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Bayes estimation of the mean of a multivariate normal distribution is
considered under quadratic loss. We show that, when particular spherical
priors are used, the superharmonicity of the square root of the marginal
density provides a viable method for constructing (possibly proper) Bayes
(and admissible) minimax estimators. Examples illustrate the theory; most
notably it is shown that a multivariate Student-t prior yields a proper
Bayes minimax estimate.

1. Introduction. When estimating the mean of a multivariate distribu-
tion, the two dominant approaches are the minimax approach and variants
of the Bayes paradigm. The first has received the most extensive develop-
ment while the second is most used in practice, due to its great flexibility.
See [4] for a study of the interface between these two approaches. The prob-
lem of both methods is that neither necessarily leads to admissible estimators
(hierarchical Bayes estimators are often only generalized Bayes estimators).
Even if admissibility may provide nonreasonable estimators, it is a criterion
which can be desirable when combining minimaxity and Bayesian properties.
Indeed, since the sampling distribution is normal, under quadratic loss, the
Bayes estimator is unique provided the Bayes risk is finite, so that the proper
Bayes estimator is admissible (see [16]). In [5], Brown conjectured that, for
estimating a multivariate normal mean using quadratic loss, a proper Bayes
minimax estimator does not exist for four or less dimensions. This conjecture
was proved by Strawderman [21], who also settled the conjecture for dimen-
sions five or more that such estimators do indeed exist.

Stein [19] obtains minimaxity of a general estimator δ of the form δ�x� =
x+γ�x� through the use of the unbiased estimator of the risk k+2 div γ�x�+
�γ�x��2. Thus if for every x ∈ R

k, 2 div γ�x� + �γ�x��2 ≤ 0, then δ is minimax.
As (formal) Bayes estimators are of the form x+∇ Logm�x� (where ∇ denotes
the gradient andm the marginal density), this condition becomes �

√
m�x� ≤ 0

(where � denotes the Laplacian). Stein gives examples for generalized Bayes
estimates.

Stein’s method of demonstrating minimaxity through the unbiased esti-
mator of the risk is now the standard technique of proof. This supplants the
method employed by Strawderman [21] and Faith [10], who used monotonicity
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and majorization conditions on the function r where

γ�x� = �k− 2�r( 1
2�x�2)x/�x�2
(1)

Alam [1] also follows from Stein’s technique although in a less direct fashion.
In many cases the superharmonicity of

√
m is quite difficult to verify. The

difficulty has led researchers to consider the superharmonicity of m rather
than

√
m. This is reasonable as

�
√
m�x� = 1

2
√
m�x�

(
�m�x� − 1

2
�∇m�x��2

m�x�
)

∀ x ∈ R
k
(2)

Therefore, if �m�x� ≤ 0, then �
√
m�x� ≤ 0. A problem that occurs is that, as

we will show below, if one uses a proper prior, the induced marginal cannot
be superharmonic. Therefore if one insists on a superharmonic marginal the
underlying prior is necessarily improper. See [4], [12] and [13] for applications
of superharmonicity ideas to the construction of minimax estimates. Upon an
examination of these papers, one can see that they deal with improper priors.
If

√
m is superharmonic, this is not necessarily the case.

We will show that, for the class of variance mixtures of normal priors, Stein’s
result gives rise to a method for constructing admissible minimax estimators
via solutions to the differential inequality �

√
m ≤ 0. It is important to work

with the superharmonicity of the square root of the marginal rather than just
the marginal itself because we wish to investigate the minimaxity of Bayes
rules based on both proper and improper priors. This larger class contains
many examples of priors that are routinely used in practice, such as the t-
distribution. We are also able to construct new priors within this more general
framework.

The goal of this paper is not to check whether a Bayes estimator is minimax;
it is to consider the inverse problem, that is, the construction of minimax
Bayes estimators. Section 2 states the problem, gives the necessary set-up
and discusses the superharmonicity of

√
m. In Section 3, examples illustrate

the method of construction for spherical priors that are variance mixtures of
normal distributions. In Section 4, we present some examples; in particular
in Section 4.3 it will be shown that the multivariate Student-t prior yields a
minimax Bayes rule. In the final section, we give some concluding remarks.

