WEIGHTS OF $\bar{\chi}^{2}$ DISTRIBUTION FOR SMOOTH OR PIECEWISE SMOOTH CONE ALTERNATIVES

By Akimichi Takemura and Satoshi Kuriki
University of Tokyo and Institute of Statistical Mathematics

We study the problem of testing a simple null hypothesis about the multivariate normal mean vector against smooth or piecewise smooth cone alternatives. We show that the mixture weights of the $\bar{\chi}^{2}$ distribution of the likelihood ratio test can be characterized as mixed volumes of the cone and its dual. The weights can be calculated by integration involving the second fundamental form on the boundary of the cone. We illustrate our technique by examples involving a spherical cone and a piecewise smooth cone.

1. Introduction. We first state our problem and then give an outline of the paper. In Section 1.2 we prepare basic material from convex analysis.
1.1. The problem. We consider the problem of testing a simple null hypothesis about the multivariate normal mean vector against a convex cone alternative in the following canonical form. Let $Z \in R^{p}$ be distributed according to the p-dimensional multivariate normal distribution with mean vector μ and identity covariance matrix $N_{p}\left(\mu, I_{p}\right)$. Let K be a closed convex cone with nonempty interior in R^{p}. Our testing problem in the canonical form is

$$
\begin{equation*}
H_{0}: \mu=0 \quad \text { vs. } \quad H_{1}: \mu \in K . \tag{1}
\end{equation*}
$$

The main objective of this paper is to study the null distribution of the likelihood ratio statistic for K with smooth or piecewise smooth boundary using techniques of convex analysis and differential geometry.

In addition to (1), consider a complementary testing problem

$$
\begin{equation*}
H_{1}: \mu \in K \quad \text { vs. } \quad H_{2}: \mu \in R^{p} . \tag{2}
\end{equation*}
$$

In describing the complementary testing problem, we need to use the dual cone K^{*} of K :

$$
K^{*}=\{y \mid\langle y, x\rangle \leq 0, \quad \forall x \in K\},
$$

where \langle,$\rangle denotes the inner product.$
For $x \in R^{p}$ let x_{K} denote the orthogonal projection of x onto K and let $x_{K^{*}}$ denote the orthogonal projection of x onto K^{*}. Then the likelihood ratio test of (1) is equivalent to rejecting H_{0} when

$$
\begin{equation*}
\bar{\chi}_{01}^{2}=\left\|Z_{K}\right\|^{2} \tag{3}
\end{equation*}
$$

[^0]is large and the likelihood ratio test of (2) is equivalent to rejecting H_{1} when
\[

$$
\begin{equation*}
\bar{\chi}_{12}^{2}=\left\|Z_{K^{*}}\right\|^{2} \tag{4}
\end{equation*}
$$

\]

is large. We consider the joint distribution of $\bar{\chi}_{01}^{2}$ and $\bar{\chi}_{12}^{2}$ under H_{0}.
The statistics $\bar{\chi}_{01}^{2}$ and $\bar{\chi}_{12}^{2}$ in (3) and (4) are called chi-bar-square statistics and their distributions are finite mixtures of chi-square distributions when H_{0} is true. In this paper we call the mixing probabilities the weights. Generally, it is not easy to derive the explicit expression of the weights. Here we list some examples of cones whose weights are known explicitly or can be easily calculated numerically. The following are such examples of practical importance:

$$
\begin{aligned}
& K_{1}=\left\{\mu \mid \mu_{1} \leq \cdots \leq \mu_{p}\right\}, \\
& K_{2}=\left\{\mu \mid \mu_{1} \leq \mu_{j}, j=2, \ldots, p\right\} \\
& K_{3}=\left\{\mu \left\lvert\, \frac{\mu_{1}+\cdots+\mu_{j}}{j} \leq \frac{\mu_{j+1}+\cdots+\mu_{p}}{p-j}\right., j=1, \ldots, p-1\right\} .
\end{aligned}
$$

K_{1} and K_{2} are defined by the partial orders referred to as simple order and simple tree order, respectively. For these three cones the null hypothesis is usually $\mu_{1}=\cdots=\mu_{p}$, the hypothesis of homogeneity. However, the testing problems can be easily reduced to the canonical form in (1). The corresponding weights are given by recurrence formulas. In particular, the weights for K_{1} are known to be expressed in terms of the Stirling number of the first kind. The weights for K_{3} are obtained as the reverse sequence of those of K_{1}. See Chapter 3 of Barlow, Bartholomew, Bremner and Brunk (1972) and Chapter 2 of Robertson, Wright and Dykstra (1988) and the references therein for the weights of these cones as well as the related statistical inference. See also Bohrer and Francis (1972a, b) and Wynn (1975), in which $\bar{\chi}^{2}$ distributions are treated in the context of constructing the one-sided Scheffé-type simultaneous confidence regions.

The cones K_{1}, K_{2} and K_{3} given previously are polyhedral, that is, the cones defined by a finite number of linear constraints. The following are examples of nonpolyhedral cones whose weights are known:

$$
\begin{aligned}
& K_{4}=\left\{\mu \mid \mu_{1} \geq\|\mu\| \cos \psi\right\}, \quad 0<\psi<\frac{\pi}{2} \\
& K_{5}=\{M: p \times p \text { symmetric } \mid M \text { is nonnegative definite }\} .
\end{aligned}
$$

K_{4} is the spherical cone which is smooth in the sense of Section 2.2 with no singularities except for the origin. Takemura and Kuriki (1995) show that K_{5} is a piecewise smooth cone in the sense of Section 2.3 and that the singularities of K_{5} exhibit a beautiful recurrence structure. The weights for K_{4} and K_{5} were given by Pincus (1975) and Kuriki (1993), respectively.

For the polyhedral cone, the geometrical meaning of the weights is clear, since the weights can be expressed in terms of the internal and external angles. Compared with the polyhedral cone, the meaning of the weights for
nonpolyhedral cones is not clear. In this paper we clarify the geometrical meaning of the weights in the case that the boundary of the cone is smooth or piecewise smooth.

In Section 2 we prove our basic theorem relating the weights to the mixed volumes of K and its dual K^{*}. For smooth or piecewise smooth cones we express the mixed volumes as integrals involving the second fundamental form on the boundary of the cone. We apply our technique to the cone K_{4}. The application to the cone K_{5} is discussed in Takemura and Kuriki (1995).

Throughout this paper by "smooth" we mean the class C^{2}.
1.2. Preparation from convex analysis. Here we summarize basic results from convex analysis. These results are taken from Webster (1994). Let $U=$ U_{p} be the closed unit ball and let K be a convex set in R^{p}. For $\lambda \geq 0$, the λ-neighborhood of K or outer parallel set of K at distance λ is defined as

$$
(K)_{\lambda}=K+\lambda U,
$$

where the addition is the vector sum. The Hausdorff distance between two nonempty compact convex sets K_{1}, K_{2} is defined by

$$
\rho\left(K_{1}, K_{2}\right)=\inf \left\{\lambda \geq 0 \mid K_{1} \subset\left(K_{2}\right)_{\lambda} \text { and } K_{2} \subset\left(K_{1}\right)_{\lambda}\right\} .
$$

Endowed with the Hausdorff distance, the set of compact convex sets becomes a complete metric space [Section 1.8 of Schneider (1993a)].

A polytope is the convex hull of a finite number of points. Any compact convex set can be approximated by polytopes.

Lemma 1.1 [Theorem 3.1.6 of Webster (1994)]. Let K be a nonempty compact convex set in R^{p} and let $\varepsilon>0$. Then there exist polytopes P, Q in R^{p} such that $P \subset K \subset Q$ and $\rho(K, P) \leq \varepsilon, \rho(K, Q) \leq \varepsilon$.

We deal with convex cones which are not bounded. However, uniform convergence on any bounded region is sufficient for us because we are concerned with the standard normal probabilities of the cones. Let K be a convex cone and denote $K_{(\lambda)}=K \cap \lambda U$. In view of the fact that polytopes are bounded polyhedral sets [Theorem 3.2.5 of Webster (1994)], the next lemma follows easily from Lemma 1.1.

Lemma 1.2. Let K be a closed convex cone in R^{p} and let $\lambda \geq 0, \varepsilon>0$. Then there exist polyhedral cones P, Q in R^{p} such that $P \subset K \subset Q$ and $\rho\left(K_{(\lambda)}, P_{(\lambda)}\right) \leq \varepsilon, \rho\left(K_{(\lambda)}, Q_{(\lambda)}\right) \leq \varepsilon$.

