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SUPEREFFICIENCY IN NONPARAMETRIC
FUNCTION ESTIMATION

BY LAWRENCE D. BROWN,1 MARK G. LOW 2 AND LINDA H. ZHAO

University of Pennsylvania

Fixed parameter asymptotic statements are often used in the context
Žof nonparametric curve estimation problems e.g., nonparametric density

.or regression estimation . In this context several forms of superefficiency
can occur. In contrast to what can happen in regular parametric problems,

Ž .here every parameter point e.g., unknown density or regression function
can be a point of superefficiency.

We begin with an example which shows how fixed parameter asymp-
totic statements have often appeared in the study of adaptive kernel
estimators, and how superefficiency can occur in this context. We then
carry out a more systematic study of such fixed parameter statements. It
is shown in four general settings how the degree of superefficiency attain-
able depends on the structural assumptions in each case.

1. Introduction. Asymptotic analysis as the sample size n ª ` is an
important tool for developing and analyzing statistical procedures. Asymp-
totic statements can generally be classified into one of two varieties: those in

Ž .which the limit is taken as the unknown parameter is held fixed, and those
in which the limit is uniform over all of the parameter space, or at least over
some significant subset of it. Asymptotic minimax and local minimax state-
ments are examples of the second variety.

Fixed parameter statements are generally easier to formulate and prove
than are uniform ones. However, it has long been recognized that they can
involve misleading conclusions via the phenomenon of ‘‘superefficiency’’ in

Ž .regular parametric problems. Le Cam 1953 presents Hodges superefficient
estimator and the first comprehensive treatment of this topic. Further study
has solidified understanding of superefficiency in regular parametric prob-

wlems and has made it relatively straightforward to avoid this pitfall. See,
Ž . Ž . Ž . xe.g., Huber 1966 , Weiss and Wolfowitz 1966 and Hajek 1972 .´

Fixed parameter asymptotic statements are also commonly used in the
Žcontext of nonparametric curve estimation e.g., in nonparametric density or

.regression problems . In spite of this it has not been widely understood that
superefficiency can occur in several forms in these problems and can be much
more dramatic than in regular parametric contexts. In parametric problems
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Ž .the set of superefficiency has Lebesgue measure zero. By contrast we show
that in nonparametric problems every parameter point can be a point of
superefficiency. This means that considerable caution is needed before inter-
preting such fixed parameter asymptotic statements as recommendations of
asymptotic desirability or optimality.

Ž .Abramson 1982 presents a nonparametric example showing that super-
efficiency can hold everywhere in the parameter space. Our Section 2 dis-
cusses the way in which fixed parameter asymptotics often appear in non-
parametric density estimation and presents a simplified form of Abramson’s
superefficiency phenomenon. Section 3 provides some notation and back-
ground needed for a more general treatment of the question. Section 4
reviews what is known in the regular parametric case, in order to provide
further background.

Sections 5 through 8 present examples of superefficiency. The situation in
Section 5 has a character similar to that in Section 2, but it is also shown

Žthat the degree of superefficiency is somewhat limited in this context. See
.Theorem 5.2, whose proof is deferred to the Appendix. Section 6 presents a

different estimator which is even more superefficient than that in Section 5.
Furthermore, this estimator has acceptable minimax behavior. This nonpara-
metric example thus contrasts with the regular parametric situation in which
superefficient estimators must behave poorly with respect to uniform criteria
such as local minimaxity.

Section 7 shows there are nonparametric problems in which superefficient
estimators do not exist to the dramatic degree present in Sections 5 and 6.
Section 8, on the other hand, exhibits an even more extreme degree of
superefficiency than that displayed in the earlier examples.

2. A generic example: adaptive estimation of a density at a point.
The first aim of this example is to focus attention on fixed parameter
asymptotics by sketching how they have often appeared in the literature. The
example then continues with a further development which suggests that
these asymptotic statements can be misleading.

Ž .The following presentation is modelled on that in Woodroofe 1970 , which
contains the earliest adaptive result of this type. Since then a number of
other structurally similar treatments have appeared. We will later examine

Ž .more carefully one by Abramson 1982 . For other instances see, for example,
Ž .Hall 1993 and for the analogous nonparametric regression problem see, for

Ž . Ž .example, Brockmann, Gasser and Herrman 1993 or Schucany 1995 .
Let X , . . . , X be a sample of size n from a population with density f.1 n

About f assume basically only that f g C r , the set of all densities with rq
Ž . Žr .Ž . Žcontinuous derivatives and with f 0 ) 0, f 0 / 0. Additional technical

.assumptions on f may be required in some treatments. The goal is to
ˆ 2 rrŽ2 rq1. ˆŽ . Ž . Žestimate f 0 under normalized squared error loss, L f , f s n f yn

2 ˆ sŽ .. Ž .f 0 , where f denotes the estimated value of f 0 . Let KK denote the family
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w xof sth-order kernels with support in y1, 1 ; that is, those which satisfy

s 1, if j s 0,¡
1 j ~s 0, if 1 F j F s y 1,x K x dxŽ .H ¢y1 / 0, if j G s,

Ž . < <and K x s 0 if x ) 1.
The kernel estimator with bandwidth b is defined asn

n1 Xiˆ2.1 f s K .Ž . Ý ž /b bn nis1

ˆ ˆŽ . Ž Ž ..Let R f, f s E L f , f . Then R can be decomposed as a sum of vari-n f n n
ance and squared-bias terms. If one further assumes that s s r, then this
decomposition yields that

ˆ2.2 0 - R s inf lim R f , f - `Ž . ˙ Ž .opt n
nª`bn

is attained by
Ž .1r 2 rq1f 0Ž .

