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MODELING THROUGH GROUP INVARIANCE:
AN INTERESTING EXAMPLE WITH POTENTIAL APPLICATIONS

BY HENG LI1

University of Rochester

A particular linear group symmetry model, called the dyadic symmetry
model, is studied in some detail. Statistical procedures analogous to (multi-
variate) analysis of variance are introduced. This model may be suitable for
various kinds of data collected on pairs of sampling units. Examples include
(complete) diallel cross experiments in genetics and social relations analysis
in psychology, for which ad hoc methods of analysis have been developed
independently in those disciplines.

Our approach is based entirely on formal data structure following the
principle of group symmetry, and hence its applicability is not restricted to
any specific substantive areas. This paper illustrates the benefits that can be
derived from the exploration of mathematical meanings in the development
of statistical methods.

1. Introduction. This paper illustrates through an example the potential wide
applicability of the group symmetry (GS) models and linear group symmetry
(LGS) models formulated in Andersson and Madsen (1998) [henceforth, AM
(1998)]. The example concerns the prototypical layout of a kind of data structure
which is not only mathematically interesting in its own right, but also relevant in
diverse substantive fields. In this section we describe the model that will be dealt
with in this paper, both in its purely mathematical form using the notation and
terminology in AM (1998), and in a language more vernacular to statistics. Since
the model belongs to the class of LGS models, it is most natural to specify it by
locating it within that class; and this calls for a recapitulation of the essentials of
AM’s (1998) conceptualization of LGS models, which will be carried out below.
The following paragraph may be viewed as excerpted from AM (1998), to which
the reader is referred for more information.

Let I be a finite set, R
I be the vector space of all families x = {xh | h ∈ I } of real

numbers indexed by I . Let M(I), GL(I), O(I) and P (I) denote the set of all I×I

matrices, the group of all nonsingular I × I matrices, the group of all orthogonal
I × I matrices, and the cone of all positive definite I × I matrices, respectively.
Let G be a finite group and ρ :G → O(I) be an orthogonal group representation
of G on R

I . Let PG(I) denote the set of all positive definite I × I matrices that
are G-invariant, that is, PG(I)= {� |� ∈ P (I), ρ(π)�ρ(π)′ =� ∀π ∈ G}.
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Let MG(I) denote the set of all I × I matrices that commute with ρ(G), that is,
MG(I) = {A | A ∈ M(I), ρ(π)A = Aρ(π) ∀π ∈ G}. Let L ⊆ R

I be an MG(I)-
subspace, that is, a subspace satisfying MG(I)L= L.

The set of normal distributions

{N(ξ,�) | (ξ,�) ∈ L× PG(I)}(1.1)

on R
I is called a linear group symmetry (LGS) model on R

I determined by L, G
and ρ.

With the above definition in place, we can now specify the particular LGS model
this paper deals with, by specifying I , G, ρ and L. Let U be a finite set containing
u elements. The index set I is specified to be I = U ×U . Let the group G be the
symmetric group on U . Denote the elements in I by pairs of lower case letters,
such as ij , with i ∈ U and j ∈ U , so that a vector x in R

I can be expressed as
{xij | ij ∈ I }, and an I × I matrix A can be expressed as {Aij,kl | ij ∈ I, kl ∈ I }.
Under this notation, we can specify ρ as

{
ρ(π)ij,kl = 1, if i = g(k), j = g(l),
ρ(π)ij,kl = 0, otherwise.(1.2)

Finally, let ediag be a vector in R
I with e

diag
ij = 1 if i = j and e

diag
ij = 0 if i �= j ;

eoff be a vector in R
I with eoff

ij = 1 if i �= j and eoff
ij = 0 if i = j . The vectors ediag

and eoff span L. This completes the specification of our model, which will be given
the name dyadic symmetry model. Henceforth, the symbols I , G, ρ and L will be
used as defined in the current paragraph, and u will be assumed to be greater than 3,
except in a brief discussion of the situations when u≤ 3.

