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Selection models arise when the data are selected to enter the sample
only if they occur in a certain region of the sample space. When this
selection occurs according to some probability distribution, the resulting
model is often instead called a weighted distribution model. In either case
the “original” density becomes multiplied by a “weight function” w(x).
Often there is considerable uncertainty concerning this weight function;
for instance, it may be known only that w lies between two specified
weight functions. We consider robust Bayesian analysis for this situation,
finding the range of posterior quantities of interest, such as the posterior
mean or posterior probability of a set, as w ranges over the class of weight
functions. The variational analysis utilizes concepts from variation dimin-
ishing transformations.

1. Introduction. Assume that the random variable X € R! is dis-
tributed over some population of interest according to the density (with
respect to Lebesgue measure) f(x|0), 6 € ® = some interval (possibly infi-
nite) in R!, but that, when X = x, the probability of recording x (or the
probability that x is selected to enter the sample) is w(x). Then the true
density of an actual observation is

w(x)f(x]6)

(L1) Fulal) = =

where v,(0) = E,J]w(X)]. There is, actually, no reason to require w(x) to be a
probability; all we henceforth require is that w be nonnegative and that
0 < E,Jw(X)] < = for all 6. Then w can be interpreted as a weight function
that distorts (multiplies) the density f(x|6) that observation x gets selected.
Selection models occur very often in practice [Patil and Rao (1977); Rao
(1985); Bayarri and DeGroot (1992)].

Often the specification of w(-) is highly uncertain. It is thus of particular
interest to study the robustness of the analysis to choice of w. We do so here
using the global Bayesian robustness approach of considering a class, 7, of
possible weight functions, and computing the range of posterior functionals of
interest as w ranges over 7.

Previous efforts in this direction for selection models have been informal
and mainly confined to the study of parametric classes of weight functions,
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such as w(x) = x* (when X > 0). There is rarely scientific justification for
such specific parametric models; we will thus consider nonparametric classes
of weight functions, such as

7, = (w: wy(x) < w(x) < wy(x)),
7, = {nondecreasing w: w;(x) < w(x) < wy(x)},

where w,(-) and w,(-) are nondecreasing. The upper and lower limits, w, and
w,, are to be chosen subjectively, representing the extremes of beliefs con-
cerning w.

ExaMPLE 1. Studies are reported in a journal only if (i) the result is
significant at the 0.05 level of significance (one-sided) or (ii) it is significant at
the 0.1 level and is deemed to be exceptionally “important” by the editors. In
terms of, say, a standardized normal test statistic, X, we might conclude that
w €7, (or 73) with w,(x) = 1 645 (%) and wy(x) = 14 585 .,(x), where “1”
stands for the indicator function on the given set. The multiobservational
version of this example can arise in meta-analysis.

From (1.1), note that multiplying w by a constant has no effect on the
density. Hence, for i = 1 or 2, 7; could be replaced with 7;* = {kw: & > 0
and w € 7;} without affecting the conclusions. Interestingly, 77 can be
rewritten as

71 = {wrw(x)/w(y) <wy(x)/wi(y)},
which is the class considered in DeRobertis and Hartigan (1981); 7,* can be
similarly rewritten. Some may find it more natural to elicit w,; and w, by
considering 77* or 75, but, again, the answers will not change once w; and
w4, have been elicited.
The robust Bayesian problem becomes particularly interesting in the
multiobservational setting, because the effect of the weight function can then

be extremely dramatic. Suppose X;, X,,..., X, are ii.d. from the density
(1.1), so that the likelihood function for 0 is
(1.2) L,(0) al(6)[n(0)] ",

where 1(6) o I1'_,f(x;/60) would be the likelihood function for the un-
weighted base density. If #(60) is the prior density for 6 (assumed to be w.r.t.
Lebesgue measure), the posterior density is then

1(6)[7.(0)] "w(0)
JU(0) [ v, (0)] "m(0) do
assuming 7 is such that the denominator is finite. Expression (1.3) suggests
that, at least for large n, the weight function w can have a considerably
greater effect on 7* than might the prior w. Hence we will treat w(6) as
given here; for instance, it might be chosen to be a noninformative prior for
the base model f(x;|6). Section 2 in this paper generalizes trivially to the

scenario in which 7 is also specified only up to a class I', but Section 3 is
more difficult to generalize.