2.3 b s kŽ . opt K Žr .nf 0Ž .
Ž .for an appropriate constant k depending only on K and r .K

ˆ Ž̂r .For ‘‘adaptive estimation’’ one often constructs ‘‘pilot’’ estimates f and f
Ž . Žr .Ž . Ž .of f 0 and f 0 . These are then plugged into 2.3 . The resulting adaptive

˜ ˜Ž .bandwidth b, say, is substituted in 2.1 to get an estimator f. A statement of
the following type is frequently cited as a major support in such a study.

ˆŽ .STATEMENT. With a suitable and, often, explicitly given definition of f
Ž̂r .and f

2
f̃ f 0Ž .

r2.4 E y ª 0 ; f g C ,Ž . f qŽr .Žr .ž /˜ f 0Ž .ž /f

Ž .and possibly under additional conditions on f ,

˜R f , fŽ .n r2.5 lim s 1 ; f g C .Ž . qR fnª` Ž .opt

Ž .Expression 2.5 is an example of fixed parameter asymptotics. It is a
statement in which the limit is computed for fixed values of f. This contrasts

Ž .with uniform limits, like those in the minimax statements 3.3 in the next
section.

˜Ž .The statement 2.5 looks like a strong endorsement of f. Indeed, it has
˜undoubtedly been interpreted by some as claiming that f is asymptotically

optimal.
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However, it is not hard to construct an estimator which does much better
˜ sŽ .than f in the sense of 2.5 . Let K g KK be any bounded kernel, with s ) r.

Let
Ž .1r 2 rq1

f̂
b̌ s kg K Žr .ˆng f

ˇand let f denote the corresponding estimator.g

Ž .THEOREM 2.1. Let 1 ) « ) 0. Assume 2.4 holds. Then there is g ) 0
such that

ˇ ˜R f , f R f , fŽ .ž /n g n r2.6 lim - « - 1 s lim ; f g C .Ž . qR Rnª` nª`opt opt

SKETCH OF PROOF. Since f g C Žr . it can be written asq

f x s f 0 q P x q o x r ,Ž . Ž . Ž . Ž .r

Ž .where P x is a polynomial of degree r with no constant term. From this andr
Ž .2.4 it is easy to see that the asymptotic bias B is`

rrŽ2 rq1. ˇB s lim n E f y f 0Ž .˙ ž /½ 5ž /` g
nª`

s o 1Ž .
since K g KK s with s ) r.

Calculation and comparison of the asymptotic variance terms reveals that
ˇfor g sufficiently small the asymptotic variance of f is less than « times thatg

ˆ 1rŽ2 rq1.Ž . Ž .of f , since its bandwidth is larger by the factor 1rg q o 1 . State-p
Ž .ment 2.4 supplies an additional bound needed for the formal argument. An

explicit formula for suitable g is feasible in terms of r, K ; however, we omit
ˇthis formula since we do not want to suggest that f is a valuable practicalg

˜alternative to f. I

Ž . Ž .One presumably could conclude from 2.6 as compared to 2.5 that when g
ˇ ˜is small and n is sufficiently large f is a more desirable estimator than f.g

However, we suggest the appropriate conclusion is that fixed parameter
Ž .asymptotics may be misleading, and that 2.5 itself is not a reliable argu-

˜ w Ž .ment that f is desirable for sufficiently large n. Correspondingly, 2.6 is also
ˇ ˜not convincing evidence that f is preferable to f as a statistical procedureg

xfor large n.
We remark that there are other ways to produce an estimator with the

Ž . Ž .property in 2.6 . In particular, for the case r s 2, Abramson 1982 began
with an arbitrary, bounded kernel K g KK 2. He then defined the estimator

n 1r2 1r21 f X f XŽ . Ž .i i
f̌ s K X ,ÝA , n iˇ ˇž /n b bis1 g g

ˇ ˆ Ž̂r .Ž .and showed that f also satisfies 2.6 for suitable f , f in the definition ofA, n
ˇ ˇb . An interesting feature of f is that it can be interpreted as an adaptiveg A, n
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version of a procedure involving a KK 2 kernel, and thus may appeal to those
who allow adaptation but resist the use of kernels which are not nonnegative.

The remainder of this paper is devoted to an investigation of the forms of
Ž .behavior and misbehavior of fixed parameter limits. We hope that the

Ž .additional understanding this provides, along with much further research,
will lead to a better understanding of such limiting statements. Perhaps

wthere is some simple supplementary information other than a minimax limit
Ž .xsuch as 3.3 which might convert them into reliable measurements of the

statistical value of procedures for sufficiently large n.