2. Marginals and superharmonicity.

2.1. The model. Let x be a random vector in R
k distributed as a multi-

variate normal distribution, �k�θ� Ik�, with mean vector θ and identity co-
variance matrix Ik. The central problem of this paper is that of constructing
spherical Bayes minimax estimators of θ under the quadratic loss function
L�θ� δ� = �δ − θ�2
 Before giving the main results, first recall the elements
that lead to proper Bayes minimax estimates. The conditions that specify risk
finiteness are critical and must be dealt with carefully.

Assume that θ is distributed according to a prior probability measure ν.
Then the marginal distribution of x has density with respect to the Lebesgue
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measure in R
k given by

m�x� = 1
�2π�k/2

∫
R
k

exp
(
−1

2
�x− θ�2

)
dν�θ�


The Bayes estimate δν�x�, which is defined as the minimizer of the Bayes risk
(see [3], page 17) is given by δν�x� = x + ∇ Logm�x�� where the symbol ∇
denotes the gradient. Thus the Bayes estimator δν is of the form δν�x� = x+
γ�x�. Stein exhibits, under suitable integrability conditions, that an unbiased
estimator of the risk of δν equals k+2 div γ�x�+�γ�x��2 = k+4�

√
m�x�/√m�x�

where the divergence and the Laplacian are denoted by div and �, respectively.
Thus the risk of δν equals Eθ��δν − θ�2
 = k+ 4Eθ�

√
m�x�/√m�x�, where Eθ

is the expectation with respect to �k�θ� Ik�. Therefore a sufficient condition
for δν to dominate the usual minimax estimate δ0�x� = x is that the square
root of the marginal density is superharmonic; in this case δν will be minimax
as well.

Let us specify the conditions for which the above results are valid. As
the risk of δ0 is finite (namely, equal to k), a straightforward application of
Schwarz’s inequality shows that the risk of δν = δ0 + γ is finite if and only
if Eθ��γ�2
 < ∞. In that case, Stein’s identity states that Eθ��X − θ�γ
 =
Eθ�div γ
 and each expectation exists.

For γ = ∇ Logm, the finiteness condition means that

Eθ��∇ Logm�2
 = Eθ
[�∇m�2

m2

]
< +∞(3)

and this, in turn, implies that

Eθ��Logm
 = Eθ
[
�m

m
− �∇m�2

m2

]
<∞


2.2. The superharmonicity of m1/2. In the following we give some com-
ments about the various ways that

√
m can be superharmonic when a proper

prior is used. There is a deep connection between properness and superhar-
monicity; the fact that the prior is proper implies that the marginal cannot be
superharmonic. Indeed [19] shows that the posterior risk Ex��θ−δν�2
, where
Ex denotes the expectation with respect to the a posteriori distribution given
x, is greater than or equal to the unbiased estimator ρ�x� of the risk of δν as
soon as m is superharmonic since

Ex��θ− δν�2
 = ρ�x� − �m�x�
m�x� 


Hence, it follows that

Eθ�Ex��θ− δν�2

 ≥ Eθ��θ− δν�2


Integrating this inequality with respect to ν (and denoting by Eν the corre-
sponding expectation), the right-hand sideEν�Eθ��θ−δν�2

 is the usual Bayes
risk. However, denoting by Em the expectation with respect to the marginal
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density, since ν is proper, we are guaranteed of the existence of the posterior
(cf. [8], page 79-III). Hence we have

Eν�Eθ�Ex��θ− δν�2


 = Em�Ex��θ− δν�2

�(4)

which is also equal to the Bayes risk. So the previous inequality is actually
an equality when ν is a probability measure, which excludes the fact that
�m ≤ 0 with strict inequality on a set of nonzero measure (that is, as m is
a smooth function, we have �m = 0 everywhere). Note that, as m is also a
positive function, the harmonicity condition �m = 0 implies necessarily that
m is constant (see [9]). As a consequence, the superharmonicity condition on
the marginal contradicts the properness of the prior. Note, however, in the
case where ν is improper, the formal posterior, as defined in (2.3) of [15], is
not necessarily a regular conditional probability. In this case equality (4) does
not hold.

By searching for priors among those for which the square root of the
marginal density is superharmonic, we provide a richer class of minimax
procedures including the proper Bayes minimax ones. A convenient subclass
of proper spherical priors will be the class of variance mixtures of normal
distributions (recall that Strawderman’s prior is one of them). In the next
section we construct Bayes minimax priors for this class.