Now we introduce the notion of mixed volumes of two compact convex sets K_{1}, K_{2} in R^{p}. Let $v_{p}(\cdot)$ denote the volume in R^{p} and consider $v_{p}\left(\nu K_{1}+\lambda K_{2}\right)$ for $\nu, \lambda \geq 0$. Mixed volumes $v_{p-i, i}\left(K_{1}, K_{2}\right), i=0, \ldots, p$, are defined implicitly by the following lemma.

Lemma 1.3 [Theorem 6.4.3 of Webster (1994)]. $v_{p}\left(\nu K_{1}+\lambda K_{2}\right)$ is a homogeneous polynomial of degree p in ν and λ with nonnegative coefficients, that is,

$$
v_{p}\left(\nu K_{1}+\lambda K_{2}\right)=\sum_{i=0}^{p}\binom{p}{i} \nu^{p-i} \lambda^{i} v_{p-i, i}\left(K_{1}, K_{2}\right),
$$

where $v_{p, 0}\left(K_{1}, K_{2}\right)=v_{p}\left(K_{1}\right)$ and $v_{0, p}\left(K_{1}, K_{2}\right)=v_{p}\left(K_{2}\right)$.
In the particular case $\nu=1$ and $K_{2}=U$, that is, when we are considering the outer parallel set of $K_{1}, v_{p-i, i}\left(K_{1}, U\right)$ is called the quermassintegral of K_{1} and $\binom{p}{i} v_{i, p-i}\left(K_{1}, U\right) / \omega_{p-i}$ is called the intrinsic volume of K_{1}, where

$$
\begin{equation*}
\omega_{q}=\frac{\pi^{q / 2}}{\Gamma(q / 2+1)} \tag{5}
\end{equation*}
$$

is the volume of the unit ball U_{q} in R^{q}. It is also known that mixed volumes are continuous in K_{1}, K_{2} with respect to the Hausdorff metric [Theorem 6.4.7 of Webster (1994)].
2. Weights of $\bar{\chi}^{2}$ distribution as mixed volumes. In this section we first prove our basic theorem which states that the weights of the $\bar{\chi}^{2}$ distribution are the mixed volumes of the convex cone K and its dual cone K^{*}. Then we apply the basic theorem to the case of a smooth convex cone using the fact that mixed volumes can be evaluated as integrals involving the second fundamental form on the boundary of K. Our result for the case of R^{3} is very easily stated and the connection to the classical Gauss-Bonnet theorem will be discussed. We illustrate our result for the smooth cone with the cases of the elliptical cone in R^{3} and the spherical cone in R^{p}. Finally, we discuss the case of the "piecewise smooth" cone.
2.1. Basic theorem. Here we prove our basic theorem stating that the weights of $\bar{\chi}^{2}$ distributions are mixed volumes. Since the concept of mixed volumes applies equally to polyhedral as well as smooth cones, our Theorem 2.1 covers both cases.

Theorem 2.1. Consider the testing problems (1) and (2). Let $K_{(1)}=K \cap U$ and $K_{(1)}^{*}=K^{*} \cap U$ and let $v_{p-i, i}\left(K_{(1)}, K_{(1)}^{*}\right), i=0, \ldots, p$, be the mixed volumes of $K_{(1)}$ and $K_{(1)}^{*}$. Then, under H_{0},

$$
\begin{equation*}
P\left(\bar{\chi}_{01}^{2} \leq a, \quad \bar{\chi}_{12}^{2} \leq b\right)=\sum_{i=0}^{p}\binom{p}{i} \frac{v_{p-i, i}\left(K_{(1)}, K_{(1)}^{*}\right)}{\omega_{i} \omega_{p-i}} G_{p-i}(a) G_{i}(b), \tag{6}
\end{equation*}
$$

where ω_{q} is the volume of the unit ball in R^{q} given in (5) and $G_{q}(t)$ is the cumulative distribution function of the chi-square distribution with q degrees of freedom.

Proof. Let $P_{n}, n=1,2, \ldots$, be a sequence of polyhedral cones converging to K in the sense of Lemma 1.2. For a given point $x \in R^{p}$, let $x_{P_{n}}$ denote the orthogonal projection onto P_{n}. Then it is easy to show that $x_{P_{n}}$ converges to x_{K}. At the same time the dual cone P_{n}^{*} converges to K^{*} and the projection $x_{P_{n}^{*}}$ converges to $x_{K^{*}}$. Since pointwise convergence implies convergence in law, we have

$$
\begin{align*}
P\left(\bar{\chi}_{01}^{2} \leq a, \bar{\chi}_{12}^{2} \leq b\right) & =P\left(\left\|Z_{K}\right\|^{2} \leq a,\left\|Z_{K^{*}}\right\|^{2} \leq b\right) \\
& =\lim _{n \rightarrow \infty} P\left(\left\|Z_{P_{n}}\right\|^{2} \leq a,\left\|Z_{P_{n}^{*}}\right\|^{2} \leq b\right) \tag{7}
\end{align*}
$$

In view of the continuity of the mixed volumes, (7) shows that it is enough to prove our theorem for polyhedral cones.

From now on let K be a polyhedral cone. In this case the weights of the $\bar{\chi}^{2}$ distribution are well understood in terms of the internal and external angles. Therefore, we only need to verify that these angles can be expressed in terms of mixed volumes. Let F be a (closed) face of K and let $\beta(0, F)$ and $\gamma(F, K)$ be the internal angle and the external angle. See the Appendix for precise definitions. Then it is well known that the joint distribution of $\bar{\chi}_{01}^{2}$ and $\bar{\chi}_{12}^{2}$ is a mixture of independent chi-square distributions

$$
P\left(\bar{\chi}_{01}^{2} \leq a, \quad \bar{\chi}_{12}^{2} \leq b\right)=\sum_{i=0}^{p} w_{p-i} G_{p-i}(a) G_{i}(b)
$$

The mixture weights are expressed as

$$
w_{d}=\sum_{\substack{F \in \mathscr{F}(K) \\ \operatorname{dim} F=d}} \beta(0, F) \gamma(F, K)
$$

where $\mathscr{F}(K)$ is the set of faces of K and $\operatorname{dim} F$ is the dimension of the affine hull of F [Bohrer and Francis (1972b) and Wynn (1975)].

Let F^{*} be the face of K^{*} dual to the face F of K. Then $\operatorname{dim} F^{*}=p-\operatorname{dim} F$, and F is orthogonal to F^{*}. Consider the orthogonal sum $F \oplus F^{*}$. For different faces F_{1}, F_{2}, the interiors of the sets $F_{1} \oplus F_{1}^{*}, F_{2} \oplus F_{2}^{*}$ are disjoint and R^{p} is covered by these sets

$$
R^{p}=\bigcup_{F \in \mathscr{F}(K)} F \oplus F^{*}
$$

[Lemma 3 of McMullen (1975) and Wynn (1975)]. Then

$$
\begin{aligned}
\nu K_{(1)}+\lambda K_{(1)}^{*} & =\left(\nu K_{(1)}+\lambda K_{(1)}^{*}\right) \cap\left(\bigcup_{F \in \mathscr{F}(K)} F \oplus F^{*}\right) \\
& =\bigcup_{F \in \mathscr{F}(K)}\left(F \oplus F^{*}\right) \cap\left(\nu K_{(1)}+\lambda K_{(1)}^{*}\right) \\
& =\bigcup_{F \in \mathscr{F}(K)}(F \cap \nu U) \oplus\left(F^{*} \cap \lambda U\right) .
\end{aligned}
$$

Therefore,

$$
v_{p}\left(\nu K_{(1)}+\lambda K_{(1)}^{*}\right)=\sum_{F \in \mathscr{F}(K)} v_{p}\left((F \cap \nu U) \oplus\left(F^{*} \cap \lambda U\right)\right) .
$$

Because of the orthogonality

$$
\begin{aligned}
v_{p}\left((F \cap \nu U) \oplus\left(F^{*} \cap \lambda U\right)\right) & =v_{d}(F \cap \nu U) \times v_{p-d}\left(F^{*} \cap \lambda U\right) \\
& =\nu^{d} \omega_{d} \beta(0, F) \times \lambda^{p-d} \omega_{p-d} \gamma(F, K),
\end{aligned}
$$

where $d=\operatorname{dim} F$. Therefore,

$$
v_{p}\left(\nu K_{(1)}+\lambda K_{(1)}^{*}\right)=\sum_{d=0}^{p} \sum_{\operatorname{dim} F=d} \nu^{d} \lambda^{p-d} \omega_{d} \omega_{p-d} \beta(0, F) \gamma(F, K)
$$

and

$$
\binom{p}{i} v_{p-i, i}\left(K_{(1)}, K_{(1)}^{*}\right)=\omega_{i} \omega_{p-i} \sum_{\operatorname{dim} F=p-i} \beta(0, F) \gamma(F, K)=\omega_{i} \omega_{p-i} \times w_{p-i}
$$

or

$$
w_{p-i}=\binom{p}{i} \frac{v_{p-i, i}\left(K_{(1)}, K_{(1)}^{*}\right)}{\omega_{i} \omega_{p-i}} .
$$

Therefore, (6) holds for polyhedral cones. By the argument given at the beginning of the proof, this proves the theorem for general cones as well.