3. A canonical model. As a general setting for further study consider a
� Žn. 4 Žn. Ž .canonical model in which one observes Z : i s 1, . . . with Z ; N u , 1rn ,i i i

independent, i s 1, . . . . The index n plays the role of sample size. Denote the
5 5‘‘nonparametric’’ parameter space by Q. Let ? # be a nonnegative functional

Ž . �}usually a norm}on Q with the following properties. Let Q B s u g Q:
5 5 4u # F B and then require that B - B implies Q ; Q , and also that1 2 B B1 2

Ž .Q s D Q B .B -`

In Sections 5 and 6, Q will be the Sobolev space

5 5 2 2 r 2� 43.1 Q s S s u s u : u # s i u - `Ž . � 4Ýr i i

and then
5 5 2 23.2 Q B s u : u # F B .� 4Ž . Ž .

1Ž . Ž .For notational convenience let Q ` s Q s D Q B . Let r ) to avoidB -` 2

technical complications in part of what follows. When necessary to display the
Ž .dependence on r we will write Q B .r

The goal to be pursued in Sections 5 and 6 is to estimate u under
normalized squared-error loss

22 rrŽ2 rq1.˜ ˜L u , u s n u y uŽ . Ž .Ýn i i

2 rrŽ2 rq1. 5 5 2s n u y u .˙
˜Ž .Let R u , u denote the corresponding risk function.n

REMARK CONCERNING OTHER MODELS. Note that this model is equivalent to
'Ž . Ž . Ž . Ž . Ž .observing the white-noise model dZ t s f t dt q 1r n dB t , t g 0, 1 ,

Ž . �where B t denotes ordinary Brownian motion, with parameter space f :
1 Žr . 2 2 rrŽ2 rq1. ˜ 2w Ž .x 4 Ž Ž . Ž ..H f t dt - ` and with loss n H f t y f t dt. The model is also0

asymptotically equivalent to similar Sobolev versions in nonparametric re-
w Ž .gression and in density estimation. See Donoho and Liu 1991a, b , Brown

Ž . Ž . xand Low 1996a and Nussbaum 1996 . Consequently, there are direct
analogues in those nonparametric settings to the statements in Sections 5]8
concerning the canonical model. We presume that there are also analogues in
other, less standard nonparametric estimation problems.

In Section 2 the asymptotic standard R was defined via optimal kernelopt
estimation with a particular r th-order kernel. For the problems to follow it is
better to use a differently defined, more general standard. For any B - `
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define the minimax value
3.3 M B s lim sup inf sup R u , d .Ž . Ž . Ž .n n

� 4dnª` Ž .n ugQ B

w Ž .xThis type of limiting statement is uniform over Q B , as opposed to the
Ž .fixed parameter statements seen in Section 2 and again in 3.5 and later.

Then denote
5 53.4 m u s M u #Ž . Ž . Ž .

and investigate whether there exist procedures d such that for some 0 Fn
l - u F `

R u , dŽ .n n
5 53.5 lim sup - 1 ; u 2 l - u # - u.Ž .

m uŽ .nª`

w 5 5 5 5 Ž . xTypically, ? # will have been chosen so that u # / 0 implies m u ) 0.
Ž . �An estimator which satisfies 3.5 will be called superefficient on u : l -

5 5 4u # - u .

4. Comments on standard, parametric models. Superefficiency is a
well-studied anomaly which occurs when using fixed parameter asymptotics.
To see how this relates to the formulation in Section 3 and the results in
succeeding sections, consider briefly a smooth, regular statistical problem
with an open parameter space Q ; R p. For this finite dimensional problem

˜ ˜ 2Ž . 5 5let L u , u s n u y u and let R denote the corresponding risk function.n n
Ž .Then a uniform minimax limiting process yields

1
4.1 lim lim sup sup R u 9, d G s m u ,Ž . Ž . Ž .˙n n tr I u«ª0 Ž .Ž .nª` 5 5u 9yu -«

� 4 Ž .say, for all d , where 0 - I u - ` denotes the usual Fisher informationn
Ž . Ž .matrix. Here m u is the quantity defined in 3.4 relative to the present risk

5 5 5 5 p w Ž .function, and with ? # s ? on R . Lehmann 1983 is a good general
reference for this result though statements like this of course appear much

Ž . Ž . xearlier in the literature, such as in Le Cam 1953 and Hajek 1972 .´
� 4It is well known that there exist ‘‘superefficient’’ estimators d such thatn

the fixed parameter limit satisfies
R u , dŽ .n n

4.2 lim sup F 1Ž .
m uŽ .nª`

with strict inequality for some u g Q. However, it is also well known that the
Ž .set on which inequality holds in 4.2 must have measure 0. Also, when

p s 1, d must behave poorly somewhere in a neighborhood of any point ofn
w Ž .superefficiency. See Brown and Low 1996b for a recently obtained result of

xthis type. It follows that in these parametric models
R u , dŽ .n n

4.3 sup lim sup G 1Ž .
m uŽ .nª`5 5l- u -w

since the set of superefficiency has measure zero. Thus the answer here to the
Ž . � 4question at 3.5 is always negative, and there cannot exist estimators dn
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which exhibit superefficiencies like those to be displayed in Sections 5, 6
and 8.