(1.3) () =
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We are interested in posterior functionals of the form

W (0)1(0)[v,(0)] "m(8)do
14 H (v,) = m* do = —n :
(L) Hy(n) = [o(0)m(0)do= = o de

(We assume that these integrals exist for all w, guaranteed if they exist for
w;.) Typical ¢ of interest include (6) = 6 (yielding the posterior mean, u),
$(0) = (0 — w? (yielding the posterior variance corresponding to ) and
¥(0) = 1,(0) (yielding the posterior probability of the set C). The sensitivity
of H,(v,) to w will be determined by finding, for i = 1,2,

(1.5) H{" = inf H,(v,) and H{" = sup H,(7,).
wew; wew;

As usual in Bayesian robustness, if (H}", I-_Idfi)) is a small enough interval,
then the effect of uncertainty in w is minor, but if the interval is large, one
cannot be assured of a robust conclusion and must either collect more data or
refine subjective opinion (about w or 7). For general discussion and refer-
ences concerning this type of Bayesian robustness, see Berger (1990, 1994)
and Wasserman (1992). Note that virtually the entire literature considers
robustness w.r.t. the prior—not the likelihood, as here. [Lavine (1991) and
Shyamalkumar (1996) are exceptions.]

Section 2 exploits rather trivial inequalities to obtain a simple lower bound
on ﬂdﬁi) and upper bound on ﬁdﬁi), using the technique of DeRobertis and
Hartigan (1981). Unfortunately, these simple bounds yield too broad a range
to be of much use (unless n is quite small). Hence, in Section 3 we tackle the
variational problem of finding H{" and ﬁf’ directly. Rather simple charac-
terizations of the “extreme points” for these optimizations are possible when
(0) is monotonic, unimodal or bowl-shaped. The theory of variation dimin-
ishing transformations [cf. Brown, Johnstone and MacGibbon (1981)] is used
in this analysis.

2. Employing DeRobertis and Hartigan bounds. If w € 7], then
clearly

v,(0) €Ty = {v(0):1,(0) <v(0) <,(0)}.

Also, if w €7, and f(x|6) has decreasing monotone likelihood ratio in 6
[ie., 6; < 0, = f(x|6,)/f(x]6,) is nonincreasing], then

v,(0) € I, = {nondecreasing v: v, (0) <v(0) < sz(e)}.

[This follows from the monotone likelihood ratio (MLR) property; since w € 7,
is nondecreasing, so is v,(60).] Define, for i = 1,2,

H) = jgﬁ,Hw(V)’ H{" = supH,(v).

vel;
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Since w € 7; = v, €1}, it is clear that H" < H(" and H{” < H{". Thus
the bounds obtained by employing the I, are conservative, in that they

13

contain the desired 7; bounds. The reason for considering the I'; bounds is
that they can be obtained from a relatively simple DeRobertis and Hartigan
(1981) type of analysis.

For use in the following theorems, define

0, ={0:4(6) > a},
L(0) =1(0)[n(0)] "m(0), UO) =1(0)[v,(0)] "=(0),
_[L(v), ifo<a,
84(0) = Uee), ifo>a,
uee), ife<a,
h(0)={U(a), ifa<6<a”,
L(9), ifa* <0,
where a* = a*(a) = inf{y > a: U(a) = L(y)}. Note that A, is defined only for

those values of a for which a* is well defined.

THEOREM 1. If I is considered, then
o Ja W (0)L(0) dO + [o b (0)U(0) do
H;” = inf ,
a Jo, L(0) d(0) + [o:U(6) do
o _ o 08 (O)U(0) 0 + foh(6)L(0) do
TR T U(0)dot oy L(0)do

The proof is essentially just Theorem 4.1 of DeRobertis and Hartigan
(1981).