The dyadic symmetry model can be a suitable candidate for modeling the
situations in which measurements are made on pairs of units. Let U be a set
of u units, yij denote the measurement made on the pair consisting of distinct
units i and j , zii denote the measurement made on the pair formed by the same
unit i, and x denote the u2-dimensional vector of measurements on all the possible
pairs of units. It is conventional in statistics to represent those measurements
by arranging them in a square table whose row and column headings consist
of labels for the same set of units, 1, . . . , u, in ascending order. Here we use
integers to label units in order to simplify notation. It will become clear later that
using different letters to denote the “diagonal” and “off-diagonal” measurements
(in their tabular representation) is not only notationally but also conceptually
advantageous. Henceforth, the vector of u(u − 1) “off-diagonal” measurements
is denoted by y and the vector of u “diagonal” measurements is denoted by z,
so that x can also be considered as (y, z). Now if we consider the units in U to
be exchangeable, then any probability distribution postulated for the observation
vector x in R

I = R
U×U should be invariant under G in the sense that x and

ρ(π)x should have the same distribution. The dyadic symmetry model follows



MODELING THROUGH GROUP INVARIANCE 1071

from the additional distributional assumption of normality, since it is precisely the
collection of all the normal distributions on R

I = R
U×U that are invariant under G.

The data structure as described above closely parallels the kind of factorial
models discussed in McCullagh (2000). Indeed, it is an immediate extension of
the data structure considered in Li’s (2000) discussion of McCullagh (2000), by
the inclusion of the “diagonal” measurements. Therefore it is natural to expect
that results on the dyadic symmetry model documented in this paper would have
applications in at least some of the substantive areas mentioned in McCullagh
(2000) and Li (2000). The layout in the dyadic symmetry model may remind us
of another class of models involving pairs of units, namely those related to the
method of paired comparisons [David (1988)]. A fundamental distinction exists,
however, in their emphasis: the former is essentially a method of summarizing
an aggregate of units, whereas the latter are more concerned with comparing
individual units.

Having defined the dyadic symmetry model from both mathematical and
statistical perspectives, the objective of the rest of this paper is to study some
specific properties of this model. In Section 2 the likelihood function will
be expressed as a product of χ2 and Wishart densities, under a particular
parameterization of the covariance structure in the dyadic symmetry model.

A latent variable model will be shown to give rise to a covariance structure that
has the same pattern as that of the dyadic symmetry model. Section 3 adapts results
in Section 2 to a submodel that has already arisen in practical situations. Arithmetic
expressions for the sufficient statistics will be provided in a form resembling
the usual sums of squares and cross products found in (multivariate) analysis of
variance, to facilitate potential application. Section 4 contains a few summarizing
and concluding remarks.

2. The covariance structure. We can characterize the pattern in the covari-
ance matrices in the dyadic symmetry model by giving a description of PG(I) as
a subset of R

I×I , that is, a subset of the set of all real functions on I × I . From this
perspective, PG(I) is the set of real functions on I × I which are symmetric, pos-
itive definite and constant on each orbit on I × I under the group action induced
by that of G on U . Table 1 lists all the orbits by their representative elements as
displayed in the first column. The symbols for the values of covariance on each
orbit are listed under the column “Covariance.”

A latent variable model giving rise to the covariance pattern in Table 1, and
hence justified in the sense of Dawid (1988), is

yij = ξoff +µy + gi + gj + sij + di − dj + rij ,
(2.1)

zii = ξdiag +µz + ai,

where ξdiag and ξoff are constants, and the rest of the terms are random variables
with mean 0 subject to the constraints sij = sj i and rij = −rj i . The g, d and a
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TABLE 1
Covariance structure

Parameters

Orbit Latent variable Covariance Canonical parameters

ij , ij σ 2
µy + 2σ 2

g + σ 2
s + 2σ 2

d + σ 2
r σ 2

y
λy−λs
u(u−1) + (u−2)(λs+λr )

2u + λg+λd
u

ij , kl σ 2
µy(= var(µy)) σ 2

y ρy0
λy−λs
u(u−1) + 2(λs−λg)

u(u−2)

j i, ij σ 2
µy + 2σ 2

g + σ 2
s − 2σ 2

d − σ 2
r σ 2

y ρy1
λy−λs
u(u−1) + (u−2)(λs−λr )

2u + λg−λd
u

ij , jk σ 2
µy + σ 2

g − σ 2
d σ 2

y ρy2
λy−λs
u(u−1) + (u−4)(λg−λs )