3. The construction. Recall that a spherical (generalized) density with
generating function g is a variance mixture of normal distributions if there
exists a measurable positive function h on R+ such that

g�t� =
∫ ∞

0

1
�2πv�k/2 exp

(
− t

2v

)
h�v�dv ∀ t ∈ R+

provided that this last integral exists. It is clear that a sufficient condition for
this is that g�0� <∞.The density is proper provided

∫∞
0 h�v�dv is finite.

If g��θ�2� is taken as the (generalized) prior, the marginal densitym can be
seen as the corresponding mixture of marginal multivariate normal densities
mv with the same mixing function h. Upon application of Fubini’s theorem for
positive functions, for any x ∈ R

k,

m�x� = 1
�2π�k/2

∫
R
k

exp
(
−1

2
�x− θ�2

)

×
[∫ ∞

0

1
�2πv�k/2 exp

{
−�θ�2

2v

}
h�v�dv

]
dθ

=
∫ ∞

0
mv�x�h�v�dv�

(5)

where

mv�x� =
1

�2π�v+ 1��k/2 exp
(
− �x�2

2�v+ 1�
)
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Lebesgue’s dominated convergence theorem ensures that differentiating under
the integral sign is valid. Hence we obtain

∇m�x� =
∫ ∞

0
∇mv�x�h�v�dv(6)

and

�m�x� =
∫ ∞

0
�mv�x�h�v�dv
(7)

It is worth noting that these mixture results allow us to prove easily that
any (generalized or proper) Bayes estimator resulting from a variance mixture
of normal distributions has finite risk since (3) is satisfied. Indeed, for any
x ∈ R

k, we have

�∇m�x��2

m2�x� = �x�2
[∫∞

0 �1/�v+ 1�k/2+1� exp�−�x�2/2�v+ 1��h�v�dv∫∞
0 �1/�v+ 1�k/2� exp�−�x�2/2�v+ 1��h�v�dv

]2

≤ �x�2


(8)

Thus, it follows that Eθ��∇m�2/m2
 ≤ k + �θ�2 < ∞ and, therefore, the nec-
essary and sufficient risk finitness condition is satisfied.

Before stating our main result, we add a comment about the dimension k
of the sample space. It is well known that Stein’s phenomenom only occurs
when k ≥ 3. However, dealing with proper priors, recall that [20] proves that,
in three and four dimensions, spherically symmetric proper Bayes minimax
estimators do not exist. So in the following, we assume that k ≥ 5 if we wish
only to use proper priors, while only k ≥ 3 if we are willing to use improper
priors.

Theorem 1 is the main result of this section.

Theorem 1. Let h be a positive function such that the function v →
−�v+ 1�h′�v�/h�v� can be decomposed as l1�v� + l2�v� where l1 ≤ A and is
nondecreasing while 0 < l2 ≤ B with 1

2A + B ≤ �k − 2�/4. Assume also that
limv→∞ h�v�/�v+ 1�k/2 = 0. Then the Bayes estimator corresponding to the
mixing density h is minimax. Furthermore, if h is integrable, the resulting
proper Bayes estimator is minimax.

Proof of Theorem 1. Since the Laplacian of
√
m is as in (2), the super-

harmonicity condition on
√
m is equivalent to

�m�x�
�∇m�x�� − 1

2
�∇m�x��
m�x� ≤ 0 ∀ x ∈ R

k
(9)

For any x ∈ R
k, applying (6) and (7), the two following inequalities are suc-

cessively equivalent to (9):∫∞
0 �1/�v+ 1�k/2+1����x�2/�v+ 1�� − k� exp�−�x�2/2�v+ 1��h�v�dv

�x� ∫∞
0 �1/�v+ 1�k/2+1� exp�−�x�2/2�v+ 1��h�v�dv

− 1
2
�x� ∫∞

0 �1/�v+ 1�k/2+1� exp�−�x�2/2�v+ 1��h�v�dv∫∞
0 �1/�v+ 1�k/2� exp�−�x�2/2�v+ 1��h�v�dv ≤ 0
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and ∫∞
0 �1/�v+ 1�k/2+2� exp�−�x�2/2�v+ 1��h�v�dv∫∞
0 �1/�v+ 1�k/2+1� exp�−�x�2/2�v+ 1��h�v�dv