Remark 2.1. The argument of approximating a nonpolyhedral cone with a sequence of polyhedral cones is also found in Theorem 3.1 of Shapiro (1985).

To characterize the set $\nu K_{(1)}+\lambda K_{(1)}^{*}$, the following lemma is useful.
Lemma 2.1. Let K be a closed convex cone in R^{p} and let K^{*} be its dual. Then, for $\nu, \lambda \geq 0$,

$$
\nu K_{(1)}+\lambda K_{(1)}^{*}=(K+\lambda U) \cap\left(K^{*}+\nu U\right) .
$$

Proof. Note that $\nu K_{(1)}=\nu(K \cap U)=K \cap(\nu U)$ and $\lambda K_{(1)}^{*}=K^{*} \cap(\lambda U)$. Now suppose that $x \in K \cap \nu U$ and $y \in K^{*} \cap \lambda U$. Then $x \in K, y \in \lambda U$ and $x+y \in K+\lambda U$. At the same time $x \in \nu U, y \in K^{*}$ and $x+y \in K^{*}+\nu U$. Therefore, $x+y \in(K+\lambda U) \cap\left(K^{*}+\nu U\right)$. This implies

$$
(K \cap \nu U)+\left(K^{*} \cap \lambda U\right) \subset(K+\lambda U) \cap\left(K^{*}+\nu U\right) .
$$

To prove the converse, let $z \in(K+\lambda U) \cap\left(K^{*}+\nu U\right)$. Since $z \in K^{*}+\nu U$ there exist x and y such that $z=x+y$ and $x \in K^{*},\|y\| \leq \nu$. Write $z=z_{K}+z_{K^{*}}$ and $y=y_{K}+y_{K^{*}}$. Then

$$
\begin{aligned}
\left\|z_{K}\right\|^{2} & =\left\|z-z_{K^{*}}\right\|^{2} \leq\left\|z-x-y_{K^{*}}\right\|^{2}=\left\|y_{K}\right\|^{2} \\
& =\|y\|^{2}-\left\|y_{K^{*}}\right\|^{2} \leq\|y\|^{2} \leq \nu^{2} .
\end{aligned}
$$

Therefore, $z_{K} \in K \cap \nu U$. Similarly, $z_{K^{*}} \in K^{*} \cap \lambda U$. Hence $z=z_{K}+z_{K^{*}} \in$ $(K \cap \nu U)+\left(K^{*} \cap \lambda U\right)$ and this implies

$$
(K+\lambda U) \cap\left(K^{*}+\nu U\right) \subset(K \cap \nu U)+\left(K^{*} \cap \lambda U\right)
$$

In evaluating mixed volumes, the p-dimensional volumes $v_{p, 0}\left(K_{(1)}, K_{(1)}^{*}\right)=$ $v_{p}\left(K_{(1)}\right)$ and $v_{0, p}\left(K_{(1)}, K_{(1)}^{*}\right)=v_{p}\left(K_{(1)}^{*}\right)$ have to be evaluated individually. Other mixed volumes turn out to be easier to evaluate. Consider

$$
\begin{equation*}
\left(\nu K_{(1)}+\lambda K_{(1)}^{*}\right) \cap\left(\nu K_{(1)}\right)^{C} \cap\left(\lambda K_{(1)}^{*}\right)^{C}, \tag{8}
\end{equation*}
$$

where A^{C} is the complement of A. By Lemma 2.1, $x \notin K \cup K^{*}$ belongs to the set (8) if and only if $\left\|x-x_{K}\right\| \leq \lambda$ and $\left\|x-x_{K^{*}}\right\| \leq \nu$; that is, x is not more than λ distant from the boundary surface ∂K of K and $\left\|x_{K}\right\| \leq \nu$. Therefore, the evaluation of mixed volumes is reduced to the evaluation of quermassintegrals or, more precisely, the volume of "local parallel sets" defined in (9). In the case of polyhedral cones, the evaluation reduces to the evaluation of lowerdimensional internal and external angles. On the other hand, in the case of the smooth cone the evaluation reduces to the integral of principal curvatures on ∂K.
2.2. The case of a smooth cone. One of the main objectives of this research is to characterize the weights of $\bar{\chi}^{2}$ distributions for cones with smooth boundaries. Although the characterization by the mixed volumes in Theorem 2.1 applies to smooth cones, the definition of mixed volumes is not necessarily easy to work with for computational purposes. Here we can use the result that the volume of the local parallel set of a smooth cone K can be expressed as an integral of principal curvatures on ∂K. See Section 3.13.5 of Santaló (1976), Section 2.5 of Schneider (1993a) or Schneider (1993b). We summarize the result in the following discussion.

Let K be a closed convex set with boundary ∂K. For a relatively open subset S of ∂K, the local parallel set of S at distance λ is defined as

$$
\begin{equation*}
A_{\lambda}(K, S)=\left\{x \mid x_{K} \in S \text { and } 0<\left\|x-x_{K}\right\| \leq \lambda\right\} \tag{9}
\end{equation*}
$$

Assume that ∂K is of class C^{2}. Let $H=H(s)$ be the positive semidefinite matrix of the second fundamental form at $s \in \partial K$ with respect to an orthonormal basis. The principal curvatures $\kappa_{1}, \ldots, \kappa_{p-1}$ are the eigenvalues of H. Denote the j th trace of H, that is, the j th elementary symmetric function of the eigenvalues of H, by

$$
\begin{align*}
& \operatorname{tr}_{j} H=\operatorname{tr}_{j} H(s)=\sum_{1 \leq i_{1}<\cdots<i_{j} \leq p-1} \kappa_{i_{1}} \cdots \kappa_{i_{j}}, \quad j=1, \ldots, p-1 \tag{10}\\
& \operatorname{tr}_{0} H \equiv 1
\end{align*}
$$

and let $d s$ denote the ($p-1$-dimensional) volume element of ∂K. Then we have the following lemma.

Lemma 2.2 [Steiner's formula, (2.5.31) of Schneider (1993a)].

$$
\begin{equation*}
v_{p}\left(A_{\lambda}(K, S)\right)=\sum_{j=1}^{p} \lambda^{j} \frac{1}{j} \int_{S} \operatorname{tr}_{j-1} H(s) d s \tag{11}
\end{equation*}
$$

We now apply Lemma 2.2 to our problem. Let K be a closed convex cone with smooth boundary ∂K and $\operatorname{tr}_{j} H(s)$ be defined by (10) on ∂K. Consider the base set

$$
S=\{s \mid s \in \partial K \text { and } 0<\|s\|<\nu\}
$$

Then $A_{\lambda}(K, S)$ is equal to the set (8) except for the boundary, that is,

$$
\operatorname{int} A_{\lambda}(K, S)=\operatorname{int}\left(\left(\nu K_{(1)}+\lambda K_{(1)}^{*}\right) \cap\left(\nu K_{(1)}\right)^{C} \cap\left(\lambda K_{(1)}^{*}\right)^{C}\right)
$$

Note that, for each $s \in \partial K, \partial K$ contains a half line starting at the origin in the direction of s. Therefore, the principal curvature for the direction s is 0 and $\operatorname{tr}_{p-1} H(s)=0$. Other principal directions lie in the tangent space $T_{s}(\partial K \cap \partial(l U))$, where $l=\|s\|$. Furthermore, because of the cone structure the integration on ∂K can be reduced to the product of integration on $\partial K \cap \partial U$ and the one-dimensional integration with respect to l.