2u(u−2) + λr−λd
2u

ij , ik σ 2
µy + σ 2

g + 2σgd + σ 2
d σ 2

y ρy3
λy−λs
u(u−1) + (u−4)(λg−λs )

2u(u−2) + λd−λr
2u + λgd√

u(u−2)

ij , kj σ 2
µy + σ 2

g − 2σgd + σ 2
d σ 2

y ρy4
λy−λs
u(u−1) + (u−4)(λg−λs )

2u(u−2) + λd−λr
2u − λgd√

u(u−2)

ii, ii σ 2
µz + σ 2

a σ 2
z

(u−1)λa+λz
u

ii, jj σ 2
µz(= var(µz)) σ 2

z ρz0
λz−λa

u

ii, kl σµyz(= cov(µz,µy)) σyσzρzy0
λzy

u
√
u−1

−
√

2λag
u
√
u−2

ii, ij σµyz + σag + σad σyσzρzy1

√
u−2λag√

2N
+ λad√

2u
+ λzy

u
√
u−1

ii, ji σµyz + σag − σad σyσzρzy2

√
u−2λag√

2N
− λad√

2u
+ λzy

u
√
u−1

terms having the same subscript are allowed to be correlated with each other,
and so are µz and µy . When a member of PG(I) is induced by model (2.1),
the parameters in the former can be expressed in terms of those in the latter.
The column “Latent variable” in Table 1 contains expressions of the covariance
parameters in terms of the parameters in (2.1). In the next section we will explain
how the latent variable model (2.1) for the “off-diagonal” measurements yij
(i �= j ) is essentially the same as Model (b) in Cockerham and Weir (1977).
For the moment we only need to note that we inherit notation from Cockerham
and Weir (1977) for all the parameters that are common to their Model (b) and
our model (2.1), except for Cov(g, d), which we denote by σgd . The rest of the
parameters as they appear in the column “Latent variable” in Table 1 are annotated
parenthetically. Note that not all members of PG(I) can be induced by model (2.1),
due to the constraints the latter introduces by requiring that the covariance matrices
of the latent variables be nonnegative definite.

The set of covariance matrices as parameterized by the covariance and the
latent variable parameters in Table 1 is not straightforward to deal with directly
in the context of statistical analysis and inference. However, it can be written into
a form in which it is, using what we will call canonical parameters. The fourth
column of Table 1 defines a set of canonical parameters by expressing covariance
parameters as linear functions of those parameters, each of which is denoted by
the letter λ with a subscript. Since canonical parameters are linearly related to the
covariance parameters, the covariance matrices � in the dyadic symmetry model
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can be expressed in terms of the set of canonical parameters as follows:

� = λuzEuz + λuyEuy + λzy&zy

+ λaEa + λsEs + λrEr + λgEg + λdEd

+ λgd&gd + λad&ad + λag&ag,

(2.2)

where the E’s and &’s are known symmetric matrices numerically determined by
the expressions in the fourth column of Table 1. For example, the (j i, ij)th element
of Es can be obtained from Table 1 as follows: go to the row whose first column
is ji, ij and in the same row find the coefficient of λs in the fourth column, which
is u−2

2u − 1
u(u−1) . A specification of the E and & matrices in terms of irreducible

G-subspaces and bijective G-linear mappings will be given in the next paragraph.
For any � in the form of (2.2), the inverse of � has the following expression:

�−1 = ηuzEuz + ηuyEuy + ηzy&zy + λ−1
s Es + λ−1

r Er

+ ηaEa + ηgEg + ηdEd + ηgd&gd + ηad&ad + ηag&ag,
(2.3)

where

(gda =

 λg λgd λag
λgd λd λad
λag λad λa


 =


 ηg ηgd ηag
ηgd ηd ηad
ηag ηad ηa




−1

,

(zy =
(
λuy λzy
λzy λuz

)
=

(
ηuy ηzy
ηzy ηuz

)−1

.

Under the above notation, the determinant of � can be written as

|�| = λu(u−3)/2
s λ(u−1)(u−2)/2

r |(zy ||(gda|u−1.(2.4)

The matrix � in (2.2) is positive definite if and only if λs > 0, λr > 0, (zy is
positive definite, and (gda is positive definite. The above expressions are a direct
extension of Li (2000), and are directly verifiable. However, an interpretation of
those matrices in terms of group representation theory would make things more
transparent.