− 1
2

∫∞
0 �1/�v+ 1�k/2+1� exp�−�x�2/2�v+ 1��h�v�dv∫∞

0 �1/�v+ 1�k/2� exp�−�x�2/2�v+ 1��h�v�dv ≤ k

�x�2



By changing of variable t = 1/�v+ 1�, (9) is also equivalent to∫ 1
0 t

k/2 exp�−��x�2/2�t�h��1 − t�/t�dt∫ 1
0 t

k/2−1 exp�−��x�2/2�t�h��1 − t�/t�dt

− 1
2

∫ 1
0 t

k/2−1 exp�−��x�2/2�t�h��1 − t�/t�dt∫ 1
0 t

k/2−2 exp�−��x�2/2�t�h��1 − t�/t�dt
≤ k

�x�2



(10)

With this change of variables, the condition at infinity becomes

lim
t→0

tk/2h

(
1 − t
t

)
= 0
(11)

To show that condition (10) is satisfied, first integrate by parts in both
numerators on the left-hand side of (10), letting s = �x�2/2. Then, for example,
the first integral can be written as

∫ 1

0
tk/2 exp�−st�h

(
1 − t
t

)
dt = −1

s

[
tk/2h

(
1 − t
t

)
exp�−st�

]1

0

+ k

2s

∫ 1

0
tk/2−1 exp�−ts�h

(
1 − t
t

)
dt

− 1
s

∫ 1

0
tk/2−2 exp�−ts�h′

(
1 − t
t

)
dt


(12)

The second integral has the same form but with k replaced by k− 2.
Condition (10) then becomes [on collecting like terms and noting that the

integral in the middle expression of (12) is equal to the denominator and
cancelling s]

−
∫ 1

0 t
k/2−2 exp�−ts�(h′��1−t�/t�

h��1−t�/t�
)
h��1 − t�/t�dt∫ 1

0 t
k/2−1 exp�−ts�h��1 − t�/t�dt

+ 1
2

∫ 1
0 t

��k−2�/2�−2 exp�−ts�(h′��1−t�/t�
h��1−t�/t�

)
h��1 − t�/t�dt∫ 1

0 t
��k−2�/2�−1 exp�−ts�h��1 − t�/t�dt

+
[− limt→1 t

k/2 exp�−ts�h��1 − t�/t�∫ 1
0 t

k/2−1 exp�−ts�h��1 − t�/t�dt

+ 1
2

limt→1 t
�k−2�/2 exp�−ts�h��1 − t�/t�∫ 1

0 t
�k−2�/2−1 exp�−ts�h��1 − t�/t�dt

]
(13)
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+
[

limt→0 t
k/2 exp�−ts�h��1 − t�/t�∫ 1

0 t
k/2 exp�−ts�h��1 − t�/t�dt

− 1
2

limt→0 t
�k−2�/2 exp�−ts�h��1 − t�/t�∫ 1

0 t
�k−2�/2−1 exp�−ts�h��1 − t�/t�dt

]

≤ k

2
− k

2
+ 1

2
�k− 2�

2
= k− 2

4



Now note that the two terms in brackets in (13) are both nonpositive. The
first bracketed term is nonpositive because the limits in the numerators are
equal, while the denominator of the second term is larger than that of the
first. The second bracketed expression is nonpositive because the first term
vanishes by (11) and the second term is nonpositive.

Also note that, holding s fixed and defining

gk�t� =
exp�−ts�tk/2−1h��1 − t�/t�∫ 1

0 exp�−ts�tk/2−1h��1 − t�/t�dt
�

(13) implies that a sufficient condition for minimaxity of the Bayes estimator
corresponding to the mixing density h�·� is

Ek�f� −
1
2
Ek−2�f� ≤

k− 2
4

�(14)

where Ek denotes expectation with respect to the density gk�t� and where
f�t� = −h′��1 − t�/t�/�th��1 − t�/t��.

