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REGRESSION M-ESTIMATORS WITH
DOUBLY CENSORED DATA

BY JIAN-JIAN REN1 AND MINGGAO GU2

Tulane University and McGill University

The M-estimators are proposed for the linear regression model with
random design when the response observations are doubly censored. The
proposed estimators are constructed as some functional of a Campbell-type

ˆestimator F for a bivariate distribution function based on data which aren
doubly censored in one coordinate. We establish strong uniform consis-

ˆtency and asymptotic normality of F and derive the asymptotic normalityn
of the proposed regression M-estimators through verifying their Hadamard
differentiability property. As corollaries, we show that our results on the
proposed M-estimators also apply to other types of data such as uncen-
sored observations, bivariate observations under univariate right censor-
ing, bivariate right-censored observations, and so on. Computation of the
proposed regression M-estimators is discussed and the method is applied
to a doubly censored data set, which was encountered in a recent study on
the age-dependent growth rate of primary breast cancer.

1. Introduction. When statisticians are interested in modeling the life-
time distribution under consideration as a function of some covariate, the
following linear regression model is one of the most widely used tools in
statistical analysis:

1.1 X s a q T b q e , i s 1, . . . , n ,Ž . i i i

Ž .where X are the lifetime random variables r.v. , T are the covariatei i
Ž .variables which are independent and identically distributed i.i.d. with d.f.

F , e are the i.i.d. error variables with zero mean, T and e are independentT i i i
Ž . 2and a , b g R is the regression parameter to be estimated. One may note

Ž .that in model 1.1 , X ’s are i.i.d. random variables with a common d.f. F .i X
There are many well-developed theories for this model and computer soft-
ware is available when complete data are observed. However, in medical
follow-up and reliability studies, incomplete data are frequently encountered,
which demand new methods so that regression models can be properly used
to analyze lifetime data. The right-censored linear regression model has been

Ž . Ž .studied by Buckley and James 1979 , Koul, Susarla and Van Ryzin 1981 ,
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Ž . Ž . Ž . Ž .Leurgans 1987 , Ritov 1990 , Lai and Ying 1991 , Zhou 1992 and others.
Ž .In Lai and Ying 1994 , the linear regression model with left-truncated and

right-censored response variables is considered. Recently, Zhang and Li
Ž .1996 extended Buckley]James]Ritov-type regression estimators from the
right-censored case to the doubly censored case. In this paper, we consider
the doubly censored linear regression model; that is, the response variables

Ž .X ’s in model 1.1 are doubly censored, and we construct our regressioni
Ž .estimators in a different way from that in Zhang and Li 1996 .

� 4 Ž .To be precise, in this study one does not observe X in model 1.1 , but ai
doubly censored sample:

X , if Z - X F Y , d s 1,¡ i i i i i~Y , if X ) Y , d s 2,1.2 V s i s 1, . . . , n ,Ž . i i i ii ¢Z , if X F Z , d s 3,i i i i

Ž . Ž .where independent from X , Z , Y are i.i.d. realizations of Z, Y withi i i
� 4P Z - Y s 1, and Y and Z are called right and left censoring variables,i i

Ž .respectively. Examples of the doubly censored sample 1.2 encountered in
Ž . Ž .practice have been given by Gehan 1965 , Turnbull 1974 and others. In

Ž .particular, doubly censored data 1.2 occured in a recent study on the
wage-dependent growth rate of primary breast cancer Peer, Van Dijck, Hen-

Ž .xdriks, Holland and Verbeek 1993 . In our study of the linear regression
Ž .model 1.1 , we consider the case that the covariate r.v.’s T are observablei

Ž .and they are independent from the censoring variables Y , Z . The problemi i
Ž . Ž . Ž .considered here is to estimate a , b in 1.1 based on V , d , T , 1 F i F n.i i i

Ž .To construct an M-estimator of a , b , we note that when there is no
Ž . Ž .censoring, the robust M-estimator a , b for model 1.1 is given as then n

solution of the following equations:
n n

1.3 c X y u y T u s 0 and T c X y u y T u s 0,Ž . Ž . Ž .Ý Ýi 1 i 2 i i 1 i 2
is1 is1

w Ž .x Ž .where c is the score function Huber 1981 . In particular, if c x s x, the
Ž . Ž .solution of 1.3 is the least squares estimator LSE . If we denote the

Ž .empirical d.f. of X , T , 1 F i F n, asi i

n1
� 41.4 F x , t s I X F x , T F t ,Ž . Ž . Ýn i in is1

Ž .then 1.3 is equivalent to

c x y u y u t dF x , t s 0 andŽ . Ž .HH 1 2 n

1.5Ž .
tc x y u y u t dF x , t s 0.Ž . Ž .HH 1 2 n

Ž . Ž .Hence, if we define a functional t ? at F as the solution of 1.5 , then wen
ˆŽ . Ž .have a , b s t F . Naturally, if an estimator F for the joint d.f. F ofn n n n
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Ž . Ž .X , T based on V , d , T , 1 F i F n, is available, then the generalizedi i i i i
ˆ ˆŽ . Ž . Ž .M-estimator for 1.1 may be constructed by a , b s t F .ˆn n n

In this context and for its importance in its own right, a Campbell-type
ˆ w Ž .xestimator F Campbell 1981 for the bivariate distribution function ofn

Ž . Ž .X , T based on data V , d , T , 1 F i F n, is constructed and studied ini i i i i
Section 2, where we also establish strong uniform consistency and asymptotic

ˆnormality of F , with the proofs deferred to Section 5. In Section 3, we shown
Ž . Ž . Žthat the functional t ? defined by 1.5 is Hadamard differentiable the proofs

.are deferred to Section 6 and that the asymptotic normality of the proposed
ˆ ˆŽ .M-estimator t F follows from the asymptotic normality of F . As corollaries,n n

we also show in Section 3 that our results on the proposed M-estimators
apply to other types of data, such as uncensored data, bivariate observations

w Ž .xunder univariate right censoring Lin and Ying 1993 , bivariate right-
w Ž .xcensored observations Dabrowska 1988 , and so on. Section 4 discusses the

computation of the proposed M-estimator and applies the proposed regres-
sion M-estimators to a doubly censored data set encountered in the study of

Žprimary breast cancer Peer, Van Dijck, Hendriks, Holland and Verbeek,
.1993 .

One may note that with some modifications in the proofs, the results
Ž .established in this paper can be extended to p-dimensional p ) 1 linear

regression models when the covariate variables are observable and the
response variables are doubly censored.

One may also note that the independence condition between the covariate
Ž .variable T and the censoring variable Y , Z is not required in Zhang and Lii i i

Ž .1996 . This condition is needed here because we construct our regression
ˆestimators through some functional of a bivariate distribution estimator Fn

Ž .for the distribution of X , T . Usually, when one wants to estimate thei i
bivariate distribution with censored data, for identifiability reasons it has to

Ž .be assumed that the censored vector is independent of X , T . For reference,i i
Ž .see Stute 1993 who considered such an estimation problem when X is righti

censored. The advantage of our functional plug-in method for constructing
the regression estimators is that it is easily applicable to different types of
censored data; this will be discussed in Section 3.

2. Bivariate distribution function estimator. The distribution of the
underlying lifetime is often of special interest when incomplete data are
observed. In the right-censored case, the product limit estimator of Kaplan

Ž .and Meier 1958 has been generally accepted as a substitute for the empiri-
cal distribution function, since it is the nonparametric maximum likelihood

Ž . w Ž . xestimator NPMLE Cox and Oakes 1984 , page 48 and possesses the
w Ž .x wproperties of self-consistency Efron 1967 , asymptotic normality Breslow

Ž . Ž .x w Ž .xand Crowley 1974 ; Gill 1983 , and asymptotic efficiency Wellner 1982 .
In the doubly censored case, it has been shown that all these properties are
also possessed by the NPMLE or the self-consistent estimators. See Mykland

Ž .and Ren 1996 on the NPMLE and the self-consistent estimators, see Chang
Ž . Ž .1990 or Gu and Zhang 1993 on the asymptotic normality and see Gu and
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Ž .Zhang 1993 on the asymptotic efficiency. Other related work can be found in
Ž . Ž . Ž .Groeneboom 1987 , Samuelsen 1989 and Ren 1995 , among others.

However, for the problems using bivariate observations which may be
incomplete either in one coordinate or in both, the direct use of the self-con-
sistent estimator often leads to computationally and analytically intractable
problems. One way to handle such a problem is to use the conditional

Ž .distribution approach, which was applied by Campbell 1981 to estimate the
bivariate distribution when the bivariate observations are possibly right,
censored in both coordinates. In our study here, we consider the problem of
estimating the bivariate distribution when one coordinate is subject to double

Ž .censoring as expressed in 1.2 . An immediate application of this study is the
Ž .linear regression model 1.1 , which is discussed in Section 1 and Section 3. In

the following, we will construct our estimator using the conditional distribu-
tion approach and will establish the strong uniform consistency and the
asymptotic normality of the proposed estimator.