A central part in the definition of any GS or LGS model is the mapping ρ :G→
GL(RI ), which is a group representation of G on R

I . For the dyadic symmetry
model this mapping is given in (1.2). Under this particular representation, R

I as
a G-space can be decomposed into the direct sum of a set of seven mutually
orthogonal irreducible G-subspaces. The E matrices in (2.2) are the orthogonal
projections onto the set of seven mutually orthogonal irreducible G-subspaces to
be specified below. Subspace I, the range of Euz, is the one-dimensional space
spanned by {x :xii = 1 ∀ i, xij = 0 ∀ i �= j}; subspace II, the range of Euy , is the
one-dimensional space spanned by {x :xii = 0 ∀ i, xij = 1 ∀ i �= j}; subspace III,
the range of Ea , is the (u − 1)-dimensional space {x :

∑u
i=1 xii = 0, xij = 0

∀ i �= j}; subspace IV, the range of Es , is the u(u − 3)/2-dimensional space
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{x :xii = 0, xij = xji,
∑

k �=i xik = 0, ∀ i, j}; subspace V, the range of Er , is the
(u − 1)(u − 2)/2-dimensional space {x :xij = −xji ∀ i, j, ∑

j �=i xij = 0 ∀ i};
subspace VI, the range of Eg , is the (u − 1)-dimensional space {x :xii = 0 ∀ i,
xij = gi + gj ,

∑u
i=1 gi = 0}; subspace VII, the range of Ed , is the (u − 1)-

dimensional space {x :xij = di − dj ,
∑u

i=1 di = 0}.
Among the above set of irreducible G-subspaces, I and II are equivalent, and

III, VI, VII are also equivalent. Between those equivalent G-subspaces there are
bijective G-linear mappings [AM (1998)]. The & matrices in (2.2) play the dual
roles of both such bijective G-linear mappings and their inverses. For example,
&gd as a linear operator maps subspace VI (the range of Eg) onto subspace VII
(the range of Ed ), subspace VII onto subspace VI, all the other vectors to 0, and
commutes with ρ(π) for all π ∈ G; additionally, it is also an isometry (preserves
inner product), and satisfies the identities Eg&gd = &gdEd , Ed&gd = &gdEg ,
&2

gd =Eg +Ed and &3
gd =&gd .

The rest of the & matrices can be described in the same fashion in an obvious
way, with the subscripts indicating the subspaces involved. By definition all the &

matrices are G-invariant, and it is easily seen that all the E matrices are also
G-invariant. Those relations among E and & matrices, together with their
properties, lead directly to (2.3) and (2.4).

The G-space R
I can be decomposed into seven mutually orthogonal irreducible

G-subspaces as described in the previous paragraph only when u > 3, which is
the reason for the declaration of u > 3 made earlier in this paper. For u ≤ 3
the G-space R

I does not have as many irreducible components. When u = 3,
subspace IV is eliminated, leaving us with six mutually orthogonal irreducible
G-subspaces. When u = 2, subspaces IV, V, VI, VII collapse into a single one-
dimensional irreducible G-subspace, which is equivalent to subspace III, resulting
in four mutually orthogonal irreducible G-subspaces. Of course, R

I is one-
dimensional when u = 1, and therefore no decomposition is possible. Given the
above comments, the general results obtained for u > 3 are easily adapted to
handle the cases when u≤ 3.

Using (2.2), (2.3) and (2.4), the likelihood function for the realization x = (y, z)

of a random vector following the dyadic symmetry model can be expressed as

l(λs, λr ,(gda,(zy | y, z)
∝ λ−(u−1)(u−2)/4

r λ−u(u−3)/4
s |(gda|−(u−1)/2|(zy |−1/2

× exp
[
u

2

((
z.. − ξdiag)

,
√
(u−1)

(
y.. − ξoff))(−1

zy

( (
z.. − ξdiag)√

(u−1)
(
y.. − ξoff)

)]
(2.5)