Let li�v� = fi�1/�v+ 1���i = 1�2�. Then f�t� = f1�t� + f2�t� where f1 ≤ A
and is nonincreasing while 0 < f2 ≤ B. Since gk�t� is a family with monotone
(increasing) likelihood ratio in k and f1 is nonincreasing and bounded by
A, Ek�f1� − 1

2Ek−2�f1� ≤ 1
2Ek−2�f1� ≤ 1

2A. Furthermore, as 0 < f2 ≤ B,
Ek�f2�− 1

2Ek−2�f2� ≤ B. Hence the left-hand side of (14) is bounded above by
1
2A+B which in turn is bounded above by �k− 2�/4 by the hypothesis of the
theorem. Therefore (14) holds so that the Bayes estimator is minimax. If h is
integrable, the proper Bayes estimator is minimax. This completes the proof
of the theorem. ✷

A corollary which is very useful in constructing Bayes minimax estimators
follows easily from the theorem and will be applied in the examples in the
next section.

Corollary 1. Let ψ be a continuous function which can be decomposed
as ψ = ψ1 + ψ2, where ψ1 ≤ C and is nondecreasing, while 0 < ψ2 ≤ D for
1
2C+D ≤ 0. Define

h�v� = exp
[
−1

2

∫ v
v0

2ψ�u� + k− 2
u+ 1

du

]
∀ v > 0�(15)

where v0 is a nonnegative real constant.
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Assume also that

lim
v→∞

h�v�
�v+ 1�k/2 = 0
(16)

Furthermore, if h is integrable, the resulting proper Bayes estimator is mini-
max.

Proof. Note that −��v+ 1�h′�v�/h�v�� = ψ1�v� + ψ2�v� + �k− 2�/2. Let
l1�v� = ψ1�v� + �k− 2�/2 and l2�v� = ψ2�v�. With A = �k− 2�/2 + C and
B = D the result follows from Theorem 1. ✷

Comment 1. In applications of Theorem 1 it often suffices to take l2 = 0.
Such an identification is equivalent to a monotone r�·� function in the rep-
resentation of the shrinkage function in (1), which in turn corresponds to
choosing ψ2 = 0 in Corollary 1. The inclusion of a nonzero ψ2 term leads
to the enrichment of the class of priors which yield Bayes minimax estima-
tors and consequently which have shrinkage functions with a nonmonotone
r�·�. The multivariate Student t example below illustrates this point. In such
cases, the usual proof of minimaxity based on the unbiased estimate of risk
and monotonicity does not necessarily apply.

Comment 2. Bayesians do not necessarily use proper priors. However, in
such cases, it is still of interest to verify the admissibilty of the Bayes minimax
estimator. Brown [5] showed that if

∫∞
1 dr/rk−1m∗�r� = ∞, where m∗��x�� =

m�x�, then the corresponding generalized Bayes estimator is admissible. In
the variance mixture of normals prior case we are considering, (5) and a change
of variable yield

m�r� = �

[
tk/2−2h

(
1 − t
t

)
1�0�1��t�

]
�r2/2��(17)

where � �g
�u� is the Laplace transform of g evaluated at u and 1�0�1� is the
indicator function of the interval �0�1�. A Tauberian theorem in [22] gives a
nice technique for relating the tail behavior of a function and its Laplace trans-
form. We will use this result to relate the tail behavior of the mixing density
to that of the marginal, then use this rate to establish Brown’s admissiblity
condition.

Suppose the mixing density is such that h�v� ∼ c1v
β, for some generic

constant c1, as v→ ∞. Then tk/2−2h��1− t�/t�1�0�1��t� ∼ c1t
k/2−β−2 as t→ 0+.

By Corollary 1b, page 182 of [22], � �tk/2−2h��1− t�/t�1�0�1��t�
�s� ∼ c2s
β−k/2−1

as s → ∞. Therefore by the representation in (17), m∗�r� ∼ c3r
2β−k+2 as

r → ∞. Consequently, Brown’s admissibilty condition for generalized Bayes
estimators is satisfied for the variance mixture of normals prior if the mixing
density is such that h�v� ∼ c1v

β as v→ ∞ for β ≤ 0. Note that the condition
for propriety is β < −1.



668 D. FOURDRINIER, W. E. STRAWDERMAN AND M. T. WELLS

4. Examples. In this section we will give several examples of the con-
structive method given by Corollary 1. It suffices to propose functions ψ1 and
ψ2 such that the conditions of the corollary hold.

