex for any
c, we have x2 ∈ �xx e�x� ≤ e�x1�� ⊂ OD�x1�. Hence, h�e�x2�� = D�x2� ≥ D�x1� =
h�e�x1��.

To show h is left continuous, let yn ↑ y. Then h�yn� ≥ h�y−�. Choose
a sequence xn ∈ Rp such that e�xn� = yn and xn → x, where e�x� = y.
Then, xn ∈ Oh�y−� for all n. Because Oh�y−� is closed, we have x ∈ Oh�y−�,
and thus, h�y� = D�x� ≥ h�y−�: Since h is nonincreasing, it follows that
h�y� = h�y−�: 2
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Proof of Lemma 2. Observe by (2.6) that

∞⋂
n=1

∞⋃
N=n

ON
aN
1ObN

= �xx x ∈ On
an
1Obn

; n; infinitely often�

= �xx �Dn�x� ≥ an�1�D�x� ≥ bn�; n; infinitely often�
= �xx �Dn�x�≥an;D�x�<bn�∪�Dn�x�<an;D�x�≥bn�;

n; infinitely often�
⊂ �xx D�x� = a�

for almost all ω ∈ S. Therefore, P�∪∞N=nON
aN
1ObN

� → 0 on S almost surely by
(2.7). 2

Proof of Lemma 3. First note that q�α� is a strictly increasing and con-
tinuous function of α since P�xx e�x� ≤ α� is. We will show for any convergent
sequence αn→ α and ε > 0,

�A:1� lim inf Dn�xn�αnn�� ≥ h�q�α+ ε�� a.s.

By a well-known theorem of Vapnik and Červonenkis (1971),

�A:2� sup
S convex

�Pn�S� −P�S�� → 0 a.s.;

where Pn is the empirical distribution given by Pn�A� = �1/n�#�ix Xi ∈ A�:
Let cn = Dn�xn�αnn��, and S = �ω ∈ �x cn < h�q�αn + ε��, for infinitely many

n�. It suffices to show P�S� = 0. We only need to consider α, αn ∈ �0;1 − ε�.
If P�S� > 0, we have by (D1) and (A.2) that P�On

cn
� → α, since Pn�On

cn
� =

�αnn�/n→ α almost surely on S.
For each ω ∈ S, we can choose a subsequence nk such that cnk is monotonely

convergent to c∞ ≤ h�q�α+ε��. By Lemma 2,P�Onk
cnk
1Ocnk

� → 0, which implies
P�xx D�x� ≥ c∞� = α almost surely on S. But this cannot be true as we have
P�xx D�x� ≥ c∞� ≥ P�xx e�x� ≤ q�α + ε�� = α + ε: The proof of (A.1) is
complete.

Similarly, we can show that lim sup cn ≤ h�q�α− ε�� almost surely. Lemma
3 follows. 2

Proof of Lemma 4. It suffices to consider c < D�µ�. By Lemma 1, Oc′ is
a compact set. Thus by (D4), for ε = min�D�µ�− c; �c− c′�/3�, there exists an
integer N such that n ≥N implies

�A:3� sup
Oc′
�Dn�x� −D�x�� ≤ ε:

If x ∈ On
c ∩�Oc′ \Oc−2ε� for some n ≥N, then Dn�x�−D�x� ≥ c−�c−2ε� > ε,

contradicting (A.3). So by convexity and by the fact that µ ∈ On
c ∩Oc−2ε for all

n ≥N, we obtain On
c ⊂ Oc−2ε ⊂ Oc′ , for n ≥N. 2
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Proof of Theorem 1. First, we prove (2.9) under (D1)–(D5). Let

δ = 1
2

min
{
h�q�α− ε�� − h�q�α− ε

2
��; h

(
q

(
α+ ε

2

))
− h

(
q

(
α+ ε

))}
:

By (D5), we have δ > 0. As in the proof of Lemma 3, write cn = Dn�xn�αn��. By
(D4) and Lemma 3, there exists an integer N such that as n ≥N,

�A:4� sup
Sα

∣∣Dn�x� −D�x�
∣∣ ≤ δ;

and

�A:5� h�q�α+ ε/2�� ≤ cn ≤ h�q�α− ε/2��
uniformly in α ∈ �0; α0�.