× exp
(
− tr(Eryy

′)
2λr

)
exp

(
− tr(Esyy

′)
2λs

)
exp

(
−1

2
tr(−1

gdaS

)
,
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where

S =




tr(Egyy
′) 1

2 tr(&gdyy
′) 1

2 tr(&gayy′)
1
2 tr(&gdyy

′) tr(Edyy
′) 1

2 tr(&adyy′)
1
2 tr(&gayy

′) 1
2 tr(&adyy

′) tr(Eayy
′)


 ,

z.. = ∑u
i=1 zii/u, and y.. = ∑u

i �=j yij /[u(u − 1)]. The likelihood function (2.5) is
the product of four separate likelihood functions, corresponding to the parameters
λr , λs , (gda and ((zy, ξ

off, ξdiag), respectively. All of them should be sufficiently
familiar so that (2.5) can be viewed as readily applicable in practical situations.
Note that the parameters cannot be estimated via maximizing the likelihood (2.5),
because the multiplicative component of the likelihood involving (zy effectively
corresponds to a single realization of a bivariate normal random vector. Since
(zy is 2 × 2, we need at least 3 independent replicates of x in order to
obtain the maximum likelihood estimates for all the parameters. If (ξoff, ξdiag)

is constrained to be (0,0), then we only need at least 2 independent replicates
of x. Those conclusions can also be reached by invoking the general theorems
in AM (1998) using the concept of structure constants. In the next section we
look at a submodel of the dyadic symmetry model in which the parameters can be
estimated without independent replicates, and provide arithmetic expressions for
the quadratic sufficient statistics.

3. A useful submodel. To motivate the submodel, compare the “off-diagonal”
part of (2.1) to Model (b) in Cockerham and Weir [(1977), page 188]. Note that
the former becomes the latter if µy is set to 0. If we accordingly set µz to be 0,
then (2.1) becomes

yij = ξoff + gi + gj + sij + di − dj + rij ,
(3.1)

zii = ξdiag + ai,

which can be regarded as an extension of Cockerham and Weir’s (1977) Model (b)
“by including diagonal measurements.” When µz and µy are set to be 0, the
covariance parameters σ 2

y ρy0, σ 2
z ρz0 and σyσzρzy0 are all equal to 0, and this is

the submodel to be considered in this section.
From (2.5), the maximum likelihood estimators for ξoff and ξdiag are obviously

y.. and z.., respectively.
The parameters in the covariance structure, which are usually the focus of

interest, can be estimated via the marginal likelihood (or REML likelihood)
[Searle, Casella and McCulloch (1992), page 323] obtained by integrating out
ξoff and ξdiag, as given below:

l(λs, λr ,(gda | y, z)
∝ λ−(u−1)(u−2)/4

r λ−u(u−3)/4
s |(gda|−(u−1)/2(3.2)

× exp
(
− tr(Eryy

′)
2λr

)
exp

(
− tr(Esyy′)

2λs

)
exp

(
−1

2
tr(−1

gdaS

)
.
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Since σ 2
y ρy0, σ 2

z ρz0 and σyσzρzy0 are all equal to 0, there is a one-to-one linear
relation between the eight canonical parameters in the above marginal likelihood
and the eight nonzero covariance parameters. Consequently, inference on all the
nonzero covariance parameters can be based on the above marginal likelihood,
from which we obtain the following mutually independent sufficient statistics and
their distributions:

SSs = y′Esy = tr(Esyy
′)∼ λsχ

2
u(u−3)/2,

SSr = y′Ery = tr(Eryy
′)∼ λrχ

2
(u−1)(u−2)/2,

 SSg SCgd SCag

SCgd SSd SCad

SCag SCad SSa


 =




tr(Egyy
′) 1

2 tr(&gdyy
′) 1

2 tr(&gayy′)
1
2 tr(&gdyy

′) tr(Edyy
′) 1

2 tr(&adyy′)
1
2 tr(&gayy

′) 1
2 tr(&adyy

′) tr(Eayy
′)




∼ W((gda, u− 1).