4.1. Strawderman-type priors. Suppose ψ1�v� = b, for b ≤ 0, and ψ2�v� =
0. It follows from (15) that

h�v� = exp
[
−1

2

∫ v
v0

2b+ k− 2
u+ 1

du

]

= c1�v+ 1�−�b+�k−2�/2��

(18)

where c is the normalizing constant. As Condition (16) reduces to b > 1 − k,
the corresponding Bayes estimator is minimax when 2 − k/2 < b ≤ 0. Note
that h is integrable provided b > 2−k/2 and, since b ≤ 0, it follows that k ≥ 5.
The tail rate results in Comment 2 imply that, if 1−k/2 ≤ b ≤ 0, the minimax
generalized Bayes rule is admissible.

It can be easily shown that Strawderman’s prior corresponds to the mixing
density h�v� = �1 − a��1 + v�a−2. Then the above conditions reduce to 3 −
k/2 ≤ a < 1 for proper Bayes minimaxity. The corresponding conditions for
admissibile minimaxity are 3 − k/2 ≤ a < 2.

As an example of the generality of Corollary 1, this example could be ex-
tended through the choice of function ψ2 such that 0 < ψ2 ≤ −b/2 to give

h�v� = c2�v+ 1�−�b+�k−2�/2� exp
[
−1

2

∫ v
v0

ψ2�u�
u+ 1

du

]



Any choice of nonmonotone ψ2 leads to a nonmonotonic r�·� discussed in Com-
ment 1.

4.2. Shifted inverted gamma priors. Suppose ψ1�v� = b−�a/�v+1��, with
a > 0 and b ≤ 0 and ψ2�v� = 0. In this case,

h�v� = exp
[
−
∫ v
v0

[ −a
�u+ 1�2

+ b+ �k− 2�/2
u+ 1

]
du

]

= c exp
[ −a
v+ 1

−
(
b+ k− 2

2

)
log�v+ 1�

]

= c exp
(
− a

v+ 1

)
�v+ 1�1−�b+k/2�


(19)

The integrability condition is b+k/2−2 > 0. Indeed the normalizing constant
can be found by integrating (19); that is,∫ ∞

0
�v+ 1�1−�b+k/2� exp

(
− a

v+ 1

)
dv = a2−�b+k/2�γ

(
b+ k

2
− 2� a

)
�

where γ�·� ·� is the incomplete gamma function (see [14]). As Condition (16)
reduces to b + k − 1 > 0, we obtain a proper Bayes minimax estimate for
2 − k/2 < b ≤ 0. The tail rate results in Comment 2 imply that, if 1 − k/2 ≤
b ≤ 0, the minimax generalized Bayes rule is admissible.
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4.3. Generalized Student priors. Suppose ψ�v� = α+β/v+ γ/v2. We shall
consider two cases. The conditions α ≤ 0, β ≤ 0 and γ < 0 correspond to a
monotonic r�·� in Comment 1. The second case we consider is α ≤ 0, β > 0
and γ < 0, which corresponds to a nonmonotonic r�·� in Comment 1. In each
case we require specific conditions on α�β and γ so that the hypotheses of
Corollary 1 are satisfied. In both cases

h�v� = exp
[
−
∫ v
v0

α+ β/u+ γ/u2 + �k− 2�/2
u+ 1

du

]

= c�v+ 1�β−α−γ−�k−2�/2vγ−β exp
(
γ

v

)
�

where c is the normalizing constant. The function h is integrable if 2− k/2 <
α ≤ 0. As in the previous examples, the integrability condition implies (16).
The admissibility condition of Comment 2 is 1−k/2 ≤ α ≤ 0. Hence if 1−k/2 ≤
α ≤ 0 and γ ≤ 0 the corresponding minimax generalized Bayes estimate is
admissible.

In the first case with α ≤ 0, β ≤ 0 and γ < 0, we take ψ = ψ1 and ψ2 = 0. So
the conditions 2−k/2 < α ≤ 0 and γ < 0 give rise to a proper Bayes minimax
estimate.

When α ≤ 0, β > 0 and γ < 0 take ψ1�v� = α+�γ/v��1/v+β/γ�1�0�−2γ/β��v�,
ψ2�v� = �γ/v��1/v+ β/γ�1�−2γ/β�∞��v�, C = α and D = β2/4γ. Then the mini-
maxity condition of Corollary 1 is α ≤ β2/2γ, β > 0, and γ < 0.