Ž .Using observations V , d , T , 1 F i F n, which are described in Section 1,i i i
ˆ Ž .we construct the estimator F for the bivariate d.f. F of X , T through then i i

conditional self-consistent estimating equation for doubly censored data.
Ž j.Ž .First, we observe that for any fixed t and j s 1, 2, 3, if we denote Q x ast

� 4 Ž .the conditional distribution P V F x, d s j ¬ T F t and F x as the condi-t
� 4 Ž . Ž .tional distribution P X F x ¬ T F t , then from 2.7 of Gu and Zhang 1993

we have

1 y F x F xŽ . Ž .t tŽ0. Ž2. Ž3.2.1 F x s Q x y dQ u q dQ u ,Ž . Ž . Ž . Ž . Ž .H Ht t t t1 y F u F uŽ . Ž .uFx x-ut t

Ž0.Ž . � 4 3 Ž j.Ž . � 4where Q x s P V F x ¬ T F t s Ý Q x . By multiplying P T F t ont js1 t
Ž .both sides of 2.1 , we obtain

S x , tŽ .
Ž0. Ž2.F x , t s Q x , t y Q du, tŽ . Ž . Ž .H S u , tŽ .uFx

2.2Ž .
F x , tŽ .

Ž3.q Q du, t ,Ž .H F u , tŽ .x-u

Ž . Ž . Ž . Ž j.Ž . � 4where S x, t s F `, t y F x, t and Q x, t s P V F x, d s j, T F t , j s
Ž0.Ž . � 4 3 Ž j.Ž .1, 2, 3, with Q x, t s P V F x, T F t s Ý Q x, t . Thus, if we denotejs1

n1
Ž j. � 4Q x , t s I V F x , d s j, T F t , j s 1, 2, 3,Ž . Ýn i i in is1

Ž j. Ž j. ˆ ˆQ x s Q x , t rG t , j s 1, 2, 3 with G t ) 0,Ž . Ž . Ž . Ž .n , t n n n2.3Ž .
3 3

Ž0. Ž j. Ž0. Ž j.Q x , t s Q x , t and Q x s Q x ,Ž . Ž . Ž . Ž .Ý Ýn n n , t n , t
js1 js1

ˆ y1 nŽ . � 4 Ž .where G t s n Ý I T F t is the empirical d.f. of T , . . . , T , 2.1 impliesn is1 i 1 n
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ˆthat for each fixed t, an estimator F for the conditional distribution F isn, t t
given by a solution of the following equation:

ˆ1 y F xŽ .n , tŽ0. Ž2.F̂ x s Q x y dQ uŽ . Ž . Ž .Hn , t n , t n , tˆ1 y F uuFx Ž .n , t

F̂ xŽ .n , t Ž3.q dQ u .Ž .H n , tF̂ ux-u Ž .n , t

2.4Ž .

ˆNaturally, an estimator F for F is given byn

ˆ ˆ ˆ2.5 F x , t s F x G t ,Ž . Ž . Ž . Ž .n n , t n

Ž .which, based on 2.2 , is equivalent to a solution of the following equation:
S x , tŽ .nŽ0. Ž2.F̂ x , t s Q x , t y Q du, tŽ . Ž . Ž .Hn n nS u , tŽ .uFx n

F̂ x , tŽ .n Ž3.q Q du, t ,Ž .H nF̂ u , tx-u Ž .n

2.6Ž .

where
ˆ ˆ2.7 S x , t s G t y F x , t ,Ž . Ž . Ž . Ž .n n n

ˆ ˆ ˆŽ . Ž . Ž . w Ž . xand the convention H s 0 H s 0 if G t s F x, t F x, t s 0 isuF x x - u n n n
adopted.

ˆThe proposed estimator F may be obtained numerically using the methodn
Ž .in Mykland and Ren 1996 . Detailed discussion on this is given in Section 4,

Ž .where we show that a solution of 2.6 satisfies
n k k k y 1ˆ � 42.8 F x , t s a y a I V F x , T F t ,Ž . Ž . Ý Ýn k i ky1, i i kž /n nks1 is1

where T F ??? F T and a G 0 are constants determined by the sample1 n k i
Ž .V , d , T , i s 1, . . . , n. In this work, we will always impose the followingi i i

ˆ Ž .condition on the solution F of 2.6 : for any t,n

QŽ2. du, tŽ .nŽ2. ˆQ a t y , t s G t ,Ž . Ž .Ž . Hn n n S u , tŽ .Ž .u-a t nn

QŽ3. du, tŽ .nŽ3. Ž3. ˆQ `, t y Q b t , t s G t ,Ž . Ž . Ž .Ž . Hn n n n ˆŽ . F u , tb t -u Ž .n n

2.9Ž .

Ž . � 4 Ž . �where a t s min V ; d s 1 or 3, T F t and b t s max V ; d s 1 or 2,n i i i n i i
4T F t . This condition is motivated by the conditional NPMLE for F , and onei t

Ž . Ž .may see 2.5 of Gu and Zhang 1993 for a similar condition for the NPMLE
of F .X

ˆTo state our asymptotic results on the proposed estimator F , we introducen
some notation. Denote F , F , F and F as the d.f.’s of X, Y, Z and T,X Y Z T
respectively, and denote

K x s F x y F x ,Ž . Ž . Ž .Z Y
2.10Ž .

a s sup x ¬ F x s 0 and b s inf x ¬ F x s 1 ,� 4 � 4Ž . Ž .X X
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Ž .then from 1.2 we have

� 4 Ž1.K x y s P d s 1 ¬ X s x , Q dx , t s K x y F dx , t ,Ž . Ž . Ž . Ž .
2.11Ž . Ž2. Ž3.Q dx , t s S x , t dF x , Q dx , t s F x , t dF x .Ž . Ž . Ž . Ž . Ž . Ž .Y Z

5 5 5 5Throughout this paper, ? stands for the supremum norm and ? stands2
2 Ž .for the Euclidean norm in R , where R s y`, ` . The following theorem

ˆestablishes the strong uniform consistency of F under the assumptionn

� 4K x y s P d s 1 ¬ X s x ) 0Ž .
for x g x ¬ F x ) 0, F x y - 1 ,� 4Ž . Ž .X X

2.12Ž .

with the proof deferred to Section 5, where the results in the one-dimensional
Ž .case by Gu and Zhang 1993 are used.

ˆŽ . Ž .THEOREM 2.1. Suppose that 2.12 holds. Then for a solution F of 2.6n
ˆŽ . 5 5satisfying 2.9 , F y F ª 0 a.s., as n ª `.n

To establish the weak convergence of the bivariate distribution estimator
F̂ , we denote for a G y` and b F `, j s 1, 2,n j j

w x w xM a , b = a , bŽ .1 1 2 2

w x w xs H ¬ H : a , b = a , b ª R corresponds to� 1 1 2 22.13Ž .
a finite signed measure on R2 ,4

Ž Žw x w x 5 5. Žw xand consider the Banace space M a , b = a , b , ? , where M a , b1 1 2 2 1 1
w x. Žw x w x.= a , b is the closure of M a , b = a , b . One may note that since2 2 1 1 2 2

ˆ ˆw Ž .xF is not necessarily a proper d.f. for a fixed t Mykland and Ren 1996 , Fn, t n
Ž .given by 2.5 is not necessarily a proper bivariate d.f., and that based on

ˆŽ . Žw x w x.2.8 , M a , b = a , b contains F as an element. For our study, we1 1 2 2 n
further define the following Banach spaces:

5 5w xD a, b = R , ?Ž .Ž .0

w xs h g M a, b = R ¬ F x , t s 0 « h x , t s 0,Ž . Ž .Ž .�
S x y , t s 0 « h x y , t s 0 ,Ž . Ž . 4

5 5w xD a, b = R , ?Ž .Ž .KK

5 5 5 5w xs h ¬ Kh g M a, b = R , h s Kh ,Ž .� 4 K2.14Ž .
3 5 5D , ?Ž .30

w xs h g M m M m M ¬ B h g D a, b = R , h , h , hŽ .Ž .½ 5F 0 1 2 3 3

3

5 5s h ,Ý j
js1
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where for any H satisfying

w xH g S s H g M a, b = R ¬ there exists a d.f. H t� Ž .Ž . 2

such that for any fixed t and2.15Ž .
H x s H x , t rH t , H x rH ` is a d.f.4Ž . Ž . Ž . Ž . Ž .t 2 t t

and
2.16 S x , t s H t y H x , tŽ . Ž . Ž . Ž .H 2

and linear operators A , B , R and K are defined byH H H

S x , tŽ .H
A h x , t s y h u , t dF uŽ . Ž . Ž . Ž .HH YS u , tŽ .uFx H

H x , tŽ .
y h u , t dF u ,Ž . Ž .H ZH u , tŽ .x-u

R s K y A , K h x , t s K x h x , t ,Ž . Ž . Ž . Ž .H H2.17Ž .
3 S x , tŽ .H

B h , h , h x , t s h x , t y h du, tŽ . Ž . Ž . Ž .Ž . Ý HH 1 2 3 j 2S u , tŽ .uFx Hjs1