THEOREM 2. If (0) is nondecreasing and T, is considered, then

= = inf| [4(0),00) do/h(0) o,

A = sup [0(0)8.00) do/1g,0) do .
If (0) is nonincreasing, these expressions hold with h, and g, reversed.

The proof is essentially Theorem 2.3.1 of Bose (1990).
An analogous result could be given for unimodal or bowl-shaped ¢(6), but

We_defer sgch a result until Section 3 and determination of the more accurate
H" and H".

ExXaMPLE 2. Suppose f(x;/0) = 67! exp{—x,/6}, where x, > 0 and 6 > 0.
Then [(0) = 07" exp{—nx/0}. We will employ the usual noninformative prior,
m(6) = 1/6. Consider w;(x) =1, .(x), 7, <7, as in Example 1. Then
v,(0) = exp{—1,/6}, so that I'; and T, are quite simple.
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Let ¢(6) = 0, so that H,(»,) is the posterior mean of §. We then have that
Q, =[a,»), and

L(6) =0 Vexp(—n(x —1y)/0), U(0)=06""Vexp(—n(x—1)/0).

Theorem 1 can thus be used to numerically compute H/" and I-:Tf), the
minimum and maximum of the posterior mean as v, ranges over I'}.

Similarly, for T, we can numerically compute H ? and H{® using Theo-
rem 2. Note that the range of a for which %, is defined can be shown to be
(0, a,), where q is the solution to

L(ay)exp{n(r, — 75)/ay} = L(n[x — 7,]/(n + 1)).

Since (0) = 0 is increasing, it is easy to see that I-L(,i) is the same for I'; and
Iy, but that the lower bounds, Hf), differ. These bounds are all given in
Figure 1, as a function of d, for the case 7, =1+ d, 7, =1 —d and n = 50.
The dashed lines are the upper and lower bounds corresponding to I';, and
the dotted line is the lower bound corresponding to I',. Since the upper bound
is unchanged for I, it is clear that imposing monotonicity on w in I,
provides only a slight improvement over the I'; bounds.

It is of considerable interest to study the effect of the sample size, n. This
is done in Table 1, for the case 7, = 0.8 and 7, = 1.2. The startling feature of

F1G. 1. Ranges of the posterior mean over T'; (dashed lines), Ty (upper dashed and dotted lines)
and 75 (solid lines) in the exponential example, when 7y =1 +d, 7 = 1 — d and n = 50.
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TABLE 1
Ranges of the posterior mean over 'y, I'y and %5 in the exponential example with sample size n

n=>5 n =10 n =50
(HD,HP) (0.813,1.711) (0.610,1.681) (0.421,1.976)
(HP, H?) (1.117,1.711) (0.864,1.681) (0.582,1.976)
(HP, H®) (1.0,1.5) (0.889,1.333) (0.816,1.224)

the results is that the range of the posterior mean increases with n; thus
larger sample sizes result in less robustness. This is a clear indication that
replacing 7" by I'; or I'; and using the DeRobertis and Hartigan theory is too
crude; it appears to be necessary to work directly with the original 7.

For this type of situation, it will be shown in the next section that the
exact bounds, H* and Iz,ﬁz), corresponding to %7;, are the minimum and
maximum of H,(y, ), where w (x) =1, . (x). It is straightforward to show,
for such w,, that the posterior distribution is inverse gamma (n,[n(x — 7)]71),
so that the posterior mean is H(y, ) = n(x — 7)/(n — 1). It is then obvious
that H{® = n(x — 7,)/(n — 1) and H® = n(% — 7,)/(n — 1).

Besides being available in closed form, these exact bounds are considerably
tighter than the H(” and HS". In Figure 1, the solid lines are the exact
bounds, and in Table 1, one sees that the range of the exact bounds decreases
with n, as intuition would suggest. However, note that this range decreases
to the constant (7; — 7,), so that, even for an arbitrarily large sample size,
the uncertainty in the posterior mean is not completely resolved. This is the
nature of selection models and indicates why robustness studies are particu-
larly important for their analysis.