To show that Sα−ε ⊂ On
cn+δ for n ≥ N, let x ∈ Sα−ε ⊂ Sα. Then D�x� ≥

h�q�α− ε�� and by (A.4) and (A.5),

Dn�x� ≥ D�x� − δ ≥ h�q�α− ε�� −
1
2

(
h�q�α− ε�� − h

(
q

(
α− ε

2

)))

≥ cn +
1
2

(
h�q�α− ε�� − h

(
q

(
α− ε

2

)))

≥ cn + δ;
which means that x ∈ On

cn+δ.
To show On

cn−δ ⊂ Sα+ε as n → ∞, we only need to consider α + ε < 1. By
Lemma 4, we can find an integer N′ such that for n ≥ N′, (A.5) holds and
supQε

∣∣Dn�x� −D�x�
∣∣ ≤ δ, where Qε = ∪n≥N′On

h�q�α+ε/2��−δ. Thus by (A.5), for
n ≥N′,
�A:6�

∣∣Dn�x� −D�x�
∣∣ ≤ δ:

for all x ∈ On
cn−δ.

Let n ≥ N′ and x ∈ On
cn−δ, then (A.6) implies that D�x� ≥ h�q�α + ε��, or

e�x� ≤ q�α+ ε�. Therefore, On
cn−δ ⊂ Sα+ε.

Now, (2.9) implies that as n→∞,

�A:7� �xx Dn�x� = cn� ⊂ �xx cn − δ ≤ Dn�x� < cn + δ� ⊂ Sα+ε \Sα−ε a.s.;

and therefore, limn→∞P�δ∗�α� ⊂ Sα+ε \Sα−ε� = 1 almost surely.
Next, we shall show that (D5) is necessary for (2.9).
Assume that h is a constant C on �q�α − 2ε�; q�α + 2ε�� for some α and

ε > 0. As n→∞, (D4) implies

�A:8� sup
Sα+2ε

∣∣Dn�x� −D�x�
∣∣ ≤ δ

2
a.s.

By (A.7), q�α−ε� ≤ e�xn�αn�� ≤ q�α+ε� and thus D�xn�αn�� = C for sufficiently
large n. Moreover, we have On

cn−δ \ O
n
cn+δ ⊂ Sα+2ε. Thus, (A.8) implies that

�C−cn� < δ/2. Consequently, for x ∈ �xx q�α−2ε� ≤ e�x� ≤ q�α+2ε�� ⊂ Sα+2ε,
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we have D�x� = C and �Dn�x� − cn� ≤ �Dn�x� −D�x�� + �D�x� − cn� < δ for
sufficiently large n, which, together with (A.7), implies

Sα+2ε \Sα−2ε = �xx q�α− 2ε� < e�x� ≤ q�α+ 2ε��
⊂ �xx cn − δ ≤ Dn�x� < cn + δ� ⊂ Sα+ε \Sα−ε;

an obvious contradiction. The proof is then complete. 2
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Massé, J. C. and Theodorescu, R. (1994). Halfplane trimming for bivariate distributions.

J. Multivariate Anal. 48 188–202.
Niinimaa, A., Oja, H. and Tableman, M. (1990). The finite-sample breakdown point of the Oja

bivariate median and of the corresponding half-samples version. Statist. Probab. Lett.
10 325–328.

Nolan, D. (1992). Asymptotics for multivariate trimming. Stochastic Process. Appl. 42 157–169.
Oja, H. (1983). Descriptive statistics for multivariate distributions. Statist. Probab. Lett. 1 327–

332.
Rousseeuw, P. J. and Leroy, A. M. (1987). Robust Regression and Outlier Detection. Wiley, New

York.
Tukey, J. W. (1975). Mathematics and picturing data. Proceedings of International Congress of

Mathematicians, Vancouver 2 523–531.
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