Theorem 2.2. Let K be a closed convex cone whose boundary ∂K is of class C^{2} except for the origin. Then the mixed volumes $v_{p-i, i}\left(K_{(1)}, K_{(1)}^{*}\right), 1 \leq i \leq$ $p-1$, in (6) of Theorem 2.1 are expressed as

$$
\binom{p}{i} v_{p-i, i}\left(K_{(1)}, K_{(1)}^{*}\right)=\frac{1}{i(p-i)} \int_{\partial K \cap \partial U} \operatorname{tr}_{i-1} H(u) d u
$$

where du denotes the ($p-2$-dimensional) volume element of $\partial K \cap \partial U$.
Proof. Let $l=\|s\|$ for $s \in \partial K$. The half line in the direction of s and $T_{s}(\partial K \cap \partial(l U))$ are orthogonal and the volume element of $\partial K \cap \partial(l U)$ is $l^{p-2} d u$. Therefore,

$$
d s=d l \times\left(l^{p-2} d u\right)
$$

The principal curvatures are inversely proportional to l, that is, $\kappa_{i}(s)=$ $\kappa_{i}(u) / l$, where $u=s / l$. Therefore,

$$
\operatorname{tr}_{j} H(s)=\operatorname{tr}_{j} H(u) / l^{j}, \quad l=\|s\|, u=s / l
$$

Then

$$
\begin{aligned}
\int_{S} \operatorname{tr}_{j-1} H(s) d s & =\int_{0}^{\nu} \frac{l^{p-2}}{l^{j-1}} d l \int_{\partial K \cap \partial U} \operatorname{tr}_{j-1} H(u) d u \\
& =\frac{\nu^{p-j}}{p-j} \int_{\partial K \cap \partial U} \operatorname{tr}_{j-1} H(u) d u .
\end{aligned}
$$

By (11)

$$
v_{p}\left(A_{\lambda}(K, S)\right)=\sum_{j=1}^{p-1} \frac{\lambda^{j} \nu^{p-j}}{j(p-j)} \int_{\partial K \cap \partial U} \operatorname{tr}_{j-1} H(u) d u .
$$

Therefore,

$$
\binom{p}{j} v_{p-j, j}\left(K_{(1)}, K_{(1)}^{*}\right)=\frac{1}{j(p-j)} \int_{\partial K \cap \partial U} \operatorname{tr}_{j-1} H(u) d u
$$

and this proves the theorem.
Remark 2.2. Theorem 2.2 is stated in terms of K. However, because of the duality of K and K^{*}, an equivalent statement can be made in terms of K^{*}.

Remark 2.3 (The case of R^{3} and the classical Gauss-Bonnet theorem). For $p=3$ the mixed volumes take particularly simple forms. Let
$P\left(\bar{\chi}_{01}^{2} \leq a, \bar{\chi}_{12}^{2} \leq b\right)=w_{3} G_{3}(a)+w_{2} G_{2}(a) G_{1}(b)+w_{1} G_{1}(a) G_{2}(b)+w_{0} G_{3}(b)$.
Then clearly

$$
w_{3}=\frac{\text { total area of } K \cap \partial U}{4 \pi}, \quad w_{0}=\frac{\text { total area of } K^{*} \cap \partial U}{4 \pi},
$$

where 4π is the total surface area of the unit sphere ∂U in R^{3}. By Theorem 2.2,

$$
\begin{aligned}
w_{2} & =\frac{1}{2 \omega_{1} \omega_{2}} \int_{\partial K \cap \partial U} \operatorname{tr}_{0} H(u) d u=\frac{1}{4 \pi} \int_{\partial K \cap \partial U} 1 d u \\
& =\frac{\text { total length of the curve } \partial K \cap \partial U}{4 \pi}
\end{aligned}
$$

and, considering K^{*},

$$
w_{1}=\frac{\text { total length of the curve } \partial K^{*} \cap \partial U}{4 \pi} .
$$

On the other hand, by Theorem 2.2,

$$
w_{1}=\frac{1}{4 \pi} \int_{\partial K \cap \partial U} \kappa(u) d u
$$

where $\kappa(u)=\operatorname{tr}_{1} H(u)$ is the geodesic curvature of the curve $\partial K \cap \partial U$ on ∂U. Since the Gaussian curvature is 1 on ∂U, the classical Gauss-Bonnet theorem states

$$
2 \pi=\int_{\partial K \cap \partial U} \kappa(u) d u+(\text { total area of } K \cap \partial U) .
$$

Therefore,

$$
\frac{1}{2}=w_{1}+w_{3}
$$

which is a particular case of Shapiro's conjecture that $\sum_{i=0}^{p}(-1)^{i} w_{i}=0$ [Shapiro (1987)].

Remark 2.4. Shapiro's conjecture is known to hold for polyhedral cones. Because of the continuity of mixed volumes, Shapiro's conjecture holds for smooth or piecewise smooth cones as well.

Example 2.1 (Elliptical cone in R^{3}).

$$
K=\left\{\left(\mu_{1}, \mu_{2}, \mu_{3}\right) \left\lvert\, \mu_{1}^{2} \geq\left(\frac{\mu_{2}}{a}\right)^{2}+\left(\frac{\mu_{3}}{b}\right)^{2}\right., \mu_{1} \geq 0\right\}, \quad a, b>0 .
$$

This is a special case of Remark 2.3. Using a local coordinate system, $\partial K \cap \partial U$ is expressed as

$$
\left\{s(\theta) \in R^{3} \mid 0 \leq \theta<2 \pi\right\},
$$

where

$$
s(\theta)=\frac{1}{\sqrt{1+a^{2} \cos ^{2} \theta+b^{2} \sin ^{2} \theta}}\left(\begin{array}{c}
1 \\
a \cos \theta \\
b \sin \theta
\end{array}\right) .
$$

The total length of the curve $\partial K \cap \partial U$ is

$$
\int_{0}^{2 \pi}\left\|\frac{d s}{d \theta}\right\| d \theta=f(a, b)
$$

where

$$
f(a, b)=\int_{0}^{2 \pi} \frac{\sqrt{a^{2} b^{2}+b^{2} \cos ^{2} \theta+a^{2} \sin ^{2} \theta}}{1+a^{2} \cos ^{2} \theta+b^{2} \sin ^{2} \theta} d \theta,
$$

and therefore we have $w_{2}=f(a, b) / 4 \pi, w_{0}=1 / 2-f(a, b) / 4 \pi$. The dual of K is

$$
K^{*}=\left\{\left(\mu_{1}, \mu_{2}, \mu_{3}\right) \mid \mu_{1}^{2} \geq\left(a \mu_{2}\right)^{2}+\left(b \mu_{3}\right)^{2}, \mu_{1} \leq 0\right\}
$$

and hence we have $w_{1}=f\left(a^{-1}, b^{-1}\right) / 4 \pi, w_{3}=1 / 2-f\left(a^{-1}, b^{-1}\right) / 4 \pi$.
Note that $f(a, b)$ can be expressed by elliptic integrals of the first and third kinds.

EXAMPLE 2.2 [Spherical cone in R^{p}; Pincus (1975) and Akkerboom (1990)].

$$
K=\left\{\mu=\left(\mu_{1}, \ldots, \mu_{p}\right) \mid \mu_{1} \geq\|\mu\| \cos \psi\right\}, \quad 0<\psi<\frac{\pi}{2} .
$$

This is the spherical cone K_{4} mentioned in Section 1.1. Let

$$
\begin{equation*}
F(x)=F\left(x_{1}, \ldots, x_{p}\right)=x_{1}^{2} \sin ^{2} \psi-\left(x_{2}^{2}+\cdots+x_{p}^{2}\right) \cos ^{2} \psi . \tag{12}
\end{equation*}
$$

Then the boundary ∂K of K can be written as

$$
\partial K=\left\{x \mid F(x)=0, x_{1} \geq 0\right\}
$$

By our Theorem 2.2 we consider a point $s \in \partial K,\|s\|=1$. Because of spherical symmetry with respect to x_{2}, \ldots, x_{p}, we take $s^{0}=(\cos \psi, \sin \psi, 0, \ldots, 0)$ as a
representative point. The values of $\operatorname{tr}_{j} H(u)$ are the same for all $u \in \partial K \cap \partial U$. The outward unit normal vector at s^{0} is easily seen to be

$$
N_{p}=(-\sin \psi, \cos \psi, 0, \ldots, 0) .
$$

Consider the rotation of coordinates $\left(x_{1}, \ldots, x_{p}\right) \mapsto\left(u_{1}, \ldots, u_{p}\right)$

$$
\begin{aligned}
& u_{1}=-\sin \psi x_{1}+\cos \psi x_{2}, \\
& u_{2}=\cos \psi x_{1}+\sin \psi x_{2}, \\
& u_{i}=x_{i}, \quad i=3, \ldots, p .
\end{aligned}
$$