3. Determining the posterior bounds. Example 2 in Section 2 demon-
strated the need for exact calculation of HS” and H" in (1.4). In this section,
we indicate how this can be done.

The following assumptions will be used in the optimization proof. The first
assumption utilizes the concept of variation diminishing transformations [see
Brown, Johnstone and MacGibbon (1981), for precise definitions and discus-
sion]. We will require that f(x|0) be SVR, or SVR, (strictly variation re-
ducing of order 2 or 3, respectively). Note that being SVR, is equivalent to
having strict monotone likelihood ratio (decreasing, by convention). SVR,
means that, if g(x) has at most two sign changes (ignoring zeros), then
h(6) = E,[ g(X)] has no more sign changes (counting zeros) than g(x) does
(ignoring zeros); furthermore, if these numbers of sign changes of g and A
are equal, then the changes occur in the same order. Any distribution in the
exponential family is SVR, (indeed, is SVR,); so is the noncentral ¢, noncen-
tral x2, noncentral F and many others [see Karlin (1968), Section 3.4].
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AssumPTION 1. (60) and f(x|0) satisfy either of the following conditions:

(i) ¢(#) is nondecreasing (to be denoted 1) or nonincreasing (), and
f(x]0) has strictly decreasing monotone likelihood ratio;

(ii) ¢(0) is nondecreasing for § < 6, and nonincreasing for 6 > 6,(1 |), or
(0) is nonincreasing for 6 < 6, and nondecreasing for 6 > 6,(| 1), and

f(x16) is SVR,.

AssUMPTION 2. Let f(x]|6) be a density with respect to Lebesgue measure
on the interval (r, s), where r and s could be infinite. For all r < x < s and
some small £ > 0, assume that

(3.1) J+ 1LY [n,(0)] " 7w (0)F(xl0) db < o,

(32) [ +1p(ONUO) 1 (0)] " [r(0)]" T m(0) db < .
Note that (3.1) and (3.2) then hold with w; and w, replaced by any w € 7.

It will be seen that H{” and H" are achieved at a w which has one of the
four following forms. Define h(c) = inflx: w,(x) > ¢} and &,(c) = sup{x:
wy(x) < c}. Note that, at points of continuity of w;, h,(c) = w; *(c). Also, let
a Ab and a Vb denote the minimum and maximum, respectively, of ¢ and b.

Solution forms.

wix), ifr<x<a,

(3.3)) w(x) = wy(x), ifa<x<s,

for some a,

wy(x), ifr <x <hy(c),
(3.3ii)) w(x) ={c, if hy(c) <x < hy(c), forsome c,
wi(x), ifhy(c) <x<s,

wix), ifr<x<a,

wy(x), ifa<x<aVhy(c),

c, if a V hy(c) <x <hy(e),
wi(x), ifh(c) <x<s,

(3.3iii) w(x) = for some a, c,

wy(x), ifr<ux<hy(c),

c, if hy(c) <x <a A hyc),
wix), ifaAnh(c)<x<a,
wy(x), ifa<x<s.

(3.3iv) w(x) = for some a, c.

It can be seen that (3.31) and (3.3ii) are both limiting cases of (3.3iii) and
(3.3iv). This might be missed by an optimization program, however, so it is
wise, when optimizing over classes (3.3iii) or (3.3iv), to also check classes
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(3.31) and (3.3ii). We also define three limiting cases, (3.3i1)*, (3.3iii)* and
(3.3iv)*, as the versions of (3.3ii), (3.3iii) and (3.3iv) with A,(c) = hy(c) G.e.,
the “uniform at c¢” piece is absent).

NoTe. When w; and w, are (nondecreasing) indicator functions, as in
Examples 1 and 2, it is easy to see that the solution forms (3.3) are
themselves simply (nondecreasing) indicator functions.

THEOREM 3. Elf,i’ and I?llsi) exist and are attained, respectively, at some w
and w in 7;. If Assumptions 1 and 2 hold and 7#"= %, then w and w can be
chosen to be of the form indicated in Table 2. If, instead 7 = ¥, the solution
forms are as in Table 2 but with (3.3i1), (3.3ii1) and (3.3iv) replaced by (3.3i1),*
(8.3iii)* and (3.3iv)*.