(3.3)

Since these statistics are quadratic functions of data that can be arranged into
matrices having Wishart distributions, including the one-dimensional special case
of χ2 distributions, we call them sums of squares (SS, for diagonal terms in
a Wishart matrix) or cross products (SC, for off-diagonal terms in a Wishart
matrix), making use of the existing terminology in analysis of variance and
multivariate analysis. The maximum marginal likelihood (or REML) estimators for
the parameters λ’s, which are also unbiased, are the corresponding sums of squares
or cross products divided by their degrees of freedom, which will naturally be
called mean squares or cross products. Finally, this system of nomenclature leads
to the λ’s being called expected mean squares or cross products. The following
arithmetic expressions for the sufficient statistics provide further justification for
the nomenclature, since the averaging operations involved are exactly those usually
found in (multivariate) analysis of variance:

SSg = ∑
i �=j

{
1

2(u− 2)

(
yi+ + y+i + yj+ + y+j − 4

u
y++

)}2

,

SSd = ∑
i �=j

{
1

2u
(yi+ − y+i − yj+ + y+j )

}2

,

SSs = SSm − SSg,

SSr = SStotal,y − SSg − SSs − SSd,

SCgd = ∑
i �=j

1

2u
√
u(u− 2)

(yi+ − y+i − yj+ + y+j )(yi+ − y+j ),(3.4)

SSa = ∑
i

(
zii − 1

u
z++

)2

,
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SCag = 1√
2(u− 2)

∑
i

(
zii − 1

u
z++

)
(yi+ + y+i ),

SCad = 1√
2u

∑
i

zii(yi+ − y+i ),

where SSm is
∑

i �=j [(yij + yji)/2]2 − y2++/u(u − 1), and SStotal,y is the usual
total sum of squares of the off-diagonal observations. The + sign in the subscripts
indicates sum. Thus yi+ is a “row sum,” y+j is a “column sum,” and y++ is the
grand sum.

It should be noted that, while from the maximum likelihood estimates of the
canonical parameters we can obtain those of the covariance parameters via the
linear relations displayed in Table 1, there is no guarantee that those of the
parameters in the latent variable model (3.1) can also be obtained in this way.
The reason is that the parameter space of model (2.1) is a proper subset of that of
the dyadic symmetry model, and likewise the parameter space of model (3.1) is a
proper subset of that of the submodel defined by the three zero constraints. This
gives rise to what is essentially the problem of “negative estimates of variance
components.” Various strategies have been proposed to address this problem, and
most can be applied here. Given the theme of this paper, however, we will not
launch an in-depth discussion. The readers are referred to Box and Tiao (1973),
Searle, Casella and McCulloch (1992) and Rao (1997).

4. Concluding remarks. Results described in this paper are of interest from
both applied and theoretical perspectives. Theoretically, they demonstrate the ben-
efits of the precise mathematical formulation of a statistical model. Many impor-
tant features of our model are immediate consequences of the minimal and logical
assumption of exchangeability among units, and the group symmetry it implies.
For example, no matter how similar or different the “diagonal” measurements on
pairs of identical units are relative to the “off-diagonal” measurements on pairs of
distinct units, exactly the same group symmetry is generated, leading to the same
covariance structure and the same symmetry-based analyses. To be more concrete,
suppose the “off-diagonal” measurements are weights, symmetry-based statistical
modeling would be the same whether the “diagonal” measurements are heights or
weights. That is why we chose to use different letters to denote the “diagonal” and
the “off-diagonal” measurements. In fact, the same symmetry-based model applies
even when “diagonal” measurements are made on individual units instead of pairs;
of course in this case we would probably want to change the subscript “ii” to “i” in
the arithmetic expressions. Although those features seem to be platitude once they
are clearly spelled out, and may even be intelligible without using the concept of
symmetry, just as the additivity of sums of squares in an ordinary analysis of vari-
ance can be explained in terms of the nonmathematical notion of sources of vari-
ability, it is difficult to envision a better way to establish those properties than start-
ing from group symmetry based on exchangeability. As Dawid (1988) has pointed
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out, sometimes “. . . mere specification of relevant symmetry represents a premod-
eling phase from which many important consequences flow . . . one should con-
sider carefully one’s attitudes to the whole collection of observables and, in par-
ticular, consider what symmetries these attitudes should incorporate. This specifi-
cation alone is sufficient to support an extensive body of theory and methodology
for data-analysis and (if desired) appropriate model-building.” Dawid (1988) used
a standard analysis of variance to illustrate this point. This paper also serves to
bear it out, through a data structure which, although rather nonstandard relative
to any analysis of variance framework, is a typical linear group symmetry model,
and hence obeys the general theorems in AM (1998) and Andersson (1975). It is
straightforward to show that, under the basis formed by adjoining the orthonor-
mal bases of the irreducible G-subspaces, the covariance matrix (2.2) assumes the
block diagonal form given in Perlman (1987).