H x , tŽ .
q h du, t .Ž .H 3H u , tŽ .x-u

One may note that integration by parts should be used above whenever
necessary, and that the domains of these operators include all bounded
measurable functions, while those of A and R will be extended under theH H
condition of our Theorem 2.2. In this work, all Banach spaces are equipped
with the s-field generated by all open balls, and random elements and weak

wŽ . xconvergence are defined as in Pollard 1984 , page 65 .
Ž . Ž .Based on 2.15 and 2.16 , it is easy to see that we have F g S with

ˆŽ . Ž . Ž . Ž . Ž . Ž .S x, t s S x, t s F t y F x, t and F s S with S x, t s S x, t sˆF T n F nn

ˆ ˆŽ . Ž . Ž . Ž .G t y F x, t . Thus, 2.2 and 2.6 can be expressed as F s B Q andn n F
F̂ s B Q , respectively, whereˆn F nn

Q s QŽ1. , QŽ2. , QŽ3. and Q s QŽ1. , QŽ2. , QŽ3. .Ž . Ž .n n n n

From some tedious calculation, we obtain
hnˆ ˆ ˆF y F s B Q y Q q A F y F q 1 y K F y F q ,Ž . Ž .Ž . Ž .ˆ ˆn F n F n nn n 'n

where

S x , tŽ .nˆ'h x , t s n G t y F t y 1 dF u .Ž . Ž . Ž . Ž .Hn n T YS u , tŽ .uFx n

Hence, we have
2.18 R j s B W q h ,Ž . ˆ ˆF n F n nn n

where

ˆ' '2.19 j s n F y F and W s n Q y Q .Ž . Ž .Ž .n n n n
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Ž . Ž .Because W is the empirical process, by 2.9 , we have B Q y Q gn F n
Žw x .D a, b = R and as n ª `,0

2.20 W ª W where W is a centered Gaussian process in D3 .Ž . n D 0

It is also easy to see that

2.21 h ª h as n ª `,Ž . n D

Ž . Ž . wŽ Ž . Ž .. x Ž .where h x, t s G t H S x, t rS u, t y 1 dF u and G is the limit-T uF x Y T

ˆ' w xing Gaussian process of n G y F .n T

ˆ Ž . Ž .THEOREM 2.2. Let F be a solution of 2.6 such that either 2.9 holds orn
ˆŽ . Žw x . Ž .F y F g D a, b = R . Suppose that 2.12 holds andn 0

dF u dF uŽ . Ž .Y Z
2.22 lim q s 0.Ž . H H½ 5K u K utª0 Ž . Ž .Ž . Ž .0-F u , ` -t 0-S u , ` -t

Then Ry1, the inverse of R , exists and is a bounded linear operator fromF F
Žw x . Žw x .D a, b = R to D a, b = R , and as n ª `,0 K

y1ˆ' w xn F y F s j ª j s R B W q h in D a, b = R ,Ž . Ž .Ž .n n D F F K

Ž . Ž .where W and h are given in 2.20 and 2.21 , respectively, and

w xP B W q h s R j g D a, b = R s 1.� 4Ž .F F 0

The proof of Theorem 2.2 is given in Section 5.

ˆ Ž . Ž .COROLLARY 2.1. Let F be a solution of 2.6 . If inf K x y ) 0,n x gw a, b x
then as n ª `,

y1 w xj ª j s R B W q h in M a, b = R .Ž . Ž .n D F F

3. Regression M-estimators. In Section 1, we used the functional plug-
ˆ ˆŽ . Ž .in method to construct an M-estimator a , b s t F for the regressionˆn n n

ˆŽ . Ž . Ž .parameter a , b in model 1.1 , where F given by 2.6 is the bivariate d.f.n
Ž .estimator for the d.f. F of X , T based on doubly censored observationsi i

Ž . Ž . Ž .V , d , T , 1 F i F n, and t ? is a statistical functional defined by 1.5 . To bei i i
Ž .precise, we consider the case that the covariate variable T in model 1.1 hasi

w x Žw x w x.a compact support 0, c , 0 - c - `, and for M s M a, b = 0, c , the func-0
tional t : M ª R2 is defined as the root of the following equations:0

c x y u y u t dH x , t s 0,Ž . Ž .HH 1 2

tc x y u y u t dH x , t s 0, H g M ,Ž . Ž .HH 1 2 0
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which can be denoted equivalently as

C u , H ' c x y uTt t dH x , t s 0Ž . Ž . Ž .HH
3.1Ž .

T Tfor t s 1, t , u s u , u , H g M ,Ž . Ž .1 2 0

Ž . w x w xwhere the integration is defined on x, t g a, b = 0, c for a, b given by
Ž .2.10 , and this applies in this section and in Section 6 unless the region of
the integration is specified. As follows, we derive the asymptotic normality of

ˆŽ .the regression M-estimator t F through the Hadamard differentiabilityn
Ž .property of the functional t ? .

The asymptotic normality of a statistical functional via the Hadamard
Ž .derivative for univariate observations has been studied by Reeds 1976 and

Ž . Ž .Fernholz 1983 and for multivariate observations by Ren and Sen 1995 . In
these studies, the empirical distribution functions are used. A more general
limiting distribution theory based on the weak convergence of the random
elements in Banach space is given in Andersen, Borgan, Gill and Keiding
Ž .1993 . In our current study, since we consider the incomplete data, the
empirical d.f.’s are not applicable. Thus, we will derive the asymptotic nor-

ˆŽ .mality of t F using the general limiting theory given in Andersen, Borgan,n
Ž .Gill and Keiding 1993 . Specifically, we will verify the Hadamard differen-

Ž . Xtiability condition of t ? , derive its Hadamard derivative t and obtain theF
ˆ X ˆŽ .asymptotic normality of t F from t and the weak convergence of F .n F n

Ž .First, we need to investigate the existence of the solution of 3.1 for our
ˆ Ž .bivariate d.f. estimator F given by 2.6 . We note that if the score function cn

is the derivative of some nonnegative convex function r, that is, rX s c , then
Ž .for any bivariate d.f. F, 3.1 is equivalent to the minimization problem

3.2 min r x y uTt dF x , t ,Ž . Ž . Ž .HH
2ugR

because

3.3 R u s r x y uTt dF x , tŽ . Ž . Ž . Ž .HH
ˆis a convex function. However, our bivariate d.f. estimator F is not a propern

w Ž .x Ž . Ž .bivariate d.f. see 2.8 ; thus 3.1 and 3.2 are not necessarily equivalent
ˆwhen F is replaced by F . In the next two lemmas, we show the existence ofn

Ž .the solution of 3.1 in a neighborhood of F. Some of the following conditions
are imposed in each theorem of this section.

ASSUMPTIONS.

Ž .A1 c is nondecreasing, bounded, continuous, piecewise differentiable
X XŽ .with bounded derivative c such that c x s 0 for x outside of some finite

w x Ž .interval d , d , and for x in some neighborhood of 0, c x has a range1 2
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XŽ .including positive and negative values and c x G m ) 0 for a constant
0 - m - `;

Ž . XA2 c is of bounded variation;
Ž . Ž . Ž .TA3 C b, F s 0 where b s a , b .

Ž .REMARK 1. A1 is usually required for Hadamard differentiability prop-
w Ž . xerty of M-estimators see Fernholz 1983 for location M-estimator , and

Ž . Ž . Ž .Huber’s score given in Section 4 satisfies A1 . Conditions A1 and A2 are
needed in Lemma 3.1 below for the result on integration by parts. Note that
� 4 Ž . � XŽ .4E e s 0 and A1 implies E c e ) 0.i i

Ž . � Ž .4 Ž .REMARK 2. A3 is implied by E c e s 0 for our model 1.1 , and isi
Ž .needed for the consistency of the M-estimator. If e in model 1.1 has ai

� Ž .4symmetric distribution with zero mean, then we have E c e s 0 for Huber’si
score.