Note that u_{2} is the coordinate for the direction of s^{0}. Substituting the inverse rotation $x_{1}=-\sin \psi u_{1}+\cos \psi u_{2}, x_{2}=\cos \psi u_{1}+\sin \psi u_{2}$ into (12), ∂K can be written as

$$
\begin{align*}
F & =x_{1}^{2} \sin ^{2} \psi-x_{2}^{2} \cos ^{2} \psi-\left(x_{3}^{2}+\cdots+x_{p}^{2}\right) \cos ^{2} \psi \\
& =-u_{1}^{2} \cos 2 \psi-u_{1} u_{2} \sin 2 \psi-\left(u_{3}^{2}+\cdots+u_{p}^{2}\right) \cos ^{2} \psi \tag{13}\\
& =0 .
\end{align*}
$$

The particular point s^{0} expressed in the new coordinates is $u^{0}=(0,1,0, \ldots, 0)$. Now we want to calculate the elements of the second fundamental form

$$
\begin{equation*}
-\frac{\partial^{2} u_{1}}{\partial u_{i} \partial u_{j}}, \quad i, j \geq 2 . \tag{14}
\end{equation*}
$$

Recall that s^{0} itself is the principal direction with zero principal curvature and u_{2} is the coordinate for this direction. Therefore, actually we only need to calculate (14) for $i, j=3, \ldots, p$. (Or one can easily verify that derivatives with respect to u_{2} are indeed 0 .) Now regard (13) as an equation determining u_{1} in terms of u_{2}, \ldots, u_{p}. Taking the partial derivative of (13) with respect to $u_{i}, i \geq 3$, we have

$$
0=\frac{\partial F}{\partial u_{i}}=-2 \frac{\partial u_{1}}{\partial u_{i}} u_{1} \cos 2 \psi-\frac{\partial u_{1}}{\partial u_{i}} u_{2} \sin 2 \psi-2 u_{i} \cos ^{2} \psi .
$$

Differentiating this once more, we obtain

$$
0=-2 \frac{\partial^{2} u_{1}}{\partial u_{i} \partial u_{j}} u_{1} \cos 2 \psi-2 \frac{\partial u_{1}}{\partial u_{i}} \frac{\partial u_{1}}{\partial u_{j}} \cos 2 \psi-\frac{\partial^{2} u_{1}}{\partial u_{i} \partial u_{j}} u_{2} \sin 2 \psi-2 \delta_{i j} \cos ^{2} \psi,
$$

where $\delta_{i j}$ is the Kronecker delta. Evaluating this at u^{0}, we obtain

$$
H\left(u^{0}\right)=\operatorname{diag}(0, \underbrace{\frac{1}{\tan \psi}, \ldots, \frac{1}{\tan \psi}}_{p-2}) .
$$

Therefore,

$$
\operatorname{tr}_{j} H\left(u^{0}\right)=\binom{p-2}{j} \frac{1}{\tan ^{j} \psi} .
$$

As mentioned earlier this value is the same for all u, that is, $\operatorname{tr}_{j} H\left(u^{0}\right)=$ $\operatorname{tr}_{j} H(u), \forall u \in \partial K \cap \partial U$. Furthermore,

$$
\partial K \cap \partial U=\left\{x \mid x_{1}=\cos \psi, x_{2}^{2}+\cdots+x_{p}^{2}=1-\cos ^{2} \psi=\sin ^{2} \psi\right\} .
$$

Therefore, the ($p-2$-dimensional) total volume of $\partial K \cap \partial U$ equals the total surface volume of a sphere of radius $\sin \psi$ in R^{p-1}, that is,

$$
v_{p-2}(\partial K \cap \partial U)=v_{p-2}\left(\partial\left(\sin \psi U_{p-1}\right)\right)=(p-1) \sin ^{p-2} \psi \omega_{p-1}
$$

Combining the preceding results, the weights of the $\bar{\chi}^{2}$ distribution are

$$
\begin{aligned}
\binom{p}{i} v_{p-i, i}\left(K_{(1)}, K_{(1)}^{*}\right)= & \frac{1}{i(p-i)}\binom{p-2}{i-1} \frac{1}{\tan ^{i-1} \psi} \\
& \times(p-1) \sin ^{p-2} \psi \omega_{p-1} \\
= & \frac{(p-1)!}{i!(p-i)!} \omega_{p-1} \sin ^{p-i-1} \psi \cos ^{i-1} \psi
\end{aligned}
$$

Further manipulation of (15) shows that

$$
\begin{aligned}
w_{p-i} & =\binom{p}{i} \frac{v_{p-i, i}\left(K_{(1)}, K_{(1)}^{*}\right)}{\omega_{i} \omega_{p-i}} \\
& =\frac{1}{2}\binom{p-2}{i-1} \frac{B((p-i) / 2, i / 2)}{B(1 / 2,(p-1) / 2)} \sin ^{p-i-1} \psi \cos ^{i-1} \psi,
\end{aligned}
$$

which coincides with the result given by Pincus (1975).
Remark 2.5. After completing this paper in the form of a discussion paper, we found that Lin and Lindsay (1997) derived essentially the same result as Theorem 2.2 using the formula in Weyl (1939), and calculated the weights for the spherical cone as an example. They also mentioned the classical GaussBonnet theorem and the example of the elliptical cone.
2.3. The case of a piecewise smooth cone. Here we consider an intermediate case between a polyhedral cone and an everywhere smooth cone, namely, a cone K whose boundary ∂K consists of both smooth surfaces and edges. To fix the ideas, let us consider a generalization of Example 2.2.

Example 2.3. Let K be defined as

$$
K=\left\{\mu \in R^{p} \mid \mu_{1} \geq\|\mu\| \cos \psi_{1} \text { and } \mu_{2} \geq\|\mu\| \cos \psi_{2}\right\}
$$

where

$$
\cos ^{2} \psi_{1}+\cos ^{2} \psi_{2}<1, \quad 0<\psi_{i}<\frac{\pi}{2}, \quad i=1,2, \quad p \geq 3
$$

In this example, $K=K_{1} \cap K_{2}$, where

$$
K_{i}=\left\{\mu \mid \mu_{i} \geq\|\mu\| \cos \psi_{i}\right\}, \quad i=1,2,
$$

are the cones of Example 2.2. Note that ∂K is no longer smooth at the common boundary $\partial K_{1} \cap \partial K_{2}$. At a point s of $\partial K_{1} \cap \partial K_{2}$, the outward unit normal vector is no longer unique and the contribution to the mixed volume from $s \in \partial K_{1} \cap \partial K_{2}$ cannot be expressed as an integral with respect to the volume element of the p-1-dimensional surface of ∂K.

Let K be a convex set. For each point s on the boundary ∂K of K, the normal cone $N(K, s)$ is defined as

$$
N(K, s)=\{y \mid\langle y, z-s\rangle \leq 0, \forall z \in K\}
$$

[see Section 2.2 of Schneider (1993a)]. Define

$$
D_{m}(\partial K)=\{s \in \partial K \mid \operatorname{dim} N(K, s)=m\}, \quad m=1, \ldots, p .
$$

Then

$$
\partial K=D_{1}(\partial K) \cup \cdots \cup D_{p}(\partial K) .
$$

In Example 2.3, $D_{2}(\partial K)=\operatorname{relint}\left(\partial K_{1} \cap \partial K_{2}\right)$, and $D_{1}(\partial K)$ consists of two relatively open connected components, relint $\left(\partial K_{1} \cap \partial K\right)$ and relint $\left(\partial K_{2} \cap \partial K\right)$, where $\operatorname{relint}(\cdot)$ denotes the relative interior. $D_{p}(\partial K)=\{0\}$, and other D_{i} 's are empty. With Example 2.3 in mind, we make the following assumption on the convex set K and we call such K piecewise smooth.

Assumption 2.1. $\quad D_{m}(\partial K)$ is a $p-m$-dimensional C^{2}-manifold consisting of a finite number of relatively open connected components. Furthermore, $N(K, s)$ is continuous in s on $D_{m}(\partial K)$ in the sense of Lemma 1.2.

Let $s \in D_{m}(\partial K)$. In a neighborhood of s we take an orthonormal system of vectors $e_{1}, \ldots, e_{p-m}, N_{p-m+1}, \ldots, N_{p}$, where e_{1}, \ldots, e_{p-m} constitute an orthonormal basis for the tangent space $T_{s}\left(D_{m}(\partial K)\right)$ and N_{p-m+1}, \ldots, N_{p} constitute an orthonormal basis for the orthogonal complement $T_{s}\left(D_{m}(\partial K)\right)^{\perp}$ of $T_{s}\left(D_{m}(\partial K)\right)$. Clearly, $N(K, s) \subset T_{s}\left(D_{m}(\partial K)\right)^{\perp}$.