For the proof, see the appendix, which also contains more general results.
In the following two examples, we illustrate application of Theorem 3 as
well as the nature of solution forms (3.3).

ExampLE 3. Consider the exponential scenario of Example 2, but now
suppose that “size-biased” weights of the form w(x) = x” are under consider-
ation. In particular, 7, = 0.8 and 7, = 1.2 are considered to be “extreme”
weights, and it is decided to consider any nondecreasing weight function that
lies between these extremes. The resulting class is clearly 7;, with

w(x) = 21?2 ifx<1, wy(x) = 208 ifx<1,
! 208, ifx>1, 2 2t if x> 1.

If we are again interested in the posterior mean, so that (8) = 6 which is
increasing, Theorem 3 states that Hf) is achieved at w of form (3.3i), while
I?f’ is achieved at w of form (3.3ii). Numerical computation for the situation
X = 2 and n = 10 shows that w is of form (3.31) with a = 2.097, while w is of
form (3.3ii) with h,(c) = 1.826, h,(c) = (1.826)"?/%8 and ¢ = (1.826)"2. These
are graphed as the dark lines in Figure 2; the lighter lines are w; and w,,
and the dashed vertical lines mark a and A,(c), respectively. The correspond-
ing bounds (H,?, H) are (0.943,1.189).

ExaMmPLE 4. Consider the exponential scenario of previous examples, but

now suppose that “length-biased” weights of the form w(x) = 7x are consid-

TABLE 2
Extreme points for optimization

Shape of ) l ™ N
Form of w (3.3i1) (3.31) (3.3iv) (3.3iii)
Form of w (3.31) (8.3ii) (8.3iii) (3.3iv)
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Fic. 2. Graphs of w(x) and w(x) [dark lines in (a) and (b), respectivelyl, together with w(x)
and wy(x) for Example 3.

ered. The “extremes” are thought to be w,(x) = (0.8)x and w,(x) = (1.2)x,
which we directly use to define 7.

If the “standard” length bias w(x) = x were used, then the posterior
distribution for # would be inverse gamma (2n,(nx)"!). For n = 10 and
X = 2, the posterior mean plus or minus one posterior standard deviation
would be the interval I = (0.805,1.301) and Pr(# € Ildata) = 0.714. We wish
to study the robustness of this posterior coverage as w varies over 7,. To do
so, we set (6) = 1,(0) and apply Theorem 3. Note that (-) is 1|, so that
Theorem 3 asserts that w is of form (3.3iii)) and w is of form (3.3iv).
Numerical computation reveals that w is of form (3.3ii1), but with a = 0 and
¢ = 2.458; thus the solution is actually of form (3.3ii), illustrating the need to
consider limiting cases. The maximizer, w, is of form (3.3iv) with a = 4.150
and ¢ = 0.768. Figure 3a and b graphs w and w, respectively (the dark lines):
the lighter lines are w; and w,, and the dashed lines mark ¢ (Figure 3a) and
c and a (Figure 3b). The corresponding bounds (H.?, H®) are (0.647,0.755).
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Fic. 3. Graphs of w(x) and w(x) [dark lines in (@) and (b), respectively], together with w,(x)
and wy(x) for Example 4.

APPENDIX

Existence and forms of w and w. Because the numerator and denomi-
nator in (1.4) are bounded above and below by w, and w,, it is straightfor-
ward to show that H"” and HS" exist. To show that w and @ exist, note first
that 7; is compact in the topology of pointwise convergence. Hence to prove
existence of w and w we need only show that H,(,) is a continuous function
of w (under pointwise convergence), that is, that

(A1) lh_)n;Hw( V) = Hy(w,+) if Lh_)n; wi(x) =w*(x).