Ž . Ž .LEMMA 3.1. Under assumptions A1 and A2 , we have that, for a fixed
u g R2,

c x y uTt t dH x , tŽ . Ž .HH

s H x y , t y cX dt dx q m H c b y uTc cŽ . Ž . Ž . Ž .H H x , u½ 5
3.4Ž .

y c H x y , ` dc x y uTcŽ . Ž .H

y H `, t y c dt for H g M ,Ž . Ž .H u 0

Ž .T Ž .T Ž . Ž T . X Ž . XŽ T .where t s 1, t , c s 1, c , c t s c b y u t t, c t s c x y u t t, andu x, u

Ž . Žw x w x. Ž .m H ' m a, b = 0, c for m denoting the signed measure correspond-H H
w x w xing to H in a, b = 0, c .

Ž . Ž . Ž .LEMMA 3.2. i Under assumption A1 , if F is a bivariate d. f. and R u
Ž . Ž .given by 3.3 is defined for any u, then C u, F s 0 has a unique solution.

Ž . Ž . Ž . 5 5ii Under assumptions A1 ] A3 , for any sufficiently large B ) b , there2
5 5 Ž .exists h ) 0 such that for any H g M and H y F F h, C u, H s 0 has a0

5 5 5 5solution u with u F B, and any solution u of such satisfies u y b2 2H H H H
5 5ª 0, as H y F ª 0.

The proofs of Lemma 3.1 and Lemma 3.2 are given in Section 6. Lemma 3.2
Ž .shows that the functional t ? is defined in the neighborhood of any bivariate

ˆd.f. F. One may note that although it may not be a proper bivariate d.f., Fn
2 ˆŽ .given by 2.6 corresponds to a finite signed measure on R , thus F g M .n 0

Ž .Hence, from Theorem 2.1, t ? is defined asymptotically for our bivariate d.f.
ˆ ˆŽ .estimator F based on V , d , T , 1 F i F n. One may also note that for F inn i i i n
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ˆŽ .the neighborhood of F, if there are multiple roots for C u, F s 0 on a largen
compact set, the asymptotic results established in Theorem 3.1 below still

Ž .hold because of Lemma 3.2 ii .
Before stating our asymptotic normality results on the regression M-

estimators with doubly censored observations, we give the definition of
Ž . wHadamard differentiability or compact differentiability as follows Gill

Ž .x Ž .1989 . Let B and B be two Banach spaces and L B , B be the set of1 2 1 2
continuous linear transformation from B to B .1 2

DEFINITION 3.1. Let O be an open set of B . A functional t : O ª B is1 2
Ž .Hadamard differentiable or compact differentiable at F g O if there exists

X Ž .t g L B , B such that for any sequence H g B and t g R whichF 1 2 n 1 n
satisfy H ª H g B and t ª 0, as n ª `,n 1 n

t F q t H y t F y t X t HŽ . Ž . Ž .n n F n n
3.5 lim s 0.Ž .

tnª` n

X Ž .The linear functional t is called the Hadamard derivative of t ? at F.F

Ž . Ž .In Theorem 3.1, we show that the functional t ? defined by 3.1 is
Ž .Hadamard differentiable at the bivariate d.f. F of X , T with the proofi i

Ž .deferred to Section 6. One may note that our functional t ? is implicitly
Ž .defined by 3.1 . The implicit function theorem through Compact Preserving

Ž .by Fernholz 1993 is used in our proofs. Some detailed discussions on
Ž .implicit function theorems can be found in Gill 1989 .

Ž . Ž . 2THEOREM 3.1. Under assumptions A1 ] A3 , the functional t : M ª R ,0
Ž .defined by 3.1 , is Hadamard differentiable at F with Hadamard derivative

3.6 t X H s Ay1 c x y bTt t dH x , t ,Ž . Ž . Ž .Ž .HHF

w Ž . Ž .xwhere H g M if H f M , the integration in 3.6 is defined by 3.4 , and0 0

1 tX T3.7 A s c x y b t dF x , t .Ž . Ž .Ž .HH 2t t

ˆŽ .Therefore, under the conditions of Corollary 2.1, the M-estimator t F sn
ˆ TŽ . Ž .a , b for linear regression model 1.1 based on doubly censored dataˆn n

Ž . Ž .V , d , T , 1 F i F n, given by 1.2 , satisfiesi i i

ˆ'3.8 n t F y t F ª N 0, S as n ª `,Ž . Ž . Ž .Ž .n D 2

ˆ Ž . Ž .where F is given by 2.6 and N 0, S denotes a zero-mean bivariate normaln 2
distribution with a covariance matrix S.

REMARK 3. The M-estimators constructed in this paper are motivated by
Ž .their robustness properties, and condition A1 on the score function in

Theorem 3.1 is satisfied by Huber’s score function. When there is no censor-
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ing, M-estimators with Huber’s score lose some efficiency, but limit the
w Ž . xinfluence of outliers Serfling 1980 , page 247 , which is also expected here

for our proposed M-estimators with censored data. However, since the condi-
ˆ ˆw Ž .xtional distribution estimator F is efficient Gu and Zhang 1993 and F isn, t n

ˆ ˆ w Ž .xgiven as the product of F and G see 2.5 , with an estimated score c ,n, t n n
better efficiency of our M-estimators may be achieved. The investigation of
this will be discussed in this current paper.

Ž . Ž .One may note that the functional t ? defined by 3.1 and the Hadamard
Ž .differentiability of t ? at F do not depend on observations in the sample.

Ž .Hence, this functional plug-in method used to establish 3.8 for doubly
censored data also applies to other types of censored data. Next, we give these
immediate results as corollaries of Theorem 3.1.

Complete i.i.d. sample case. Suppose that for the linear regression model
Ž . Ž .1.1 , a complete i.i.d. sample X , T , i s 1, . . . , n, is observed. Then, thei i

Ž . Ž .empirical d.f. F given by 1.4 can be used to construct the M-estimator t Fn n

Ž .T Ž . Ž .for b s a , b , where t ? is defined by 3.1 . Since F is a proper bivariaten
Ž . Ž .d.f., by Lemma 3.2 i we know that t F is well defined. Since, by Theoremn

Ž . Ž .3.1, t ? is Hadamard differentiable at F, from 3.2 of Theorem 3.1 in Ren
Ž . Ž .and Sen 1995 and from 3.6 , we know that for a continuous F,

X' ' w xn t F y t F s t n F y F q o 1Ž . Ž . Ž .Ž .n F n p

n1
� 4s z y E z q o 1 ,Ž .Ž .Ý i F i p'n is1

y1Ž Ž . Ž . .Twhere z s A c X y a y b T , c X y a y bT T . Since z , 1 F i F n,i i i i i i i
are i.i.d. observations with zero mean, by the Central Limit Theorem, we

Ž .obtain the asymptotic normality of the regression M-estimator t F . Wen
state this result in the following corollary.

Ž . Ž .COROLLARY 3.1. Assume A1 ] A3 , and assume that F is continuous. Let
Ž . Ž . Ž .F be given by 1.4 and t F , defined by 3.1 , be the M-estimator for linearn n

Ž . Ž .regression model 1.1 with complete i.i.d. sample X , T , 1 F i F n. Then,i i

'n t F y t F ª N 0, S as n ª `,Ž . Ž . Ž .n D 2 0

Ž .where S s cov z .0 F i

Bivariate observations under the univariate right censoring case. For any
� 4 � 4real numbers x and t, we denote x k t s max x, t and x n t s min x, t .

Ž .Suppose that for the linear regression model 1.1 , the following i.i.d. bivari-
ate observations under univariate right censoring are observed:

˜ ˜X s X n C , T s T n C ,i i i i i i3.9Ž .
x t� 4 � 4d s I X F C , d s I T F C ,i i i i i i
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where i s 1, . . . , n, and C is the right censoring variable which is indepen-i
Ž .dent from X , T . This type of censoring is considered by Lin and Yingi i

Ž . Ž .1993 . From 2.3 and the appendix of their work, a bivariate d.f. estimator
Ž .for bivariate d.f. F of X , T can be obtained asi i

n ˜ ˜ ˆI X F x , T F t1 1 y H x k tŽ .½ 5i i ncF̂ x , t s y ,Ž . Ýn ˆ ˆn H x k t H x k tŽ . Ž .is1 n n

ˆ ˜ ˜where H is the product-limit survival function estimator based on C s X kn i i
c x t c˜ ˆ' w xT , d s 1 y d d for 1 F i F n, and the weak convergence of n F y F to ai i i i n

w x w xcentered Gaussian process on some compact set a , b = 0, c can be0 0
Ž .obtained. Now, define a functional t ? as the root of the equations0

cb0 T3.10 C u , H ' c x y u t t dH x , t s 0.Ž . Ž . Ž . Ž .H H0
a 00

Ž . Ž .Then, the regression M-estimator in model 1.1 based on data 3.9 can be
ˆc ˆcŽ . Ž . Ž .constructed as t F . From our Lemma 3.2 ii , we know that t F is0 n 0 n