5. Global superefficiency: linear estimation over Sobolev parame-
ter space. Consider the canonical Sobolev setting described in Section 3.
The situation is very similar to that described in Section 2, as follows.

� 4THEOREM 5.1. Let « ) 0. Then there is a sequence of linear estimators dn
such that

R u , dŽ .n n
5.1 sup lim sup F « .Ž .

m uŽ .nª`5 5u #G«

Ž .PROOF. The minimax value, defined in 3.3 , is

5.2 M B s C B2rŽ2 rq1.Ž . Ž . r

Ž .for an appropriate C ) 0. See, for example, Efromovich and Pinsker 1984r
Ž . Ž . 1rŽ2 ry1.or Donoho, Liu and MacGibbon 1990 . Let a ) 0, b n s n and

y1Ž . 2 rrŽ2 rq1.g n s n , and define the linear estimator via truncation as

z , if i F ab n ,Ž .i5.3 d sŽ . Ž .n i ½ 0, if i ) ab n .Ž .

Then the usual variance plus bias-squared decomposition yields

`ab nŽ .2y1 y1 25 5g n E d y u s q g n uŽ . Ž .Ž . Ýu ib nŽ . w Ž .xa b n q1

gy1 nŽ .
2 r 2F a q i uÝ i2 r

ab nŽ .Ž . w Ž .xa b n q1

5.4Ž .

ª a

y1Ž . Ž Ž ..2 r 2 r 2since g n r b n s 1 and since Ý i u ª 0 as n ª `, for anyw a b Žn.xq1 i
2rŽ2 rq1. Ž . Ž . Ž5 5.fixed a ) 0. The choice a s C « then yields 5.1 , since m u G M «r

5 5for u # G « . I

Ž .Here is a converse to Theorem 5.1 which shows that 5.1 is the strongest
possible statement.

� 4THEOREM 5.2. Let d be any sequence of linear estimators. Then, forn
every 0 F l - u F `,

R u , dŽ .n n
5.5 sup lim sup ) 0.Ž .

m uŽ .nª`5 5l- u #-u
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� 4 Ž .PROOF. The proof begins by assuming d is a sequence for which 5.5 isn
false and then constructing a particular u for which

R u , dŽ .n n
lim sup ) 0,

m uŽ .nª`

a contradiction. Details of the argument appear in the Appendix. I

6. Global superefficiency: general estimation over Sobolev space.
Estimators in the previous section were required to be linear. If that restric-
tion is lifted, then a somewhat stronger form of global superefficiency can
occur, as demonstrated in the following theorem.

THEOREM 6.1. For the Sobolev setting of Section 3 there is a sequence of
� 4estimators d such thatn

R u , dŽ .n n
6.1 lim s 0Ž .

m unª` Ž .
for all u / 0.

PROOF. We will explicitly construct an adaptive sequence of estimators
with the desired property. We use this particular sequence because it is easy

Ž .to define and its direct explicit definition leads to a simple verification of 6.1 .
Ž .However, we note that many other adaptive estimators would also yield 6.1 .

In particular, a referee has correctly pointed out that we could instead have
Ž .used the original Efromovich and Pinsker 1984 adaptive estimator to obtain

Ž .6.1 in a natural fashion.
Our estimator is based on a suggestion made to us by D. Donoho in a

different but related context. There may also be some connection of the
Ž .following to ideas in Stein 1966 .

Ž . Ž . Ž .jy 1 jPartition z s z , . . . as y s y , . . . , where y s z , . . . , z ; u s1 Ž1. Ž j. 2 2 y1
˜Ž . Ž . Ž .u , . . . can be similarly partitioned as u s u , . . . so that u s E Y .1 Ž1. Ž j. Ž j.

˜ 2 2 jy15 5 5 5Write y y u s z y u in the natural manner. Note that y is 2 -Ž j.
dimensional. Let

qqjy13r2 2 y 2Ž . Ž .
d y s 1 y y .Ž .nŽ j. Ž j. Ž j.25 5ž /n yŽ j.

˜Ž .Then d s d , . . . is an estimate of u and thus yields an estimate of u inn nŽ1.
wthe obvious manner. Note that the customary positive-part James]Stein

Ž . xformula would use 1 in place of 3r2 in the above expression. We then need
the following lemma.

Ž 2 . pLEMMA 6.1. Let Y ; N m, s , m g R , be a p-dimensional normal vari-p
Ž .able with p G 3. There is a z ) 0 independent of p G 3 such that

q
3r2 p y 2Ž . Ž .