Since we require v, (6) < © and w(-) > 0, the Lebesgue dominated conver-
gence theorem yields

lim vy, (60) = v,:(0) if }ergcw(l)(x) = w*(x),

71— >
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from which it is clear that

lim [z, (0)] " = [n(0)] "

[using also y, ((9) > 0]. Since [y, ()" <[y, ((9)] " and the integrals in (1.4)
are assumed to exist for w,, the domlnated convergence theorem can again be
applied to establish (A1).

We begin the determination of the extreme points with some needed
definitions. Much of the following applies to quite general classes, 7, so
define H, and H, as in (1.5) but for arbitrary 7. Next define [existence
guaranteed by (3.1)]

(A2)  A(x) = [(¢(9) —H,)1(0)[v(0)] """ Pm(0)f(xl0) do,
(A3) At={x:A(x) >0} and A = {x:A(x) <0}.

Similarly, define A(x), A* and A~ by replacing H, and w with H, and w in
(A2). We will use the notation

g(x+)=Ilimg(x+¢e), g(x—)=Ilimg(x— ¢).
e—0 Il
Finally, we need the following definition.

DEFINITION. For every open set A C (r, s) and w, € 7, define the weight
functions

(Ad) w*(x|lwy, A) = sup{w(x): w €7 and w(x) = wy(x) Vx € A},
wy (xlwy, A) = inflw(x): w € 7 and w(x) = wy(x) Vx € A%}.

The family 7 will be said to be closed under conditional supremum and
infimum operations if w*(x|lw,, A) € 7" and w,(xlw,, A) €7 for any w,
and A.

NotE. It is easy to see that 7] and 7, are closed under conditional
supremum and infimum operations.

Linearization. The first step in establishing the form of w and w is to
apply the usual linearization argument [cf. Lavine, Wasserman and Wolpert
(1993)] rewriting, for w say,

I?w = sup H,(w) = H,(w)
wew

as

(A5) 0= sup §¢(w) = @Aw),
wew
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where

(A6) G, (w) = [(w(0) - H,)1(6)[7,(0)] "= (6) do.

For w, the analogous expressions hold with H,, sup and w replaced by H,,

inf and w; we denote the resulting variant of (A6) by G,(w). In dealing with
(A5), the following lemma will be needed.

LEMMA 1. Suppose that 7 is convex and w € % satisfies w,(x) < w(x) <
wy(x), where w, and w, satisfy Assumption 2. Then

(A7) n[A(x)[@(x) - w(x)] dx = lim ¢7G,((1 - )@ + tw) <0.

An analogous expression holds for A(x), w(x) and G,,, but with the inequality
reversed.

ProorF. Note that (1 — #)w + tw €% by convexity. The inequality in
(A7) follows directly from (A5). To prove the first equality in (A7), let w, =
(1 — H)w + tw and note that G,(w) = 0 implies that

v5(0)
le(e)

G, (@,) = [(w(0) —I?d,)zw)[vw(m]”([ ] - 1)w<0> do.

Break this integral up into integrals over
Q,={0:1,(0)/v,(0) <t 17¢/?)}

and Qf, where ¢ is from Assumption 2.
Dealing first with the integral over )¢, a Chebyshev argument yields

£ [mltp(e) —H,[10)([7a(0)] "~ [m:(0)] ")m(0) do

< tilt(lf‘s/m”)ﬂw(ﬁ) _ ﬁw

1(9)([uwt(0)]_" + [vw(ﬂ)]fn)

X (1,(0)/v5(0))" " (0) do.

This last integral is clearly bounded by a multiple of the finite (3.2) and (since
£ is small) the leading factor goes to zero as ¢ — 0.
For 6 € Q,, note that

[42(0)/v5(0)]" = 1= [1 = ¢(1 = ,(0)/u(0))] " — 1
= nt(1 = 5,(0)/3(0)) + O(£2707/27),
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where O(-) is uniform in 6. Thus, using also (3.2) and the dominated
convergence theorem,

v5(0)
Vwi(e)

t—>0+

lim t‘lfﬂ(:,b(f)) —H¢)1(9)[VW(9)]‘”([ l — 1)w(0)d9

= lim n[ (¢(6) — H,)I(6)[v,(0)] "

t—>0+ Q,

x(l _ (8 + O(t““sz/‘“))w(o) do
vu(0)

=nf(w(0) = H,)1(0)[1(0)] """ (5(60) = w,(0))w(6) db.