It is of course possible to continue with functions ψ of the form ψ�u� =∑n
i=0�αi/ui�. We prefer to pursue the connection with spherical multivari-

ate Student-t priors with m degrees of freedom and a scale parameter equal
to τ. This corresponds to ψ�v� = α + β/v + γ/v2 with α = �m − k + 4�/2,
β = �m�1 − τ� + 2�/2 and γ = −mτ/2. The general conditions on α�β and γ
in case 1 reduce to k −m − 4 ≥ 0 and τ ≥ �m+ 2�/m. As mentioned above,
this corresponds to a monotonic r�·� in Comment 1. This case is the exam-
ple developed by [10], involving a monotonicity-type arguement. However, if
we use the second case of this example, we obtain a nonmonotone shrinkage
function; that is when τ < �m+ 2�/m. The conditions for this case reduce to
k−m− 4 ≥ 0, m�1 + τ� + 2 > 0 and k ≥ 2 +mτ/2 + �m/2 + 2 + 2/m�/τ.

The case where the scale τ equals one is of particular interest, but cannot
occur under the conditions of case 1; hence the r�·� function is necessarily
nonmonotone. The conditions of case 2 when τ = 1 reduce to k ≥m+4+2/m.
Specifically, if m = 1 (the spherical multivariate Cauchy) and k ≥ 7, the
corresponding Bayes estimate is minimax. Furthermore, if m ≥ 2 and k ≥
m+ 5, we also get the desired minimaxity result. Numerical studies indicate
that, for k = 5 and m = 1, we indeed need a scale parameter τ > 2 for
minimaxity, while, when k = 6, a scale of τ = 1 will suffice.

It is important to note that these results for the t−distribution prior cannot
be deduced using a classical monotonicity argument. In [2], [6] and [11], the
Bayesian robustness of the Cauchy prior was examined; the minimaxity re-
sult serves as a nice complement. That is, one can carry out a simple Bayesian
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analysis with a Cauchy prior and still maintain the desired frequentist con-
servatism of minimaxity.

5. Concluding remarks. Brown [5] conjectured a rate at which the tail
of the prior must decay to attain minimaxity. He suggested that prior distribu-
tions on θ should have a tail that behaves as �θ�4−2k in order to be minimax.
We can use the Tauberian-type results in Comment 2 to study the tail behavior
of the prior since π�θ� = � �tk/2−2h�1/t�
��θ�2�. In this case it is easy to show
that if h�v� ∼ cvβ as v→ ∞, then π�θ� ∼ c�θ�4β−2k+4 as �θ� → ∞. In the case
of Strawderman’s prior, it follows that the tail of π�θ� behaves as �θ�2a−k−2, so
that if we choose a = 3−k/2 the tail rate agrees with Brown’s rate. Similarly,
the tail of a multivariate-t prior in k dimensions with m degrees of freedom
behaves as �θ�−m−k. This agrees with Brown’s prediction for minimaxity when
m = k − 4, in agreement with the result of Section 4.3. Hence it seems our
results for the t-priors are sharp in the sense that, if k−m ≤ 4, the resulting
Bayes procedures will not be minimax. These rates are a polynomial, hence
ruling out a variety of lighter to medium tailed priors such as the multivariate
normal and multivariate double exponential.

The tail rates needed to attain minimaxity shed some light on the area of
“what if” asymptotics, that is, asymptotics which show how posterior densi-
ties behave as the discrepancy between the likelihood and prior information
tends to infinity. This theory classifies distributions into three classes based on
asymptotic tail behavior. Dawid [7] and O’Hagan [17] showed that, when θ is a
location parameter, assuming a Student-t prior density and normal sampling
density causes the posterior tail of θ to behave like the tail of a normal den-
sity. Sansó and Pericchi [18] examined behavior for a normal likelihood and
Laplace prior, finding that the posterior mean tends to x− c where c is some
constant, and thus the prior exerts bounded influence. Angers and Berger [2]
examined the behavior for a Cauchy prior. Chance and Wells [6] give some
results for general location families.

For the class of variance mixtures of normal distribution priors, we have
seen that superharmonicity of the square root of the marginal density gives
rise to a differential inequality that can be solved to yield admissible Bayes
minimax rules. We present some new priors that should serve as useful default
priors for Bayesians who wish to use estimates that have good frequentist
properties. Our results should also be comforting to Bayesians who routinely
use t-priors for robustness consideration.
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