6.2 d y s 1 y yŽ . Ž . 2 2ž /5 5y rs
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satisfies

5 5 2 5 5 2 2 2 y1 yz p6.3 E d y m F m n s p q s z e .Ž . Ž . Ž .m

PROOF. It suffices to consider the case s 2 s 1. Then, by Stein’s unbiased
w Ž . xestimate of risk see, e.g., Berger 1985 , page 361 ,

5 5 2 5 5 2
2 2E d y m F E Y y p I Y q pI Y .Ž . Ž .Ž . Ž .ž /m m 5 y 5 F 3Ž py2.r2 5 y 5 ) 3Ž py2.r2

Ž .The expectation on the right-hand is bounded by p. Hence as is well known
Ž5 5 2 .E d y m F p.m

5 5 2It remains only to consider the case m F p. In that case standard large
w Ž . xdeviation results see, e.g., Brown 1986 , page 211 yield the existence of an

« ) 0 such that

5 5 2 y« pP Y ) 3 p y 2 r2 - e ; p G 3.Ž .� 4Ž .m

wHere are some details of this result. Note that the probability is maximized
5 5 2 5 5 2 p 2when m s p, and then y has the same distribution as Ý z , whereis1 i
Ž . 2z ; N 1, 1 , independent. Write w s z y 1 and consider the exponentiali i i

family generated by the distribution of W. This is a regular exponential
Ž y1 p y1Ž Ž . . .family. Hence, for p G 9, P p Ý W ) 1r6 G p 3 p y 2 r2 y 1 -i'1 i

y« 9p Ž�5 5 2 Ž . 4.2e for suitable « 9 ) 0. Finally, for 3 F p F 8, P Y ) 3 p y 2 r25 m 5 sp
x- 1. Also

5 5 2 5 5 2 5 5 2
2E Y y p I - E Y y p P Y F 3 p y 2 r2Ž .� 4Ž . Ž . Ž .ž /m 5 y 5 F 3Ž py2.r2 m m

5 5 2 5 5 2- E Y y p y m .Ž .m

Hence

5 5 2 5 5 2 y« p
2 2E d y m F m q pe I m q pI mŽ . Ž .Ž . Ž .m 5 m 5 - p 5 m 5 G p

5 5 2 y1 yz pF m n p q z eŽ .
for z s «r2. I

Ž .Then, by Lemma 6.1 with b, g as in Theorem 5.1 ,
`

2y1 5 5R u , d s g n E d y uŽ . Ž . Ý ž /n n nŽ j. Ž j.
js1

jy1 y1 jy1`3 2 z exp y2 zŽ .2y1 5 5F g n q u n qŽ . Ý Ž j.ž /½ 5n n njs3

l jy1 `2 12y1 5 5F g n q u q OŽ . Ý Ý Ž j. ž /½ 5n njs1 lq1

6.4Ž .

l `2 y 1 1
y1 2F g n q u q OŽ . Ý i ž /½ 5n nlis2
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Ž . Ž .for any integer l s l n . Now, choose « ) 0 and choose l so that «b n F
l Ž .2 y 1 F 2«b n . Then

`2«b nŽ .y1 2R u , d F g n q u q o 1Ž . Ž . Ž .Ýn n i½ 5n Ž .«b n

`1
y1 2 r 2F 2« q g n i u q o 1Ž . Ž .Ý i2 r2«b nŽ . Ž .«b n

6.5Ž .

s 2« q o 1 .Ž .
This completes the proof of the theorem since « ) 0 is arbitrary. I

Ž .Note that the estimator sequence defined by 6.2 does not depend on r. It
also can easily be shown to be adaptive in rate to both B and r in a minimax
sense.

That is,

R u , dŽ .n n
6.6 sup lim sup sup F 2.5.Ž .

M BŽ .nª`B)0, r)0 Ž .ugQ Br

wChoose « to depend on B, r in an optimal fashion in the proof of Theorem 6.1
Ž . xand use Donoho, Liu and MacGibbon 1990 .

Ž .Property 6.6 is moderately good albeit not the best possible since the
Ž .Efromovich]Pinsker 1984 adaptive estimator does even better by obtaining

the optimal bound of 1. This shows that estimators which are globally
Ž .superefficient in the sense of 6.1 need not behave badly with respect to

uniform limits. This contrasts with the standard parametric superefficiency
discussed in Section 4.

Theorem 6.1 leaves open the logical possibility that there exists an h ª 0n
and a sequence of estimators such that

6.7 sup lim sup hy1 n R u , d - `.Ž . Ž . Ž .n n
nª`5 5l- u #-u

Ž . � 4In fact we do not know whether there exist any h n ª 0 and d for whichn
Ž . Ž .6.7 is valid. However, Theorem 6.2, below, does show that if any such h n
exists, then it must converge to zero very slowly.

Ž . � 4 Ž .THEOREM 6.2. Suppose 6.7 holds for some d and some h n ª 0. Then,n
for any h ) 0,

Ž . Ž .1qh r 2 rq1lim h n ln n s `.Ž . Ž .
nª`

See the Appendix for the proof.

7. An example where the fixed parameter rate exists. Here is an
example where we can show that there cannot be superefficiency as extreme
as that in Sections 5 and 6. In fact we do not know here whether there is an
estimator sequence which is superefficient on all of Q.
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� Žn.4Let Z be as in Section 3, but definei

Q B s u : u 2 F B2ri 2 r , i s 1, . . . .Ž . � 4i

Ž . Ž . Ž2 ry1.r2 r Ž5 5 2 .and Q s DQ B . For this example define R u , d s n E u y dn
since nyŽ2 ry1.r2 r is now the correct minimax rate. With this definition M and

Ž . Ž .m can be defined via the formal expressions 3.3 and 3.4 , and it can be
shown that

7.1 M B s C1B1r rŽ . Ž . r

Ž . Ž .so that 0 - m u - ` for u / 0. See Donoho, Liu and MacGibbon 1990 .