ˆc Ž .defined when F is close to F. By Theorem 3.1, we know that t ? isn 0
Hadamard differentiable at F and its Hadamard derivative t X is given by0F
Ž . w x w x3.6 with integration region a , b = 0, c . From the weak convergence of0 0
ˆc Ž .F and from Theorem II.8.1. of Andersen, Borgan, Gill and Keiding 1993 , wen
know that

Xc cˆ ˆ' 'n t F y t F s t n F y F q o 1 .Ž . Ž .Ž . ž /0 n 0 0 n pF

X cˆ'Ž . w xFrom t ? , Lemma 3.1, and the weak convergence of n F y F , we obtain0 nF
X cˆ'Ž w x.that t n F y F converges in distribution to a bivariate normal distribu-0 nF

tion. We state this result in the following corollary.

cˆ'Ž . Ž . wCOROLLARY 3.2. Assume A1 and A2 . Under the conditions that n Fn
xy F weakly converges to a centered Gaussian process on a compact set

ˆcw x w x Ž . Ž .a , b = 0, c , the regression M-estimator t F , defined by 3.10 , for0 0 0 n
Ž . Ž .model 1.1 based on data 3.9 satisfies

cˆ'n t F y t F ª N 0, S as n ª `,Ž . Ž .Ž .0 n 0 D 2 c

where S is the covariance matrix determined by t X and the limitingc 0F
cˆ' w x Ž .covariance of n F y F , which can be derived from 2.4 of Lin and Yingn

Ž .1993 .

The bivariate right-censored sample case. Suppose that for the linear
Ž .regression model 1.1 , the following i.i.d. bivariate right-censored sample is

observed:

˜ ˆX s X n C , T s T n D ,i i i i i i3.11Ž .
x t� 4 � 4d s I X F C , d s I T F D ,i i i i i i
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Ž .where i s 1, . . . , n, and C , D is the bivariate right censoring variablei i
Ž .which is independent of X , T . This type of censoring is considered byi i

Ž .Dabrowska 1988, 1989 , among others. From the bivariate survival function
ˆcdŽ .estimator of Dabrowska 1988 , page 1484, a bivariate d.f. estimator Fn

Ž . Ž .using data 3.11 can be obtained, and from Dabrowska 1989 , the weak
cdˆ' w xconvergence of n F y F to a centered Gaussian process on some compactn

w x w xset a , b = 0, c can be obtained. Thus, the regression M-estimator in0 0
ˆcŽ . Ž . Ž .model 1.1 based on data 3.11 can be constructed as t F , where t is0 dn 0

ˆcdŽ . Ž .defined by 3.10 . The asymptotic normality of this estimator t F follows0 n
from the proof of Corollary 3.2 discussed above. We state this result in
Corollary 3.3.

cdˆ'Ž . Ž . wCOROLLARY 3.3. Assume A1 and A2 . Under the conditions that n Fn
xy F converges weakly to a centered Gaussian process on a compact set

ˆcdw x w x Ž . Ž .a , b = 0, c , the regression M-estimator t F , defined by 3.10 , for0 0 0 n
Ž . Ž .model 1.1 based on data 3.11 satisfies

cdˆ'n t F y t F ª N 0, S as n ª `Ž . Ž .Ž .0 n 0 D 2 cd

where S is the covariance matrix determined by t X and the limitingcd 0F
cdˆ' w xcovariance of n F y F .n

Ž .REMARK 4. In Corollary 3.2 and 3.3, t F is well defined, but may not be0
Ž . w x w xequal to b. They are almost the same if A3 holds and a , b = 0, c is0 0

Ž .sufficiently close to the support of X, T .

4. Computation and example. In this section, we consider the compu-
ˆ ˆŽ . Ž . Ž .tation of the regression M-estimator t F for t ? defined by 3.1 and Fn n

Ž .given by 2.6 , and its application to a doubly censored data set encountered
win the study of primary breast cancer Peer, Van Dijck, Hendriks, Holland

Ž .xand Verbeek 1993 .
Without loss of generality, assume that T - ??? - T and all V , . . . , V1 n 1 n

ˆŽ . Ž .are distinct. Then, for t s T in 2.3 we have that G T s krn andk n k
Ž j. kQ x , T 1Ž .n kŽ j. � 4Q x s s I V F x , d s j , j s 1, 2, 3.Ž . Ýn , T i ik ˆ kG TŽ . is1n k

Ž . Ž . Ž .Thus, 2.4 is equivalent to 2.2 of Mykland and Ren 1996 and can be
Ž .computed by their algorithm 2.5 which gives

k
ˆ � 44.1 F x s a I V F x ,Ž . Ž . Ýn , T k i ik

is1
k Ž .where a G 0 with Ý a F 1. One may note that condition 2.9 can bek i is1 k i

satisfied if a proper initial point in the algorithm is chosen. For detailed
ˆŽ . Ž . Ž .discussion, see Mykland and Ren 1996 . Since G T s krn, by 2.5 wen k

have
kkˆ � 44.2 F x , T s a I V F x , k s 1, . . . , n.Ž . Ž . Ýn k k i in is1
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Ž .From 2.4 , we can see easily that the equation changes only according to
T F t - T . Thus, we have that for any x and t G T ,k kq1 1

n
ˆ ˆ � 4F x , t s F x , T I T F t - TŽ . Ž .Ýn n k k kq1

ks1

n k k k y 1
� 4s a y a I V F x , T F tÝ Ý k i ky1, i i kž /n nks1 is1

4.3Ž .

n k

� 4s b I V F x , T F t ,Ý Ý k i i k
ks1 is1

Ž . Ž .where T s `, a s a s 0 and b s krn a y k y 1rn a .nq1 ky1, k 0, i k i k i ky1, i
Ž . w Ž .Since 2.4 does not have a unique solution see Mykland and Ren 1996 or

Ž .x Ž . Ž .Gu and Zhang 1993 , the solution of 2.6 given by 4.3 is not unique.
ˆNonetheless, since the asymptotic properties of F established in Section 2n

Ž . Ž . Ž .apply to any solution of 2.6 satisfying 2.9 , then any solution of 2.6
ˆŽ . Ž .satisfying 2.9 may be used to construct the regression M-estimator t F forn

Ž .the linear model 1.1 when the sample size is large.
ˆ ˆŽ . Ž .For an F given by 4.3 , to find the regression M-estimator t F definedn n

Ž .by 3.1 , we need to solve the following equations:
n k

b c V y u y u T s 0,Ž .Ý Ý k i i 1 2 k
ks1 is1

n k

b T c V y u y u T s 0.Ž .Ý Ý k i k i 1 2 k
ks1 is1

4.4Ž .

This is a system of nonlinear equations and can be solved using the
w Ž .Newton]Raphson method Press, Teukolsky, Vetterling and Flannery 1992 ,

.pages 372]378 . To illustrate our proposed method, we apply the regression
ˆŽ . Ž .M-estimator t F defined by 3.1 to a real data set below.n

EXAMPLE. In a recent study of the age-dependent growth rate of primary
Ž Ž .breast cancer Peer, Van Dijck, Hendriks, Holland and Verbeek 1993 ; Ren

Ž .x Žand Peer 1997 , a doubly censored sample is encountered. The age X in
.months , at which a tumor volume was developed, was observed among 236

women aged 41]84 years. From 1981 to 1990, serial screening mammograms
with a mean screening interval of two years were obtained. Among the tumor
volumes detected by the screening mammograms, 45 women had tumor
volumes observed at the first screening mammograms, yielding left-censored
observations; 79 did not have tumor volumes observed at the last screening
mammograms, yielding right-censored observations and 112 were observed
with tumor growth during the period of the serial screening mammograms,

Ž .yielding uncensored observations. For each woman, the age T in months at
which she started the first screening mammogram was recorded. To study the
relation between X and T, which is an important issue in breast cancer

Ž . Ž .research, we use the linear regression model 1.1 with data V , d , T ,i i i
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Ž .1 F i F 236. In Figure 1, we display the scatterplot of V , T , 1 F i F 236,i i
Ž .which indicates that the linear model 1.1 might be appropriate for this data

set. Using Huber’s score function c given by

c, if x ) c,
c x sŽ . x , if yc F x F c,½ yc, if x - yc,

Ž .where c s 330, the regression M-estimator constructed for model 1.1 in
ˆŽ . Ž .Theorem 3.1 is calculated as a , b s 36.4, 1.03 by the methods discussedˆn n

ˆŽ .above using V , d , T , 1 F i F 236. The fitted regression line y s a q b xˆ ˆi i i n n
Žis plotted in Figure 1 for a different choice of c the fitted regression line does

.not appear to be very much different . Our experience shows that computa-
tion is efficient for a reasonable sample size. In Figure 1, we also plot the

Ž . wfitted regression line by the usual least squares estimate LSE method i.e.,
Ž . Ž . x Ž .the solution of 1.3 with score function c x s x using V , T , 1 F i F 236,i i

which ignores censoring in the data. One may note that the fitted regression
line by the proposed M-estimate method is located above that by the LSE
method. This may very well be expected, since the proposed method takes the

Ž .FIG. 1. }}, fitted regression line by proposed method using V , d , T , 1 F i F 236; - - - - -,i i i
Ž .fitted regression line by LSE method using V , T , 1 F i F 236.i i
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censoring mechanism of the data into account and the data set is more
heavily right censored than left censored.