From the applied perspective, this paper extends some earlier results obtained
in several specific contexts substantively unrelated to each other. It extends
Cockerham and Weir’s (1977) results in at least two ways:

(i) by making the modeling and method of analysis applicable to the set of
measurements including both the “diagonal” ones and the “off-diagonal” ones,
and

(ii) by providing a closed form expression for the (residual) likelihood and
the exact joint distribution of a set of minimal sufficient statistics under the
assumption of multivariate normality. The inclusion of “diagonal” measurements
can be a significant extension, especially considering what has been noted above
about the flexibility in the interpretation of “diagonal” measurements in the group
invariance framework.

The closed form likelihood function would provide a basis for statistical
computations needed to address some of the complicating issues such as missing
data or constraints on the covariance parameters imposed by latent variable
models, by using the EM algorithm [Dempster, Laird and Rubin (1977)], its recent
extensions and improvements [Meng and Rubin (1991, 1993), Liu and Rubin
(1994), van Dyk, Meng and Rubin (1995), Meng and van Dyk (1997, 1998), Liu,
Rubin and Wu (1998), Oakes (1999)] or MCMC methods [e.g., Cappé and Robert
(2000)].

The exact joint distribution would make statistical inference concerning certain
parameters more accurate. It should be noted that the point estimates for the
covariance parameters associated with the “off-diagonal” measurements agree
with those provided in Cockerham and Weir (1977). Similar comments as above
can be made with regard to previous works in various areas in psychology such
as Lev and Kinder (1957), Bechtel (1967, 1971) and Warner, Kenny and Stoto
(1979), which was later developed into what is now called the Social Relations
Model [Kenny (1994)]. In general nonmathematical terms, the data structure
considered in this paper may arise in dealing with any phenomena which could
be characterized as dyadic, mutual, reciprocal, or relational; and whenever the
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basic data structure is conceptually relevant, its variations may help meet practical
constraints or increase design efficiency. What we have derived in the previous
sections could serve as prototypes for later development.

Perlman (1987) pointed out that specifying classes of statistical models based
on precise mathematical structure can be a fruitful endeavor. As an example
he cited Andersson’s characterization of analysis of variance models in terms
of the underlying lattice structure published in Andersson (1990). This paper
can be viewed as a fruit borne by another such specification, that of the GS
and LGS models [AM (1998)]. We have identified a model that has already
been used in practice and studied it at a level that does not seem to have been
reached previously, with primary results derived directly from the inherent group
symmetry in the model when it is related to an LGS model. In particular, we
have reaped new ANOVA-type and MANOVA-type arithmetics. The widespread
application of analysis of variance is often believed to be accounted for to some
extent by its instructive arithmetics, and the attendant regularities that can be
understood intuitively and foster a very powerful system of thinking not tied
to any specific substantive field. Results in this paper suggest that the above
features could be shared by some of the GS and LGS models not falling into any
current conceptualizations of analysis of variance. Considerable augmentation to
this collection of “standard’" statistical methods may be possible for substantive
areas to resort to in conceiving their scientific questions and implementing their
scientific investigations.

Acknowledgments. The author thanks Eric Loken, Robert Rosenthal and
Donald Rubin for helping with this research in various ways, at various points in
time. Thanks also to a referee and Associate Editor for their constructive comments
and suggestions.

Part of the research was presented at the VII Latin American Congress on
Probability and Mathematical Statistics (CLAPEM 98) thanks to an NSF travel
grant.