THEOREM 7.1. In the above setting there is a g ) 0 such that

R u , dŽ .n n
7.2 inf sup lim sup ) g .Ž .

m u� 4 Ž .d nª`u/0n

Ž .NOTE. The left-hand side of 7.2 is necessarily bounded above by 1, but
we do not know whether 1 is a sharp bound. If it were, that would mean that
there is no estimator sequence which is superefficient everywhere. A minor
modification of the proof would show that

R u , dŽ .n n
inf sup lim sup ) g .

m u� 4 Ž .d nª`Ž .n lFm u Fu

Ž 2 . 2PROOF. In the following lemma let Y ; N m, s . Suppose s is known
< <and m F t . Define the truncated loss

27.3 L m , d s m y d n C , d g R.Ž . Ž . Ž .C

Let g denote the Huber]Bickel priort

7.4 g m s ty1I m cos2 mrtŽ . Ž . Ž . Ž .t � m Ft 4

w Ž . Ž .xsee Huber 1981 and Bickel 1981 , and let G denote the correspondingt

probability distribution. Let R denote the risk function correspondingLC

to L .C

LEMMA 7.1. There is an « ) 0 such that for every C ) 10s 2 the risk RLC

satisfies

7.5 inf R m , d g m dm G « t 2 n s 2 .Ž . Ž . Ž . Ž .H L tCd

wŽ . xPROOF. This result follows from combining Brown 1992 , Theorem 2.1
wŽ . xwith Brown and Gajek 1990 , Example 3.3 . I
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U Ž . ` Ž .yrNow let G* denote the product distribution Q, G du s Ł G du .B is1 B ii

Then

Ž2 ry1.r2 r 5 5 2 UE n d y u n 10 G duŽ .Ž .H u n B

1r r 1r2 rB n 102 UŽ2 ry1.r2 rG E n d y u n G duŽ . Ž .Ý H u ni i Bž /nis17.6Ž .
B1r rn1r2 r

Ž2 ry1.r2 r 2 y2 r y1G n « B i n nŽ .Ý
is1

s «B1r r

since ny1 F B2 iy2 r for i F B1r rn1r2 r.
Ž Ž2 ry1.r2 r 5 5 2 . Ž Ž2 ry1.r2 r 5 5 2 .Then E n d y u G E n d y u n 10 andu n u n

Ž2 ry1.r2 r 5 5 2sup lim sup E n d y u n 10Ž .u n
nª`Ž .ugQ B

Ž2 ry1.r2 r 5 5 2G lim sup E n d y u n 10 G* duŽ .Ž .H u n
nª`

Ž2 ry1.r2 r 5 5 2G lim sup E n d y u n 10 G* duŽ .Ž .H u n
nª`

7.7Ž .

by the bounded convergence theoremŽ .
G « B1r r

Ž . Ž . Ž .by 7.6 . In view of 7.1 this verifies 7.2 and completes the proof of Theorem
7.1. I

8. An example with global superefficiency in rate. In this example
an even more dramatic form of global superefficiency holds. Here, for any

Ž . Ž . Ž 1r3.function h n ª ` with h n s o n there is an estimator sequence d forn
which

R u , dŽ .n n
8.1 lim sup h n s 0Ž . Ž .

m uŽ .nª`

Ž 2r3.with R the normalized risk having the appropriate normalization s nn
Ž .for which 0 - m u - `, u / 0. This means that there is a sequence of

estimators for which fixed parameter squared-error risk goes to zero faster
y1Ž . y2r3than the rate h n n even though the minimax mean squared-error risk

goes to zero at the rate ny2r3.
This example involves a somewhat artificial parameter space; we do not

know whether examples of this behavior exist having more familiar parame-
ter spaces.
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It is most convenient to formulate this example in the white-noise setting,
as mentioned in Section 3, where one observes

1
dZ t s f t dt q dB t , t g 0, 1 .Ž . Ž . Ž . Ž .'n

� 4Let c, d, r, m, g R and let Q s f : m ) 0 wherec, d, r , m

< <d y m t y r k c, if d G c,Ž .
f t sŽ .c , d , r , m ½ < <d q m t y r n c, if d - c.Ž .

5 5 5 5 < < 5 5The functional ? # is defined by f # s m with f # s 0 ifc, d, r , m c, d, r , m
Žc s d. The values of c, d and r could be bounded without affecting the

. Ž .following results. The goal is to estimate f 0 . For this example define
Ž . 2r3Ž Ž ..2R f , d s n d y f 0 . It can be shown, using the methods of Donoho andn
Ž . Ž . y2r3Liu 1991a, b or Brown and Farrell 1990 , that n is the correct minimax

rate, so that

5 58.2 u - M B - ` for B / 0, and 0 - m f - ` for f # / 0.Ž . Ž . Ž .