Let

$$
H_{i j \alpha}, \quad i, j=1, \ldots, p-m, \alpha=p-m+1, \ldots, p,
$$

be the element of the second fundamental tensor with respect to the chosen coordinate system. For a unit vector v in $T_{s}\left(D_{m}(\partial K)\right)^{\perp}$,

$$
v=\sum_{\alpha=p-m+1}^{p} v^{\alpha} N_{\alpha}, \quad\|v\|=1
$$

define

$$
H_{i j}(s, v)=\sum_{\alpha=p-m+1}^{p} v^{\alpha} H_{i j \alpha} .
$$

Furthermore, let

$$
\operatorname{tr}_{j} H(s, v)=\sum_{1 \leq i_{1}<\cdots<i_{j} \leq p-m} \kappa_{i_{1}}(s, v) \cdots \kappa_{i_{j}}(s, v), \quad j=1, \ldots, p-m,
$$

where $\kappa_{1}(s, v), \ldots, \kappa_{p-m}(s, v)$ are eigenvalues of the $(p-m) \times(p-m)$ matrix $H(s, v)=\left(H_{i j}(s, v)\right)$, that is, the principal curvatures against a particular normal direction v at s.

We now generalize Lemma 2.2 to the case of a piecewise smooth convex set. We use the same notation as in Lemma 2.2.

Theorem 2.3. Let K be a piecewise smooth closed convex set satisfying Assumption 2.1. Let $d s_{p-m}$ denote the ($p-m$-dimensional) volume element of $D_{m}(\partial K)$ and let $d v_{m-1}$ denote the m - 1-dimensional volume element of the surface ∂U_{m}. Then

$$
\begin{align*}
& v_{p}\left(A_{\lambda}(K, S)\right) \\
& \begin{aligned}
&=\sum_{m=1}^{p} \sum_{j=m}^{p} \lambda^{j} \frac{1}{j} \\
& \times \int_{S \cap D_{m}(\partial K)}\left[\int_{N\left(K, s_{p-m}\right) \cap \partial U} \operatorname{tr}_{j-m} H\left(s_{p-m}, v_{m-1}\right) d v_{m-1}\right] d s_{p-m} .
\end{aligned} \tag{16}
\end{align*}
$$

For a sketch of the proof, see the Appendix. From Theorem 2.3 we obtain the corresponding result for our problem.

Theorem 2.4. Let K be a closed convex cone satisfying Assumption 2.1. Let du u_{p-m-1} denote the ($p-m$-1-dimensional) volume element of $D_{m}(\partial K) \cap$ $\partial U, m=1, \ldots, p-1$. Then the mixed volumes $v_{p-i, i}\left(K_{(1)}, K_{(1)}^{*}\right), 1 \leq i \leq p-1$, in (6) of Theorem 2.1 can be expressed as

$$
\begin{aligned}
\binom{p}{i} & v_{p-i, i}\left(K_{(1)}, K_{(1)}^{*}\right) \\
& =\frac{1}{i(p-i)} \\
& \times \sum_{m=1}^{i} \int_{D_{m}(\partial K) \cap \partial U}\left[\int_{N\left(K, u_{p-m-1}\right) \cap \partial U} \operatorname{tr}_{i-m} H\left(u_{p-m-1}, v_{m-1}\right) d v_{m-1}\right] d u_{p-m-1}
\end{aligned}
$$

Proof. It is easy to show that

$$
N(K, s)=N(K, u), \quad l=\|s\|, u=s / l .
$$

As in the proof of Theorem 2.2,

$$
\operatorname{tr}_{j-m} H(s, v)=\operatorname{tr}_{j-m} H(u, v) / l^{j-m} .
$$

Therefore, in (16),

$$
\begin{aligned}
& \int_{N\left(K, s_{p-m}\right) \cap \partial U} \operatorname{tr}_{j-m} H\left(s_{p-m}, v_{m-1}\right) d v_{m-1} \\
& \quad=\frac{1}{l^{j-m}} \int_{N\left(K, u_{p-m-1}\right) \cap \partial U} \operatorname{tr}_{j-m} H\left(u_{p-m-1}, v_{m-1}\right) d v_{m-1}
\end{aligned}
$$

Moreover,

$$
d s_{p-m}=d l \times\left(l^{p-m-1} d u_{p-m-1}\right)
$$

Therefore, for $S=\{s \mid s \in \partial K$ and $0<\|s\|<\nu\}$,

$$
\begin{aligned}
& \int_{S \cap D_{m}(\partial K)}\left[\int_{N\left(K, s_{p-m}\right) \cap \partial U} \operatorname{tr}_{j-m} H\left(s_{p-m}, v_{m-1}\right) d v_{m-1}\right] d s_{p-m} \\
& =\int_{0}^{\nu} l^{p-j-1} d l \\
& \quad \times \int_{D_{m}(\partial K) \cap \partial U}\left[\int_{N\left(K, u_{p-m-1}\right) \cap \partial U} \operatorname{tr}_{j-m} H\left(u_{p-m-1}, v_{m-1}\right) d v_{m-1}\right] d u_{p-m-1} \\
& = \\
& \quad \frac{\nu^{p-j}}{p-j} \\
& \quad \times \int_{D_{m}(\partial K) \cap \partial U}\left[\int_{N\left(K, u_{p-m-1}\right) \cap \partial U} \operatorname{tr}_{j-m} H\left(u_{p-m-1}, v_{m-1}\right) d v_{m-1}\right] d u_{p-m-1} \cdot
\end{aligned}
$$

It follows that

$$
\begin{aligned}
& v_{p}\left(A_{\lambda}(K, S)\right) \\
& =\sum_{m=1}^{p} \sum_{j=m}^{p} \frac{\lambda^{j} \boldsymbol{\nu}^{p-j}}{j(p-j)} \\
& \times \int_{D_{m}(\partial K) \cap \partial U}\left[\int_{N\left(K, u_{p-m-1}\right) \cap \partial U} \operatorname{tr}_{j-m} H\left(u_{p-m-1}, v_{m-1}\right) d v_{m-1}\right] d u_{p-m-1}
\end{aligned}
$$

and this proves the theorem.
EXAMPLE 2.3 (Continued). Using Theorem 2.4, we evaluate the weights of the $\bar{\chi}^{2}$ distribution. First, we consider $D_{1}(\partial K)=\operatorname{relint}\left(\partial K_{1} \cap \partial K\right) \cup$ $\operatorname{relint}\left(\partial K_{2} \cap \partial K\right)$. Note that relint $\left(\partial K_{1} \cap \partial K\right)=\partial K_{1} \cap \operatorname{int} K_{2}$. Therefore,

$$
\operatorname{relint}\left(\partial K_{1} \cap \partial K\right) \cap \partial U=\left\{x \mid x_{1}=\cos \psi_{1}, x_{2}>\cos \psi_{2},\|x\|=1\right\}
$$

Now consider the following ratio of volumes:

$$
\frac{v_{p-2}\left(\left\{\left(x_{2}, \ldots, x_{p}\right) \mid x_{2}>\cos \psi_{2}, x_{2}^{2}+\cdots+x_{p}^{2}=\sin ^{2} \psi_{1}\right\}\right)}{v_{p-2}\left(\left\{\left(x_{2}, \ldots, x_{p}\right) \mid x_{2}^{2}+\cdots+x_{p}^{2}=\sin ^{2} \psi_{1}\right\}\right)}
$$

This is obviously equal to the following incomplete beta function:

$$
\begin{equation*}
\beta_{1}=\frac{1}{2} \int_{\cos ^{2} \psi_{2} / \sin ^{2} \psi_{1}}^{1} u^{-1 / 2}(1-u)^{(p-4) / 2} d u \tag{17}
\end{equation*}
$$

The contribution to the weights from $\partial K_{1} \cap \partial K \cap \partial U$ is just (15) multiplied by β_{1} with $\psi=\psi_{1}$. Similarly, the contribution from $\partial K_{2} \cap \partial K \cap \partial U$ is (15) multiplied by β_{2} with $\psi=\psi_{2}$, where

$$
\begin{equation*}
\beta_{2}=\frac{1}{2} \int_{\cos ^{2} \psi_{1} / \sin ^{2} \psi_{2}}^{1} u^{-1 / 2}(1-u)^{(p-4) / 2} d u . \tag{18}
\end{equation*}
$$