REFERENCES

ANDERSSON, S. A. (1975). Invariant normal models. Ann. Statist. 3 132–154.
ANDERSSON, S. A. (1990). The lattice structure of orthogonal linear-models and orthogonal variance

component models. Scand. J. Statist. 17 287–319.
ANDERSSON, S. A. and MADSEN, J. (1998). Symmetry and lattice conditional independence in

a multivariate normal distribution. Ann. Statist. 26 525–572.
BECHTEL, G. G. (1967). The analysis of variance and pairwise scaling. Psychometrika 32 47–65.
BECHTEL, G. G. (1971). A dual scaling analysis for paired compositions. Psychometrika 36 135–

154.
BOX, G. E. P. and TIAO, G. C. (1973). Bayesian Inference in Statistical Analysis. Addison-Wesley,

Reading, MA.
CAPPÉ, O. and ROBERT, C. P. (2000). Markov chain Monte Carlo: 10 years and still running! J. Amer.

Statist. Assoc. 95 1282–1286.



1080 H. LI

COCKERHAM, C. C. and WEIR, B. S. (1977). Quadratic analyses of reciprocal crosses. Biometrics
33 187–204.

DAVID, H. A. (1988). The Method of Paired Comparisons, 2nd ed. Griffin, London.
DAWID, A. P. (1988). Symmetry models and hypotheses for structured data layouts (with discussion).

J. Roy. Statist. Soc. Ser. B 50 1–34.
DEMPSTER, A. P., LAIRD, N. M. and RUBIN, D. B. (1977). Maximum likelihood estimation from

incomplete data via the EM algorithm (with discussion). J. Roy. Statist. Soc. Ser. B 39
1–38.

KENNY, D. A. (1994). Interpersonal Perception. Guilford, New York.
LEV, J. and KINDER, E. (1957). New analysis of variance formulas for treating data from mutually

paired subjects. Psychometrika 22 1–15.
LI, H. (2000). Comment on “Invariance and factorial models,” by P. McCullagh. J. Roy. Statist. Soc.

Ser. B 62 250–251.
LIU, C. and RUBIN, D. B. (1994). The ECME algorithm: a simple extension of EM and ECM with

faster monotone convergence. Biometrika 81 633–648.
LIU, C., RUBIN, D. B. and WU, Y. N. (1998). Parameter expansion to accelerate EM: The PX-EM

algorithm. Biometrika 85 755–770.
MCCULLAGH, P. (2000). Invariance and factorial models (with discussion). J. Roy. Statist. Soc. Ser. B

62 209–256.
MENG, X.-L. and RUBIN, D. B. (1991). Using the EM algorithm to obtain asymptotic variance-

covariance matrices: The SEM algorithm. J. Amer. Statist. Assoc. 86 899–909.
MENG, X.-L. and RUBIN, D. B. (1993). Maximum likelihood estimation via the ECM algorithm:

A general framework. Biometrika 80 267–278.
MENG, X.-L. and VAN DYK, D. A. (1997). The EM algorithm—an old folk song sung to a fast new

tune (with discussion). J. Roy. Statist. Soc. Ser. B 59 511–567.
MENG, X.-L. and VAN DYK, D. A. (1998). Fast EM-type implementations for mixed-effects models.

J. Roy. Statist. Soc. Ser. B 59 559–578.
OAKES, D. (1999). Direct calculation of the information matrix via the EM algorithm. J. Roy. Statist.

Soc. Ser. B 61 479–482.
PERLMAN, M. D. (1987). Group symmetry models. Comment on “A review of multivariate analysis,”

by M. J. Schervish. Statist. Sci. 2 421–425.
RAO, P. S. R. S. (1997). Variance Components Estimation. Chapman and Hall, London.
SEARLE, S. R., CASELLA, G. and MCCULLOCH, C. E. (1992). Variance Components. Wiley, New

York.
VAN DYK, D. A., MENG X.-L. and RUBIN, D. B. (1995). Maximum likelihood estimation via the

ECM algorithm: computing the asymptotic variance. Statist. Sinica 5 55–75.
WARNER, R. M., KENNY, D. A. and STOTO, M. (1979). A new round robin analysis of variance for

social interaction data. J. Personality Soc. Psych. 37 1742–1757.

DEPARTMENT OF BIOSTATISTICS

UNIVERSITY OF ROCHESTER

601 ELMWOOD AVENUE, BOX 630
ROCHESTER, NEW YORK 14642
E-MAIL: liheng@bst.rochester.edu