5. Proofs of Theorems 2.1 and 2.2.

ˆ Ž .PROOF OF THEOREM 2.1. Suppose that for each n, F x, t is a bivariaten
Ž . Ž . Ž . Ž .function given by 2.5 satisfying 2.9 . Then, conditions 2.5 and 2.6 of Gu

Ž . Ž . Ž .and Zhang 1993 are satisfied by 2.9 and 2.12 . Applying Theorem 1 of Gu
ˆŽ . Ž . 5 5and Zhang 1993 , we have that for each t with F t ) 0, F y F ª 0T n, t t

almost surely as n ª `. Since

ˆ ˆ ˆ ˆF x , t y F x , t F F x y F x G t q F x G t y F t ,Ž . Ž . Ž . Ž . Ž . Ž . Ž . Ž .n n , t t n t n T

ˆ ˆ< Ž . Ž . < < Ž .we have that for each t, sup F x, t y F x, t ª 0 and sup F x, t y yx n x n
Ž . <F x, t y ª 0 almost surely as n ª `.
In the next step, we prove that the convergence is uniform in t. For any

« ) 0, let y` s t F t F ??? F t s ` be a sequence of points such that0 1 k
Ž . Ž .F t y y F t F « , i s 1, . . . , k. From the first step, for almost all v inT i T iy1

ˆ< Ž . Ž . <the sample space, we can choose N such that sup F x, t y F x, t F «v x n i i
ˆ< Ž . Ž . <and sup F x, t y y F x, t y F « for n G N and i s 0, 1, . . . , k. Sincex n i i v

we have

ˆ ˆF x , t y F x , t F max F x , t y F x , tŽ . Ž . Ž . Ž .n n i i
0FiFk

ˆq max F x , t y y F x , t yŽ . Ž .n i i
0FiFk

q max F x , t y y F x , t y ,Ž . Ž .i i
1FiFk

ˆ< Ž . Ž . <we see that F x, t y F x, t is bounded by 3« on the same v when n G N .n v

This shows that the convergence is uniform in t almost surely. I

Before proving Theorem 2.2, we need to define some notation. With F
Ž . Xreserved for the true bivariate distribution function of X, T , we denote F ,m

F , F , m G 1 and FX as distribution functions such thatY , m Z, m
X Žw x .F y F g D a, b = R ,0

X X X XŽ . Ž . Ž . Ž .F x, t s 0 « F x, t s 0; S x, t s 0 « S x, t s 0,m m

X X5 5 5 5 5 5F y F ª 0, F y F ª 0, F y F ª 0,m Y , m Y Z, m Z

K s F y F ,m Z, m Y , m

X Ž . X Ž . X Ž . XŽ . XŽ . XŽ .where S x, t s F `, t y F x, t and S x, t s F `, t y F x, t . Withm m m
these definitions, we have a lemma similar to Lemma 2 of Gu and Zhang
Ž .1993 .

Žw x .LEMMA 5.1. Let h , g , m G 1, and g be functions in D a, b = R suchm m 0
5 5that g y g ª 0 and R h s g and A , R and K are defined as inm m m m m m m
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Ž . Ž . Ž X .2.17 with F, F , F replaced by F , F , F . Suppose that the condi-Y Z m Y , m Z, m
tions of Theorem 2.2 hold and for all t ) t , where t is a fixed number such0 0

Ž .that F `, t ) 0,0

dF u dF uŽ . Ž .Y , m Z , m
5.1 lim sup q s 0.Ž . H H½ 5K u K utª0q Ž . Ž .Ž . Ž .0-F u , t -t 0-S u , t -tm , tGt m m0

Ž . Žw x .Let R be given by 2.17 . Then there exists h g D a, b = R such thatF K
5 5K h y K h ª 0, as m ª `, and R h s g.m m F

5 5 � 4PROOF. First, we show that if K h F 1, then K h , m G 1 is totallym m m m
Žw x w ..bounded on the space D a, b = t , ` . The proof of this is split into three0 0

steps.
Step 1. Define

FX x , tX FX x , tŽ . Ž .m mXq5.2 v x ; t , t s y h u , t dF u ,Ž . Ž . Ž . Ž .H X X Xm m Z , m½ 5F u , t F u , tŽ . Ž .x-u m m

SX x , tX SX x , tŽ . Ž .m mXy5.3 v x ; t , t s y h u , t dF u .Ž . Ž . Ž . Ž .H X X Xm m Y , m½ 5S u , t S u , tŽ . Ž .uFx m m

We are going to show
X X Xq < <lim sup v x ; t , t ; t F t - t , t y t F d s 0,� 4Ž .m 0

Xdª0 x , t , t
X X Xy < <lim sup v x ; t , t ; t F t - t , t y t F d s 0.� 4Ž .m 0

Xdª0 x , t , t

5.4Ž .

Ž .The argument of Step 2 in the proof of Lemma 2 of Gu and Zhang 1993
can be used to show that

X XF x , tŽ .m Xlim sup h u , t dF u ; F x , t - t s 0,Ž . Ž . Ž .H X X m Z , m 0½ 5F u , tt ª0 Ž .x-u0 x , tGt m0

Ž X. Ž X.and the same equation holds, with the argument x, t and u, t in the
Ž . Ž . Ž X. Ž .integration replaced by x, t and u, t , respectively, since F x, t ) F x, t .

Ž . Ž .To prove the first half of 5.4 , we are left with the case F x, t9 G t . We0
have

2 dF uŽ .Z , mX X Xqv x ; t , t F F ?, t9 y F ?, tŽ . Ž . Ž . Hm m m t K uŽ .x-u0 m

since

FX x , tX FX x , t FX x , tX y FX x , tŽ . Ž . Ž . Ž .m m m my sX X X X XF u , t F u , t F u , tŽ . Ž . Ž .m m m

FX x , t FX u , tX y FX u , tŽ . Ž . Ž .m m my .X X XF u , t F u , tŽ . Ž .m m

Ž .The second half of 5.4 can be proved in the same way. Details are omitted.
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Step 2. We will show
X X X< <5.5 lim sup K h x , t y K h x , t ; t F t - t , t y t F d s 0.� 4Ž . Ž . Ž .m m m m

Xdª0 x , t , t

Simple calculation shows that

R X h ?, tX y h ?, t xŽ . Ž . Ž .Ž .m , F Ž?, t . m mm

s yvq x ; tX , t y vy x ; tX , t q g x , tX y g x , t ,Ž . Ž . Ž . Ž .m m m m

5.6Ž .

Ž .Xwhere R is a one-dimensional operator as in 2.9 of Gu and Zhangm , F Ž?, t .m

Ž . Ž X Ž . . Ž .1993 with F ?, t , F , F . Lemma 2 of Gu and Zhang 1993 showsm Y , m Z, m
that the operator Ry1

X is continuous in terms of its defining functionm , Fm
Ž X . Ž . Ž . Ž .F , F , F with supremum norm . Thus, 5.5 follows from 5.4 andm Y , m Z, m
Ž .5.6 . Moreover, we have

5 y1 5X5.7 sup R - `.Ž . m , F Ž?, t .m
w .tg t , `0

Ž . Ž . Ž . Ž .Hence, 5.5 follows from 5.6 and 5.7 combining with 5.4 of Step 1.
Ž . Ž .Step 3. Equation 5.5 shows the total boundedness of K h x, t withm m

respect to t. The total boundedness of K h is established if we show it ism m
totally bounded with respect to x. The arguments in Step 1 and Step 2 of the

Ž .proof of Lemma 2 of Gu and Zhang 1993 can be used with the observation
that the inequalities and limits there are all uniform in t with t G t .0

Ž .With 5.7 , the proof of the total boundedness of K h on the spacem m
Žw x w x..D a, b = t , ` follows exactly the argument in the proof of Lemma 2 of0 0

Ž .Gu and Zhang 1993 . We omit the details. I

X Ž X.PROOF OF THEOREM 2.2. We first observe that since for t - t , F u, t F t
Ž . Ž X. Ž . Ž .implies F u, t F t and S u, t F t implies S u, t F t , condition 2.22

