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We study integration and reconstruction of Gaussian random func-
tions with inhomogeneous local smoothness. A single realization may only
be observed at a finite sampling design and the correct local smoothness is
unknown. We construct adaptive two-stage designs that lead to asymptoti-
cally optimal methods. We show that every nonadaptive design is less
efficient.

1. Introduction. Various problems of prediction from correlated data
are studied in the literature. Often the underlying stochastic model is a
Gaussian random function Y(¢), ¢t € D, where D c R?. We are interested in
the case when discrete observations Y(¢,),...,Y(¢,) of a realization of Y are
used for:

1. Prediction of the integral [, Y(¢) d¢, called integration.
2. Prediction of Y(¢) for all ¢ € D, called reconstruction.

In this paper we study the univariate case, D = [0, 1]. We present a new
framework for analyzing integration and reconstruction in case of an un-
known mean and covariance kernel of Y. We construct an adaptive method
that is asymptotically optimal for a class of processes Y having inhomoge-
neous local smoothness.

Our approach is motivated by several applications. Problems (1) and (2)
arise, for instance, in geostatistics and in computer experiments; see Cressie
(1993) and Hjort and Omre (1994), as well as Sacks, Welch, Mitchell, and
Wynn (1989), Koehler and Owen (1996), Bates, Buck, Riccomagno and Wynn
(1996). Moreover, the random function approach is used in numerical analy-
sis to complement the classical worst case approach; see Novak (1988), Traub,
Wasilkowski, and WozZniakowski (1988), Ritter (1996a) and Plaskota (1996).

Typically, the second-order properties of Y are not known precisely in
geostatistical applications or in computer experiments. Therefore parametric
assumptions on the mean m and the covariance kernel K of Y are frequently
used. The observations Y(¢;) are used to estimate the parameters, and
thereafter predictors are constructed on the basis of the estimated second
order structure. We stress that only the observations of a single realization
are at hand for parameter estimation and prediction.
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Usually a properly chosen design (¢;,...,¢,) € D" is fixed in advance.
Inference about K and m from the observations Y(¢,) is only used in the final
stage, when the prediction is generated. Any method that is based on an a
priori fixed design is called nonadaptive; the design is called nonadaptive
as well.

In this paper we analyze adaptive methods. The points ¢, are chosen
sequentially and therefore ¢, may depend on Y(#,),...,Y(¢;_;). In this way
inference about m and K is already used in the observation stage. An
adaptive method is based on an adaptive design, which is of the form

1 3V (8)), o ta(V(21), - ¥ (8, 1(-.0)).

Furthermore we propose a nonparametric approach regarding K and m,
and we do not choose a specific type of covariance kernel in advance. Instead,
we assume that Y is of the form

(1) Y(¢) = m(t) + g(1)X(f(t)), <D

Here m, f and g are deterministic functions and X is a zero mean Gaussian
random function. The mean m, the transformations f and g, and the
covariance kernel R of X are unknown; only some smoothness conditions are
assumed to hold.

The nonparametric model (1) allows for regions of different spatial vari-
ability of Y. We present an adaptive two-stage method which detects these
regions and places additional points accordingly. We prove that our method is
asymptotically optimal. Furthermore, we show that every nonadaptive method
is less efficient.

The design problem, that is, the optimal choice of observation points, for
processes of the form (1) is analyzed in numerous papers. However, at least
the functions f and g are assumed to be known, and therefore adaption does
not help. See, for example, Sacks and Ylvisaker (1966, 1970), Benhenni and
Cambanis (1992), Stein (1995a) and Ritter (1996b) for integration. Recon-
struction is analyzed in Speckman (1979), Su and Cambanis (1993), Miiller-
Gronbach (1996a, b), Ritter (1996a), and Miiller-Gronbach and Ritter (1997a).
The (asymptotically) optimal designs are nonadaptive. Once f, g and the
smoothness of X are specified and n is selected, the design is fixed and does
not depend on any observation of Y.

The above results serve as benchmarks for the nonparametric model (1)
with unknown functions m, f and g. We will demonstrate that asymptoti-
cally the same errors are achievable. To this end, properly chosen adaptive
designs must be used.

Much less is known in the multivariate case D = [0,1]¢ with d > 1. In
fact, only order optimal designs are known, while finding the best asymptotic
constants seems to be an open problem. See, for example, Stein (1995b),
Ritter (1996a), Ritter, Wasilkowski and WoZniakowski (1995) and Miller-
Gronbach (1997).

In the following section we specify the smoothness of the random function
X and the deterministic functions m, f and g in (1). Our adaptive method is
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defined in Section 3, and Section 4 contains the results and some remarks. In
Section 5 we compare the adaptive designs with equidistant designs by
means of a simulation. Proofs are given in Section 6.

2. Smoothness assumptions. Let X denote a zero mean Gaussian
random function on D = [0, 1] and let R denote the covariance kernel of X,
that is,

R(s,t) = E(X(s)X(t)) s,teD.

Regularity in quadratic mean of X is specified by the regularity of its
covariance kernel R at the diagonal in D%. We denote one-sided limits at the
diagonal in the following way. Let

Q,= {(s,t) S (0,1)2: s > t}, QO = {(s,t) S (0,1)2: s < t},

and let cl A denote the closure of a set A. Suppose that L is a continuous
function on Q.U Q_ such that L| 0, is continuously extendable to cl Q ; for
J € {+, =}. By L; we denote the extension of L to [0,1]* which is continuous
on cl Q; and on [0,1]*\ ¢l O,

The following smoothness conditions were introduced by Sacks and
Ylvisaker (1996) and thereafter studied in many papers, some of which are

cited in the introduction.