It remains to evaluate the contribution from $\partial K_{1} \cap \partial K_{2}$. Consider a representative point

$$
s^{0}=\left(\cos \psi_{1}, \cos \psi_{2}, \tau, 0, \ldots, 0\right)
$$

where

$$
\begin{equation*}
\tau=\sqrt{1-\cos ^{2} \psi_{1}-\cos ^{2} \psi_{2}} \tag{19}
\end{equation*}
$$

The outward unit normal vector to K_{1} at s^{0} is

$$
n_{1}=\left(-\sin \psi_{1}, \frac{\cos \psi_{2}}{\tan \psi_{1}}, \frac{\tau}{\tan \psi_{1}}, 0, \ldots, 0\right) .
$$

Similarly, the outward unit normal vector to K_{2} at s^{0} is

$$
n_{2}=\left(\frac{\cos \psi_{1}}{\tan \psi_{2}},-\sin \psi_{2}, \frac{\tau}{\tan \psi_{2}}, 0, \ldots, 0\right) .
$$

The normal cone $N\left(K, s^{0}\right)$ is the nonnegative combination of these two vectors

$$
N\left(K, s^{0}\right)=a n_{1}+b n_{2}, \quad a, b \geq 0 .
$$

The inner product of these two vectors is

$$
\left\langle n_{1}, n_{2}\right\rangle=-\frac{1}{\tan \psi_{1} \tan \psi_{2}} .
$$

Let

$$
N_{p-1}=n_{1}, \quad N_{p}=\left(0,-\frac{\tau}{\sin \psi_{1}}, \frac{\cos \psi_{2}}{\sin \psi_{1}}, 0, \ldots, 0\right)
$$

Then N_{p-1}, N_{p} form an orthonormal basis of $T_{s^{0}}\left(D_{2}(\partial K)\right)^{\perp}$. Now consider the rotation of coordinates based on N_{p-1}, N_{p} and s^{0} :

$$
\left(\begin{array}{c}
u_{1} \\
u_{2} \\
u_{3}
\end{array}\right)=\left(\begin{array}{ccc}
-\sin \psi_{1} & \frac{\cos \psi_{2}}{\tan \psi_{1}} & \frac{\tau}{\tan \psi_{1}} \\
0 & -\frac{\tau}{\sin \psi_{1}} & \frac{\cos \psi_{2}}{\sin \psi_{1}} \\
\cos \psi_{1} & \cos \psi_{2} & \tau
\end{array}\right)\left(\begin{array}{c}
x_{1} \\
x_{2} \\
x_{3}
\end{array}\right)
$$

and $u_{i}=x_{i}, i=4, \ldots, p$. In the new coordinates s^{0} is $u^{0}=(0,0,1,0, \ldots, 0)$.
Now consider (12) for K_{1} and K_{2} :

$$
\begin{align*}
& 0=F_{1}=x_{1}^{2} \sin ^{2} \psi_{1}-\left(x_{2}^{2}+x_{3}^{2}\right) \cos ^{2} \psi_{1}-\left(u_{4}^{2}+\cdots+u_{p}^{2}\right) \cos ^{2} \psi_{1}, \tag{20}\\
& 0=F_{2}=x_{2}^{2} \sin ^{2} \psi_{2}-\left(x_{1}^{2}+x_{3}^{2}\right) \cos ^{2} \psi_{2}-\left(u_{4}^{2}+\cdots+u_{p}^{2}\right) \cos ^{2} \psi_{2} . \tag{21}
\end{align*}
$$

In (20) and (21), x_{1}, x_{2}, x_{3} are functions of u_{1}, u_{2}, u_{3}. We regard (20) and (21) as a system of equations for determining u_{1}, u_{2} in terms of u_{3}, \ldots, u_{p}. Furthermore, as in Example 2.2 we can ignore differentiation with respect to u_{3} and we differentiate (20) and (21) with respect to u_{4}, \ldots, u_{p}. At u^{0},

$$
0=\left.\frac{\partial u_{1}}{\partial u_{i}}\right|_{u^{0}}=\left.\frac{\partial u_{2}}{\partial u_{i}}\right|_{u^{0}}, \quad i \geq 4 .
$$

Therefore,

$$
\left.\frac{\partial x_{j}}{\partial u_{i}}\right|_{u^{0}}=0, \quad i \geq 4, \quad j=1,2,3
$$

Using this, it can be easily shown that $0=\partial^{2} F_{1} /\left(\partial u_{i} \partial u_{j}\right), i, j \geq 4$, evaluated at u^{0} reduces to

$$
\begin{equation*}
0=-2 \frac{\partial^{2} u_{1}}{\partial u_{i} \partial u_{j}} \cos \psi_{1} \sin \psi_{1}-2 \delta_{i j} \cos ^{2} \psi_{1} \tag{22}
\end{equation*}
$$

and that $0=\partial^{2} F_{2} /\left(\partial u_{i} \partial u_{j}\right)$ evaluated at u^{0} reduces to

$$
\begin{equation*}
0=2 \frac{\partial^{2} u_{1}}{\partial u_{i} \partial u_{j}} \frac{\cos ^{2} \psi_{2}}{\tan \psi_{1}}-2 \frac{\partial^{2} u_{2}}{\partial u_{i} \partial u_{j}} \frac{\tau \cos \psi_{2}}{\sin \psi_{1}}-2 \delta_{i j} \cos ^{2} \psi_{2} \tag{23}
\end{equation*}
$$

Solving (22) and (23), we obtain

$$
-\frac{\partial^{2} u_{1}}{\partial u_{i}^{2}}=\frac{1}{\tan \psi_{1}}, \quad-\frac{\partial^{2} u_{2}}{\partial u_{i}^{2}}=\frac{\cos \psi_{2}}{\tau \sin \psi_{1}} .
$$

All the other second-order derivatives evaluated at u^{0} are 0 .
Let

$$
\theta_{0}=\arccos \left(-\frac{1}{\tan \psi_{1} \tan \psi_{2}}\right), \quad \frac{\pi}{2}<\theta_{0}<\pi
$$

Then $v \in N\left(K, s^{0}\right),\|v\|=1$, can be written as

$$
v=\cos \theta N_{p-1}+\sin \theta N_{p}, \quad 0 \leq \theta \leq \theta_{0}
$$

Therefore,

$$
H\left(s^{0}, v\right)=\operatorname{diag}(0, \underbrace{h\left(\theta, \psi_{1}, \psi_{2}\right), \ldots, h\left(\theta, \psi_{1}, \psi_{2}\right)}_{p-3}),
$$

where

$$
h\left(\theta, \psi_{1}, \psi_{2}\right)=\cos \theta \frac{1}{\tan \psi_{1}}+\sin \theta \frac{\cos \psi_{2}}{\tau \sin \psi_{1}}
$$

and we obtain

$$
\operatorname{tr}_{j} H\left(s^{0}, v\right)=\binom{p-3}{j} h\left(\theta, \psi_{1}, \psi_{2}\right)^{j} .
$$

Therefore,

$$
\begin{equation*}
\int_{N\left(K, s^{0} \cap \partial U\right.} \operatorname{tr}_{j} H\left(s^{0}, v_{1}\right) d v_{1}=\binom{p-3}{j} \int_{0}^{\theta_{0}} h\left(\theta, \psi_{1}, \psi_{2}\right)^{j} d \theta . \tag{24}
\end{equation*}
$$

The value of (24) is the same for all $s \in \partial K_{1} \cap \partial K_{2} \cap \partial U$, and

$$
v_{p-3}\left(\partial K_{1} \cap \partial K_{2} \cap \partial U\right)=(p-2) \tau^{p-3} \omega_{p-2}
$$

Therefore, the contribution from $\partial K_{1} \cap \partial K_{2}$ to the mixed volume $\binom{p}{i} v_{p-i, i}\left(K_{(1)}, K_{(1)}^{*}\right)$ is obtained as

$$
\binom{p-3}{i-2} \frac{1}{i(p-i)} \int_{0}^{\theta_{0}} h\left(\theta, \psi_{1}, \psi_{2}\right)^{i-2} d \theta \times(p-2) \tau^{p-3} \omega_{p-2} .
$$

Summarizing the preceding calculations, the mixed volume is

$$
\begin{aligned}
\binom{p}{i} & v_{p-i, i}\left(K_{(1)}, K_{(1)}^{*}\right) \\
= & \frac{(p-1)!}{i!(p-i)!} \omega_{p-1}\left(\beta_{1} \sin ^{p-i-1} \psi_{1} \cos ^{i-1} \psi_{1}+\beta_{2} \sin ^{p-i-1} \psi_{2} \cos ^{i-1} \psi_{2}\right) \\
& \quad+\frac{(i-1)(p-2)!}{i!(p-i)!} \tau^{p-3} \omega_{p-2} \int_{0}^{\theta_{0}} h\left(\theta, \psi_{1}, \psi_{2}\right)^{i-2} d \theta,
\end{aligned}
$$

where τ is defined in (19) and β_{1} and β_{2} are defined in (17) and (18). Note that the last term vanishes for $i=1$, and that it can be expressed using the incomplete beta functions.