Ž .implies that for any t with F `, t ) 0,0 0

dF u dF uŽ . Ž .Y Z
lim sup q s 0,H H½ 5K u K utª0 Ž . Ž .Ž . Ž .0-F u , t -t 0-S u , t -ttGt0

which in turn, implies the condition of Lemma 5.1 if we discretize the
ˆ' Ž .distribution F, F and F . The proof for the weak convergence of n F y FY Z n

w x w .on the set a, b = t , ` follows from the one for Theorem 2 of Gu and Zhang0
Ž .1993 with Lemma 2 there replaced by Lemma 5.1 in this paper. The weak

ˆ' Ž . w x Ž xconvergence of n F y F on the set a, b = y`, t can be deduced in then 0
same way as above by noting that

ˆˆ ˆF x , t y F x , t s F x , ` y F x , ` y F x , t y F x , t ,Ž . Ž . Ž . Ž . Ž . Ž .Ž . ž /n n n

ˆŽ . � 4where F x, t s P X F x, T ) t and F is the corresponding estimator of F.n
ˆˆ Ž . Ž .We observe that if F satisfies 2.6 , then F satisfies 2.6 with the corre-n n

Ž j. ˆsponding changes in the definitions for Q , j s 0, 1, 2, 3; thus F satisfiesn n
Ž . Ž .the corresponding equation 2.18 . Finally, we note that F `, t F d implies0

Ž .that F `, t G 1 y d . Therefore Lemma 5.1 again can be applied. The details0
are omitted. I
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6. Proofs of Lemmas 3.1, 3.2 and Theorem 3.1.

Ž . Ž .PROOF OF LEMMA 3.1. From A1 and A2 , we know that for any fixed x
Ž . Ž T . X Ž . XŽ T .and u, each of c t s c b y u t t and c t s c x y u t t is of boundedu x, u

w xvariation on 0, c and
c

6.1 c dt - `.Ž . Ž .H u
0

X w x X XSince c s 0 outside of d , d , then for a fixed u, there exist y` - a - b -1 2
` such that for any H g M ,0

H x y , t y cX dt dxŽ . Ž .H H x , u½ 5
X cb Xs H x y , t y c dt dx ,Ž . Ž .H H x , u½ 5Xa 0

c x y uTt t dH x , tŽ . Ž .HH6.2Ž .
X cb Ts c x y u t t dH x , tŽ . Ž .H H

Xa 0

aX c cb
q C t dH x , t q C t dH x ,’t ,Ž . Ž .H H H H1 2 Xa 0 b 0

where C and C are constants, and1 2
X cb X6.3 c dt dx - `.Ž . Ž .H H x , uXa 0

Ž .It suffices to show 3.4 for all bivariate d.f. H. First, it is easy to check that
Ž . Ž . � 4 w x w x3.4 holds for H x, t s I A F x, B F t , where A g a, b and B g 0, c .

Ž .This implies that for any bivariate d.f. H, 3.4 holds for an empirical d.f. HN
based on a random sample of size N from H. Letting N ª `, the proof

Ž . Ž .follows from 6.1 ] 6.3 . I

Ž . Ž .PROOF OF LEMMA 3.2 i . From A1 , we know that r is nonnegative,
Ž .continuous and convex with lim r x s `. Thus, for any bivariate d.f. F,x ª "`

Ž . Ž . Ž .R u given by 3.3 is convex and continuous, and by A1 , it is twice
wŽ . xdifferentiable. From Bazaraa, Sherali and Shetty 1993 , page 118 , we know

Ž .that if R u attains its global minimum at some point u , then its gradient0

6.4 =R u s y c x y uTt t dF x , tŽ . Ž . Ž . Ž .HH
Ž . Ž . Ž . Ž .must satisfy =R u s 0. Thus C u , F s 0, because =R u s yC u, F .0 0

Ž .Hence, to show the existence of a solution of C u, F s 0, it suffices to show
Ž . Ž .that R u has a global minimum. Since R u is continuous, it suffices to show

that
lim R u s `,Ž .

5 5u ª`2
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which is equivalent to

6.5 lim inf R yle s `.Ž . Ž .
lª` 5 5e s12

Ž .T 2 2 Ž .Let e s e , e with e q e s 1. Suppose e G 0. Since r x ª `, as1 2 1 2 1
< < Ž .x ª `, then for any M ) 0, there exists A ) 0 such that r x G M forM
< < 2x G A . Denote m as the measure corresponding to F on R , without lossM F

� < < 4 � < <of generality, we may assume that m x F 1, t G 1 ) 0 and m x F 1,F F
1 4 < <0 F t F ) 0. If e G 0, then for x F 1 and t G 1, we have22

x q leTt s x q l e q e t G y1 q l e q e G y1 q lŽ . Ž .1 2 1 2

Ž .2because e q e s 1 q 2 e e G 1. Hence, for large enough l, we have1 2 1 2
x q leTt G A andM

r x q leTt dF G r x q leTt dFŽ . Ž .HH HH
< <x F1, tG16.6Ž .

< <� 4G Mm x F 1, t G 1 .F

3 1 3 1If e F 0, then e F y when 0 F e F , and y F e F 0 when e G .' '2 2 1 2 14 2 4 2
1 3 < <For 0 F e F , e F y , x F 1, t G 1, we have'1 22 4

'1 y 3
Tx q le t s x q l e q e t F 1 q l;Ž .1 2 2

1T Ž .thus for large enough l, we have x q le t F yA and 6.6 . For e G ,M 1 2
3 1< <y F e F 0, x F 1, 0 F t F , we have' 24 2

'1 3 2 y 3
Tx q le t s x q l e q e t G y1 q l y t G y1 q l;Ž . (1 2 ž /2 4 4

thus for large enough l, we have x q leTt G A andM

r x q leTt dF G r x q leTt dFŽ . Ž .HH HH
< <x F1, 0FtF1r2

1< <G Mm x F 1, 0 F t F .� 4F 2

Ž . Ž .This completes the proof for 6.5 when e G 0. Similarly, 6.5 can be shown1
for the case of e F 0.1

Ž .Suppose that C u, F s 0 has two different solutions u and u . Then from1 2
wŽ . x Ž .Bazaraa, Sherali and Shetty 1993 , page 118 , we know that R u attains its

Ž .global minimum at u and u . From convexity of R u , we know that1 2
Ž . Ž Ž . . Ž .h l s R lu q 1 y l u '‘‘the minimum value of R u ,’’ for 0 F l F 1,1 2

Ž . Ž .thus, for any 0 F l F 1, lu q 1 y l u is a solution of C u, F s 0. Hence,1 2
we have

2T TY X0 ' h l s c x y lu q 1 y l u t u y u t dF x , t ,Ž . Ž . Ž . Ž .Ž . � 4HH ž /1 2 1 2

l g 0, 1 ,Ž .
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X 1 TŽ Ž . . w x w xwhich implies c x y u q u t ' 0 for any x g a, b , t g 0, c . This1 22
1 TŽ Ž . . w x w x Ž .means c x y u q u t ' z for any x g a, b , t g 0, c . From A1 , we1 22

Ž .know that there exists a unique point x in R such that c x s 0. Hence, we0 0
1 Ž . Ž .must have z / 0. Since u q u is a solution of C u, F s 0, we have1 22

T10 s C x y u q u t t dF x , t s z t dF x , t / 0,Ž . Ž . Ž .HH HHŽ .1 22

Ž .a contradiction. Therefore, the solution of C u, F s 0 is unique. I

Ž .PROOF OF LEMMA 3.2 ii . Without loss of generality, we consider the case
of y` - a - ` and b s `, because other cases can be shown similarly.