Ž . Ž . Ž 1r3.THEOREM 8.1. Let h n ª ` and h n s o n . Then there exists an
Ž .estimator sequence such that 8.1 holds.

Ž .PROOF. Let K t be any bounded continuous function satisfying

< <K t s 0 if t G 1, K t s K yt ; t ,Ž . Ž . Ž .

< <K t dt s 1, t K t dt s 0.Ž . Ž .H H8.3Ž .

Let d be the linear estimatorn

8.4 d Z t s h n K h n t dZ t .Ž . Ž . Ž . Ž . Ž .Ž . Ž .Hn

FIG. 1. f for d ) c.c, d, r , m
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A routine calculation yields

8.5 Var d s ny1 h n K 2 t dt .Ž . Ž . Ž . Ž .Hf n

y1Ž . Ž . Ž .If r s 0 and h n - d y c F d y c rn, then

E d s h n f T K h n t dtŽ . Ž . Ž . Ž .Ž .Hf n

s f hy1 n v K v dv by a change of variablesŽ . Ž . Ž .Ž .H
y1 < <s d y mh n v K v dvŽ . Ž .Ž .H

by the definition of f and the bound on g nŽ .
s d s f 0Ž .

Ž . y1Ž . Ž . Ž .by 8.3 . Symmetrically, if r s 0 and h n - c y d, then also E d s f 0 .f n
Ž . y1Ž .When d y c ) 0, r q b y a rm s 0 and h n - d y c, then

0 y1E d s c y mh n v K v dv s c s f 0Ž . Ž . Ž . Ž .Ž .Hf n
y1

Ž . 0 Ž .since 8.3 entails H vK v dv s 0. All other cases similarly yieldy1

8.6 E d s f 0 ; f g FFŽ . Ž . Ž .f n

Ž . Ž . Ž .for all n sufficiently large depending on f . Together 8.5 and 8.6 and the
Ž .definition of g yields 8.1 . I

y1r3 Ž .There is a converse result to that in Theorem 8.1; if lim inf n h n ) 0,
Ž .then 8.1 does not hold.

� 4THEOREM 8.2. For any dn

28.7 lim sup lim sup E n d y f 0 s `.Ž . Ž .Ž .žf n0, d ,0 , 1
nª`< <dyc ª0

PROOF. For convenience, let f s f . Consider the one parameterd 0, d, 0, 1
� < < 4 Ž .subfamily of FF defined by f : d F 1 . The Fisher information is I d s 2 d,d

Ž .with lim I d s 0. Consequently,dª 0

2lim lim inf E n d y d n B g d ddŽ . Ž .Ž .H f n Ldnª`Bª`

y1 < <G 1r2 L s min I d : d G L .� 4Ž .
wThis modification and extension of Lemma 7.1 also follows from Brown
Ž . Ž . x1992 and Brown and Gajek 1990 . Choose B sufficiently large and use the

Ž .bounded convergence theorem as in the proof of Theorem 7.1 to conclude
2sup lim sup E n d y d G 1r4L.Ž .Ž .f nd

nª`< <d FL

Ž .This yields 8.7 . I
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APPENDIX

Two proofs.

� 4PROOF OF THEOREM 5.2. It suffices to prove that, for any sequence d ,n

A.1 sup lim sup R u , d ) 0.Ž . Ž .n n
nª`Ž .ugQ B

Ž . 1rŽ2 rq1. y1Ž . 2 rrŽ2 rq1. � 4As before, let b n s n and g n s n . Let d be any se-n
Ž .quence of linear estimators. Write d as d s M z, where M is ` = ` . Letn n n n

2 Ž .2ll s Ý M and letj n i jn, i

v n s a i : ll 2 G 1r4 .Ž . � 4n , i

Ž . � 4 Ž .Note that Var d G v n r4n. Hence, either d satisfies A.1 orn n

v nŽ .
A.2 ª 0 as n ª `,Ž .

b nŽ .

y1Ž . Ž . Ž . 2since g n s b n rn. So, assume A.2 . Also assume ll - ` for all nn, i
Ž . � 4sufficiently large, since otherwise A.1 is satisfied by d . For convenience,n

assume with no loss of generality, that ll 2 - ` for all n, i.n, i
wLet w s wrj with w ) 0 an appropriate, small constant e.g., w sj

Ž 3 ` 2 .y1r2 xA Ý 1rj . We construct inductively the coordinates of a point u g Qjs1
Ž .such that A.1 is true. To begin, choose n so that1

b nŽ .1
A.3 w G 1, 2v n F n .Ž . Ž .1 1 1v nŽ .1

Ž . Ž . Ž .This is possible because of A.2 and because b n s o n . Let

A.4 i s min i : v n F i F 2v n q 1, ll 2 F 1r4 ;Ž . Ž . Ž .� 41 1 1 i

Ž Ž ..ri exists because of the definition of v. Let u s w r v n . Now choose1 i 1 11
` Ž .2 2 r 2 2m G i so that Ý M rm F u r8. This is possible because ll - `.1 1 jsm n i 1 i n , i1 1 1, j 1 1 1