Remark 2.6. We conclude this paper by making a brief comment on the Weyl tube formula [Weyl (1939)] and Naiman's inequality [Johnstone and Siegmund (1989) and Naiman (1990)]. We have obtained expressions for the weights by evaluating the volume of the local parallel set, whose definition is similar to the Weyl tube. In fact, our proof of Theorem 2.3, the extension of Steiner's formula, is essentially equivalent to the method in Weyl (1939) (see the Appendix). We can restrict our attention to the local parallel sets which are defined by the projection onto the convex surface, whereas the tubes considered by Naiman are defined by the projection onto the general surface, and therefore the problem of overlapping which Naiman tackled does not occur in our setting.

APPENDIX

Internal angle and external angle. Let F be a face of a closed polyhedral convex cone K in R^{p}. The internal angle $\beta(0, F)$ of F at 0 (the origin) is defined as

$$
\beta(0, F)=\frac{v_{d}(U \cap F)}{\omega_{d}},
$$

where v_{d} is restricted to the affine hull $L(F)$ of F. Let $C(F, K)$ be the smallest cone containing K and $L(F)$ and let $F^{*}=C(F, K)^{*} . F^{*}$ can also be written as

$$
F^{*}=\left\{y \mid y \in K^{*} \text { and }\langle x, y\rangle=0, \forall x \in F\right\} .
$$

Therefore, F^{*} is the face of K^{*} dual to F of K. The external angle $\gamma(F, K)$ of K at F is defined as

$$
\gamma(F, K)=\frac{v_{p-d}\left(U \cap F^{*}\right)}{\omega_{p-d}}=\beta\left(0, F^{*}\right),
$$

where v_{p-d} is restricted to the affine hull $L\left(F^{*}\right)$. See McMullen (1975) and Section 2.4 of Schneider (1993a) for more details.

Sketch of the proof of Theorem 2.3. Let $s \in D_{m}(\partial K)$ and consider an infinitesimal spherical neighborhood $B(s) \subset D_{m}(\partial K)$ of s of radius Δ. The essential step of the proof is evaluating the infinitesimal contribution $v_{p}\left(A_{\lambda}(K, B(s))\right)$ of $B(s)$ to $v_{p}\left(A_{\lambda}(K, S)\right)$. The rest of the proof is just integration similar to the proof of Theorem 2.2 or Theorem 2.4. Note that we only need to evaluate terms of order $O\left(\Delta^{p-m}\right)$.

Now fix $y \in N(K, s), l=\|y\| \leq \lambda$. Define

$$
B(s, y)=\left(y+D_{m}(\partial K)\right) \cap A_{\lambda}(K, B(s)),
$$

where $y+D_{m}(\partial K)$ is $D_{m}(\partial K)$ translated to go through the point $P=s+y$. $B(s, y)$ is orthogonal to $N(K, s)$ and hence $v_{p}\left(A_{\lambda}(K, B(s))\right)$ can be evaluated as

$$
v_{p}\left(A_{\lambda}(K, B(s))\right)=\int_{N(K, s) \cap \lambda U} v_{p-m}(B(s, y)) d y
$$

where $d y$ is the standard volume element of R^{m}.
For $v=y / l$ let $G=G_{v}$ be the associated Weingarten map. By the definition of G_{v},

$$
B(s, y)=P+\bigcup_{s^{\prime} \in B(s)}\left(s^{\prime}-s+l G_{v}\left(s^{\prime}-s\right)\right)+o(\Delta) .
$$

With respect to an appropriate orthonormal basis around s, the elements of G_{v} are the elements of the second fundamental form $H(s, v)$. Hence

$$
\begin{aligned}
v_{p-m}(B(s, y))= & \operatorname{det}\left(I_{p-m}+l H(s, v)\right) v_{p-m}(B(s))+o\left(\Delta^{p-m}\right) \\
= & \left(1+l \operatorname{tr}_{1} H(s, v)+\cdots+l^{p-m} \operatorname{tr}_{p-m} H(s, v)\right) v_{p-m}(B(s)) \\
& +o\left(\Delta^{p-m}\right) .
\end{aligned}
$$

The rest of the proof is integration similar to the proof of Theorem 2.2 or Theorem 2.4 and is omitted.

Acknowledgments. The authors are grateful to Richard L. Dykstra for pointing out the paper by Lin and Lindsay (1997), Hidehiko Kamiya for careful proofreading of the previous version of this paper and the two referees and an Associate Editor for very helpful comments and suggestions.

REFERENCES

Akkerboom, J. C. (1990). Testing Problems with Linear or Angular Inequality Constraints. Lecture Notes in Statist. 62. Springer, New York.
Barlow, R. E., Bartholomew, D. J., Bremner, J. M. and Brunk, H. D. (1972). Statistical Inference under Order Restrictions. Wiley, London.
Bohrer, R. and Francis, G. K. (1972a). Sharp one-sided confidence bounds for linear regression over intervals. Biometrika 59 99-107.
Bohrer, R. and Francis, G. K. (1972b). Sharp one-sided confidence bounds over positive regions. Ann. Math. Statist. 43 1541-1548.
Johnstone, I. and Siegmund, D. (1989). On Hotelling's formula for the volume of tubes and Naiman's inequality. Ann. Statist. 17 184-194.
KURIKI, S. (1993). One-sided test for the equality of two covariance matrices. Ann. Statist. 21 1379-1384.
Lin, Y. and Lindsay, B. G. (1997). Projections on cones, chi-bar squared distributions, and Weyl's formula. Statist. Probab. Lett. 32 367-376.
McMullen, P. (1975). Non-linear angle-sum relations for polyhedral cones and polytopes. Math. Proc. Cambridge Philos. Soc. 78 247-261.
Naiman, D. Q. (1990). Volumes of tubular neighborhoods of spherical polyhedra and statistical inference. Ann. Statist. 18 685-716.
Pincus, R. (1975). Testing linear hypotheses under restricted alternatives. Math. Oper. Statist. 6 733-751.
Robertson, T., Wright, F. T. and Dykstra, R. L. (1988). Order Restricted Statistical Inference. Wiley, Chichester.
Santaló, L. A. (1976). Integral Geometry and Geometric Probability. Addison-Wesley, London.
Schneider, R. (1993a). Convex Bodies: The Brunn-Minkowski Theory. Cambridge Univ. Press.
SCHNEIDER, R. (1993b). Convex surfaces, curvature and surface area measures. In Handbook of Convex Geometry (P. M. Gruber and J. M. Wilks, eds.) Chapter 1.8. North-Holland, Amsterdam.
Shapiro, A. (1985). Asymptotic distribution of test statistics in the analysis of moment structures under inequality constraints. Biometrika 72 133-144.
Shapiro, A. (1987). A conjecture related to chi-bar-squared distributions. Amer. Math. Monthly 94 46-48.
Takemura, A. and Kuriki, S. (1995). Weights of $\bar{\chi}^{2}$ distribution for smooth or piecewise smooth cone alternatives. Discussion Paper 95-F-28, Faculty of Economics, Univ. Tokyo.
Webster, R. (1994). Convexity. Oxford Univ. Press.
Weyl, H. (1939). On the volume of tubes. Amer. J. Math. 61 461-472.
Wynn, H. P. (1975). Integrals for one-sided confidence bounds: a general result. Biometrika 62 393-396.

Faculty of Economics
University of Tokyo
7-3-1 HONGO
Bunkyo-ku
TOKYO 113
Japan
E-MAIL: takemura@e.u-tokyo.ac.jp

Institute of Statistical Mathematics 4-6-7 MINAMI-AZABU
Minato-Ku
TOKYo 106
JAPAN
E-MAIL: kuriki@ism.ac.jp

[^0]: Received February 1996; revised June 1997.
 AMS 1991 subject classifications. Primary 62H10, 62H15; secondary 52A39.
 Key words and phrases. Multivariate one-sided alternative, one-sided simultaneous confidence region, mixed volume, second fundamental form, volume element, internal angle, external angle, Gauss-Bonnet theorem, Shapiro's conjecture.