Recalling the definitions of »;(#) and v,(6) and using (3.2) and the domi-
nated convergence theorem to reverse orders of integration, the result fol-
lows. The proof of the analogous result for w is similar. O

We are now ready to prove two theorems, which can be considered to be
generalizations of Theorem 3. Because these theorems are considerably harder
to apply than Theorem 3, we have left them for the Appendix.

THEOREM 4. If #'=%7 and Assumption 2 holds, then W = w, on A" and
w=w, onA". Also,w =w, on A* and w = w, on A".

Proor. We only prove the result for w. Since 7; is closed under condi-
tional supremum and infimum operations, w,(x|w, A*) and w*(x|w, A7)
are in 7. Setting w = w . (x|w, A*) in (A7) yields

(A8) nfzﬁj_\(x)(w(x) —w, (xlw, A"))dx < 0.

From its definition, it is clear that w, (x|w, A*) < w(x), so that, for (A8) to
be true, w must equal w*(x|w, A"), except possibly on a set of measure zero.
Likewise, w must equal w*(x|w, A~). Again recalling the definitions of W,
and w*, it is clear that @w must thus take the smallest possible value in A"
and the largest possible value in A~. The result is immediate. O

THEOREM 5. If #'= %, and Assumption 2 holds, then:

(a) for any interval (a,b) CA* (or A7), W satisfies W(x) = max{w,(x),
w(a -)} (or minf{w,(x), w(b +H)});

(b) for any interval (a,b) CA™ (or A7), w satisfies w(x) = min{w,(x),
w(b +)} (or max{w,(x), w(a -)}).

Proor. We only prove the first part of (a). The proof proceeds as in the
proof of Theorem 4, with the conclusions still being that w must take the
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smallest possible value in A* and the largest possible value in A~. In an
interval (a, b) c A*, the smallest possible value would be w,(x), except that
only nondecreasing w are allowed. To be nondecreasing, w(x) must be
smaller than w(a — ) on (a, b). The result is immediate. O

PrOOF OF THEOREM 3. There are many different cases to check, but they
are all similar to the following two cases that we will verify: (i) finding w
when 7= 77, ¢(6)1 and f(x]6) has MLR; (ii) finding w when 7' =7, ¢ 1 |
and f(x|6) is SVR,.

For case (i), note that the number of sign changes of

T(0) = (¥(0) = H,)1(6) [sp(0)] """ (6)

is zero or one and, in the latter situation, the sign changes from — to +.
Hence the variation reducing property of an MLR density implies that the
number of sign changes of A(x) = [T(6)f(x|0) d# is zero or one and, in the
latter situation, the sign changes from — to +. Thus A*=(r,a) and A" =
(a, s) for some r < a < s [note that the variation reducing property of strict
MLR implies that A(x) = 0 only on a set of measure zero], and Theorem 4
implies that w(x) = w,(x) for x € (r, @) and w(x) = wy(x) for x € (a, s), as
was to be proved.

For case (ii), note that the number of sign changes of T'() is 0, 1 or 2 and,
in the latter situation, the sign changes from — to + to —. Hence the
variation reducing property of an SVR, density implies that A has 0, 1 or 2
sign changes, and, in the latter situation, the sign changes from — to + to —.
When A has zero or one sign change, the proof proceeds exactly as in case (i).
Thus suppose A has two sign changes, from — to + to —. Then A*= (a, b)
and A= (r,a) U (b,s), where r <a <b <s. [The SVR, property implies
that A(x) = 0 only on a set of measure zero.] Theorem 2 then yields that a
maximizing w must satisfy

min{w,(x),w(a +)}, r<x<a,
w = { max{w,(x),w(a —)}, a<x<b,
min{w,(x),w(s +)}, b<x<s.

It follows directly that a maximizer must be of form (3.3iv), completing the
proof. O
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