Then define u s 0 for 1 F i F m , i / i .1 1
Now proceed inductively. Given n , m and u for i s 1, . . . , mky1 ky1 i ky1

choose n so thatk

b nŽ .k
A.5 w G 1m - v n F n .Ž . Ž .k ky1 k k r2v nŽ .k

Let

A.6 i s min i : v n F i F 2v n q 1, ll 2 F 1r4 .Ž . Ž . Ž .� 4k k k i
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Let
mky1¡ r

w r v n , if M u F 0,Ž .Ž . Ž .Ýk k n ik k , j~ js1A.7 u sŽ . ik
r¢yw r v n , otherwise.Ž .Ž .k k

Finally, choose m G i so thatk k

`
2 2 2A.8 M rm F u r8Ž . Ž .Ý n k ii , jk kk

jsm k

and define

A.9 u s 0 if m - i F m and i / i .Ž . i ky1 k k

Ž .It remains to verify that u g Q and that A.1 is valid. Toward the first
goal, note for u as defined above

` `
2 r2 r 2 2 r 2 2 r 2 3 2A.10 i u s i u s i w r v n F A w F 1.Ž . Ž .Ž .Ý Ý Ý Ýi k i k k k kk

is1 ks1

Hence u g Q.
Toward the second goal, note

2 2m2 `k

A.11 M u F 2 M u q 2 M u .Ž . Ž . Ž . Ž .Ý Ý Ýn j n j n jii , j i , jk k kž / k , jk k ž /ž /
j js1 jsm q1k

Now,
mk

M u F M u by A.7 and A.9Ž . Ž .Ž . Ž .Ý n j n ii j i ik k kk , k , k
js1

F u r2ik

Ž . Ž .since M F 1r2 by A.6 . Alson i ik k , k

2` ` `
2 2M u F M uŽ . Ž .Ý Ý Ýn j n ji , j i , jk kk kž / ž / ž /

jsm q1 jsm q1 jsm q1k k k

`
2 2 rF M m q 1 by A.10Ž . Ž .Ž .Ý n ki jk k ,ž /

jsm q1k

F u 2r9ik

Ž .by A.8 . Hence

2`
2A.12 M u F 3u r4.Ž . Ž .Ý n j ii jk kk ,ž /

js1
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This inequality implies

225 5E d y u G E d y uŽ .ž /u n u n iž /ik k kk

2
G E d y uŽ .ž /u n iik kk

2'3
2G 1 y u by 6.13Ž .ikž /2

A.13Ž .

w2
k

) 0.01 .2 r
v nŽ .Ž .k

y1Ž . Ž Ž ..2 rRecall that g n s b n . Hencek k

2 r
b nŽ .k2y1 25 5E g n d y u G 0.01 w G 0.01Ž .ž /u k n kk ž /v nŽ .k

Ž . Ž .by A.5 . This verifies A.1 and completes the proof. I

� 4PROOF OF THEOREM 6.2. Fix d . It suffices to show that the choicen

A.14 h n s lnyŽ1 qh .rŽ2 rq1. nŽ . Ž . Ž .

Ž .does not satisfy 6.7 . Indeed, it is enough to show that, for arbitrary B ) 0,
Ž .and for h as in A.14 ,

2 rrŽ2 rq1. 5 5 2A.15 lim sup lim sup h n n E d y u s `.Ž . Ž . Ž .u n
Cª` nª`5 50F u #FB

w Ž .Note that a 0 replaces the lower bound ll in 6.7 ; but it is easy to show by
Ž . Ž . xtranslation that A.15 implies 6.7 is not satisfied.

Ž .To show A.15 , let

K
2M si Ž2 rq1. Ž1qhr2.i ln iŽ .

Ž .for an appropriate K ) 0, depending only on B, r as specified in A.16 below.
Then

1
2 r 2 2A.16 i M s K - BŽ . Ý Ýi Ž1qhr2.i ln iŽ .

for appropriate K ) 0.
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` Ž . �Let G* s Ł G with G as in 7.4 . Then G* is supported on u :is1 M Mi i
5 5 4 Ž . Ž . Ž .u # F B by A.16 . Reasoning as in 7.6 , 7.7 then yields

sup lim sup lnŽ1qh .rŽ2 rq1. n R u , dŽ . Ž .n n
nª`5 5u #FB

1
2 rrŽ2 rq1. Ž1qh .rŽ2 rq1. 2G lim sup n ln n n MŽ .Ý i½ 5ž /nnª`

G lim sup n2 rrŽ2 rq1. lnŽ1qh .rŽ2 rq1. nŽ .½
nª`

A.17Ž .

n1rŽ2 rq1.

= Ž . Ž .1qhr2 r 2 rq1 Ž1qhr2.rŽ2 rq1. 5n 2r q 1 ln nŽ . Ž .
since

Ž . Ž .y 1qhr2 r 2 rq1 1rŽ2 rq1.1 2r q 1 nŽ .
2- M for i F .i Ž1qhr2.rŽ2 rq1.n ln nŽ .

Ž . Ž .This shows that 6.7 is not satisfied, since the right-hand side of A.17 is
infinite. I
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