Choose some number bX such that a - bX - ` and denote
X cbX T6.7 R u s r x y u t dH x , t , H g M .Ž . Ž . Ž . Ž .H HH 0

a 0

Ž . X Ž . 5 5 Ž .From the proof of 6.5 , we know that R u ª `, as u ª `. Let R b s2F F
Ž . Ž . 2 X Ž .M for R u given by 3.3 , then there exists u g R such that R u sb F 0 F 0

5 5M ) M , and there exists A ) b such that2b M
X 5 56.8 R u G M , for u G A .Ž . Ž . 2F M

We choose a real number z such that
16.9 0 - z - M y M .Ž . Ž .b2

X w x Y X YSince c s 0 outside of d , d , there exists b such that b F b - ` with1 2
Ž T . Ž . 5 5 Y w xc x y u t ' C s c ` for u F 2 A , x G b , t g 0, c , and21 M

` c
T 5 56.10 C u t dF x , t F zr2 for u F 2 A .Ž . Ž .H H 21 MYb 0

5 5Note that for H g M and u F 2 A ,20 M
Y c ` cb T6.11 C u , H s c x y u t t dH x , t q C t dH x , t ,Ž . Ž . Ž . Ž . Ž .H H H H1

a 0 b0 0

which is the negative gradient of
Y c ` cb T T6.12 w u s r x y u t dH x , t y C u t dH x , t .Ž . Ž . Ž . Ž . Ž .H H H HH 1

a 0 b0 0

Denote
Y cbY T6.13 R u s r x y u t dH x , t , H g M ,Ž . Ž . Ž . Ž .H HH 0

a 0

5 5then for u F 2 A ,2 M

` c
Y Y T w xw u s R u q R u y C u t d H y FŽ . Ž . Ž . H HH F HyF 1 Yb 0

6.14Ž .
` c

Ty C u t dF x , t .Ž .H H1 Yb 0

Since rX s c and c is bounded, we know that r is of bounded variation.
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From the proof of Lemma 3.1, we can show that for any H g M ,0

Y cbY TR u s H x y , t y dc x y u t dxŽ . Ž . Ž .H HH ½ 5
a 0

bY
X Y T Tq m H r b y u c y H x y , ` dr x y u cŽ . Ž . Ž . Ž .H

a
6.15Ž .

c
Y Ty H `, t y dr b y u t ,Ž . Ž .H

0
XŽ . Žw Y x w x. Ž .where m H s m a, b = 0, c for m given in 3.4 , and similarly we alsoH H

can show that for any H g M ,0

` c c
Y Yt dH x , t s c H `, ` y H b , ` y H `, t y y H b , t y dt .Ž . Ž . Ž . Ž . Ž .H H H

Yb 0 0

Hence, for any H g M , there exists B ) 0 such that0 M
Y 5 5R u F B H y F ,Ž .Hy F M

` c
T 5 5 5 5w xC u t d H y F F B H y F for u F 2 A .H H 21 M MYb 0

6.16Ž .

Ž . Ž . Ž .Let 0 - h - zr 4B , then noting that r is nonnegative, by 6.14 , 6.16 andM
Ž . 5 56.10 , we have that for H g M satisfying H y F F h,0

X 5 5 5 5w u G R u y B H y F y B H y F y zr2Ž . Ž .H F M M

5 5G M y z , for A F u F 2 A ,2M M

6.17Ž .

Ž . Ž . Ž . Ž .and by 6.14 , 6.16 , 6.10 and 6.9 ,

5 5 5 5w b F R b q B H y F q B H y F q zr2Ž . Ž .H F M M

5 5F M q z - M y z for b F A .2b M

6.18Ž .

Ž . 5 5Since it is continuous, w u must have a local minimum in u - 2 A .2H M
Ž . Ž . 5 5Hence, from 6.11 and 6.12 , we have that for H g M satisfying H y F F0

Ž . 5 5h, C u, H s 0 has a solution in u F A - 2 A .2 M M
Ž . Ž .Moreover, from Lemma 3.1 we know that C u, H converges to C u, F

5 5uniformly on any compact set of u when H y F ª 0. Thus, for any solution
Ž . 5 5u satisfying C u , H s 0 and u F A , we have2H H H M

5 5C u , F s C u , F y C u , H ª 0 as H y F ª 0.Ž . Ž . Ž .H H H

From the dominated convergence theorem and the uniqueness of the solution
Ž . 5 5 5 5for C u, F s 0, we have that u y b ª 0, as H y F ª 0. I2H

Ž . Ž .PROOF OF THEOREM 3.1. First, we show that C u, H given by 3.1 is
Ž .Hadamard differentiable at b, F with Hadamard derivative

C
X u , H s y c X x y bTt uTtt dF x , tŽ . Ž .Ž .HHŽb , F .

6.19Ž .
q c x y bTt t dH x , t ,Ž .Ž .HH
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where H g M . From Definition 3.1 of the Hadamard derivative, we need0
2to show that for t ª 0, z ª z g R , H ª H g M , as n ª `, with F qn n n 0

t H g M ,n n 0

C b q t z , F q t HŽ .� n n n n

XyC b , F y t C z , H rt ª 0 as n ª `.Ž . Ž . 4n Žb , F . n n n 2

6.20Ž .

Note that from Lemma 3.1, we have

T T Tc x y b t y t z t y c x y b t t dH x , tŽ .� 4Ž .Ž .HH n n n
2

5 5 5 5 5 5F M H y H q 4 H c cŽ . 2c n n n

Xq H x y , t y c dt dxŽ . Ž .H H x , n½ 56.21Ž .

T T Tyc H x y , ` d c x y b c y t z c y c x y b cŽ . Ž .Ž .H n n

y H `, t y c dt ,Ž . Ž .H n
2

where M ) 0 is a constant andc

T T Tc t s c b y b t y t z t y c b y b t t,Ž . Ž .Ž .n n n

X X XT T Tc t s c x y b t y t z t y c x y b t t.Ž . Ž .Ž .x , n n n

w x w x X Ž .If a, b is not finite, then for any n and t g 0, c , we have c t ' 0 andx, n
w Ž T T . Ž T .x < <c x y b c y t z c y c x y b c ' 0 when x is large enough. Hence, then n

Ž .integration region on the right-hand side of the inequality of 6.21 can
w X X x w xalways be equivalently considered as a compact set, say a , b = 0, c . Since

Ž .H g M , by Neuhaus 1971 , we know that H can be approximated uniformly0
w X X x w xby a step function on a , b = 0, c . Following the last part of the proof of

wŽ . xLemma 3 by Gill 1989 , pages 110]111 , we can show that the last term on
Ž .the right-hand side of the inequality 6.21 converges to 0 as n ª `. Thus,

T T Tc x y b t y t z t y c x y b t t dH x , t ª 0Ž .� 4Ž .Ž .HH n n n6.22Ž . 2

as n ª `.
Since
1

X
C b q t z , F q t H y C b , F y t C z , HŽ . Ž . Ž .� 4n n n n n Žb , F . n ntn

c x y bTt y t z Tt y c x y bTtŽ .Ž .n n X T Ts q c x y b t z t t dF x , tŽ .Ž .HH n½ 5tn

1
T T Tq c x y b t y t z t y c x y b t t d t H x , t ,Ž .� 4 Ž .Ž .Ž .HH n n n ntn

Ž . Ž .6.20 follows from 6.22 and the dominated convergence theorem.
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Ž . Ž .From Lemma 3.2 ii , we know that for H g M , C u, H s 0 has a solution0
in the neighborhood of b when H is in a neighborhood of F. We also know

Ž .that for a fixed H g M , C u, H is continuous and differentiable in u. Thus,0
2 Ž .by the Implicit Function Theorem on R , we know that C u, H s u has a

Ž . 2solution T u, H s u for u g R in the neighborhood of 0, H in the neighbor-
hood of F and u in the neighborhood of b.

Ž . Ž .The partial derivative of C u, H with respect to u at b, F is given by the
Ž . Ž .matrix A in 3.7 . From A3 and Remark 1 in Section 3, we have that for any

u g R2,
2XTu Au s E c e E u q u T ) 0.� 4Ž . Ž .� 4i 1 2

Hence, A is positive definite, thus nonsingular.
Ž .To use the Implicit Function Theorem of Fernholz 1983 , Theorem 3.2.4, to

Ž . Ž .show that the functional t ? defined by 3.1 is Hadamard differentiable at F,
it suffices to verify the following compact preserving condition: if G is any

2compact set in M and K a compact set in R , then for any t ª 0, as n ª `0 n
�Ž .4and H , z ; G = K with F q t H g M ,n n n n 0

6.23 T t z , F q t H y T 0, F rt� 4Ž . Ž . Ž .n n n n n

Ž . Ž . Ž .is bounded. Let C u , F s t z , T t z , F s u , C h , F q t H s t zn n n n n n n n n n n
Ž . Ž .and T t z , F q t H s h . Then, from A1 it can be shown that there existn n n n n

constants C ) 0 and M ) 0 such that for sufficiently large n,
T25 5 5 5 5 5C u y b F yt u y b z F t u y b zŽ .2 2 2n n n n n n n

and

T2 T5 5C h y u F h y u c x y h t t d t H x , tŽ . Ž .Ž .2 HHn n n n n n n

5 5 5 5F t h y u H M .2n n n n

Ž .Hence, 6.23 follows from the usual straightforward argument.
ˆŽ . Ž . Ž .The asymptotic normality of t F follows from 3.6 , 3.4 , the weakn

ˆ' w xconvergence of n F y F , Theorem II.8.1 of Andersen, Borgan, Gill andn
Ž . wŽ . xKeiding 1993 and Iranpour and Chacon 1988 , pages 154]157 . I
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