(A) R is continuous on [0, 1]2, the partial derivatives of R up to order two are
continuous on €, U Q_ and continuously extendable to cl ), as well as
tocl Q) _.

(B) RYO(t,¢) — ROV, t) =1, 0<t<l1,

(C) R%9(¢t,-) € H(R) for all 0 < ¢ < 1 and

sup [|[RZ (¢, )lg < .
O0<t<1
Here H(R) denotes the Hilbert space with reproducing kernel R; the corre-
sponding inner product and norm are denoted by (-, )z and |- |I.
Let m, g and f denote deterministic, real-valued functions on [0, 1]. We
assume that the following conditions hold:

(D) m is continuously differentiable;

(E) g is positive and continuously differentiable;

(F) f(0,1D c[0,1] and f is differentiable with f’ > 0 being positive and
Lipschitz continuous.

Consider a stochastic process Y of the form (1), and assume that the
conditions (A)—(F) hold. It is easily checked that Y is Holder continuous in
quadratic mean with exponent 1/2. This degree of smoothness frequently
occurs in geostatistics and computer experiments. The local Holder constant
of Y is given by

(2) a(t) =g()Vf'(1).
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Thus
1/2
)

(E(Y(s) - Y(2))"

3 = a(t).

(3) lim

s—t |s—t|

See Lemma 1 for a more detailed estimate. Property (3) is too weak for
analysis, in particular for proving lower bounds. Hence we use slightly
stronger conditions (A)—(F).

The process Y is of inhomogeneous local smoothness, in contrast to X. An
example showing three realizations of a process Y which satisfies our as-
sumptions is given in Figure 1. Here

R(s,t) =(1—|s —tl)/2,
m(t) = 2¢,
g(t) =1/2 + 5t2,
f(t) = (tanh(15¢ — 5) + 1) /2.

(4)

The corresponding function « is shown in Figure 2.

3. The adaptive method. Let Yn denote any method for reconstruction

that is based on n observations. Formally, Y’n is defined by a fixed point

t, € D and by measurable mappings x;: R"”"! > D and ¢: R® - C(D). We
have

yA’n = (b(yl:"',yn)’
where

Y1 = Y(tl)
and

Yi=Y(xi(y1,--,5-1))s 2<1i<n.

4
3
o
1
0
-1_/—‘\,\/\J\_\/
-2 T T T I
0 0.2 0.4 0.6 0.8 1

Fiac. 1. Three realizations of a process Y.
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w

2.5

0 T T T T
0 0.2 0.4 0.6 0.8 1

F1G. 2. The corresponding function «a.

The ith observation is made at ¢; = x,(yy,..., ;) and yields the value y;.
The method Y, is called nonadaptive if all mappings y; are constant;
otherwise it is called adaptive.

A method is nonadaptive, by definition, if all observations could be made in
parallel. Otherwise, if any kind of sequential observation is needed, the
method is adaptive. Hence methods are classified by the way in which the
data are collected. The structure of ¢ is irrelevant for this classification. Let
us mention that the notion of adaptivity is sometimes used in a different
sense; see, for example, Donoho and Johnstone (1994).

We measure the distance between a realization of Y and the corresponding
prediction in L -norm ll-1I, on D. The error of Y, is defined by

e,(Y,.L,) = (EIY - Y,12)"",

where 1 < g < . For finite p it is most convenient to study the case p = g.
For integration, the definitions are analogous, except that ¢ has range R
and the error is defined by
q ) 1/q

Now we describe our method for reconstruction and integration. Basically
it works as follows. In the first stage, which is nonadaptive, we use a small
number of observations to estimate a certain power a” of the local Holder
constant «; see (2). We take

eg(Y,, Int) = (E‘fDY(t) dt - Y,

-1 L
(5) ) = {(1/2 +1/p) ~, forreconstructionin L, -norm,

2/3, for integration.

Then we select additional points adaptively with “density” proportional to the
estimate & of a’ Finally, we use piecewise linear interpolation of all
observations for reconstruction. Analogously, we use a trapezoidal rule for
integration.
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The nonadaptive part is determined by an integer
keN
and a real number
(6) 0<8<1/k%

The corresponding sample points are clustered around the sites (2i — 1)/2k
with distance 8 within each cluster. More precisely,
2i-1 kS
t, = - — +
l,] 2k 2 .] >

where i = 1,...,k and j =0,..., k. Additionally, we use the points ¢, , = 0
and ¢,,, o = 1. The resulting nonadaptive design

(7 T=(to ks >trs1,0)

consists of k(k + 1) + 2 sample points.
Sampling Y at T yields data

Yy = (yo,k:""ykJrl,O)’

which are used for estimating the function a*. The differences Y(¢; ;) —
Y(¢; ;_,) are normally distributed and weakly correlated with mean close to
zero and second moment close to a((2i — 1)/2k)?%; see Lemma 1. Therefore,

a natural choice for estimating a* at (2i — 1)/2k is
1 k
A _ A2y _ A
a;(y) = (C'/\5 ) )y |yi,j yi,j—1| )
k=

where ¢, denotes the absolute moment of order A of the standard normal
distribution. In fact, Lemma 3 shows that these estimates work well under
the assumptions imposed on the process Y. However, taking care of &,(y)
getting too small, we will use

&;(y) = max(&;,(y), )
instead, where
O0<ex<l.
Estimation of « is also studied in Istas (1996).

In the second stage additional points s, j( y) are adaptively placed in the
subintervals J; = [¢; ;, ¢, o]. These points are determined by the values

ay(y),..5 a(y),
together with an integer
neN,
which is roughly the total number of points s, (y). We estimate a* on
Jy U - UdJ, by piecewise linear interpolation of the values &,(y), and we

use this estimate to construct an adaptive design. See Figure 3 for an
example.
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a3 (y) E—

0 1/6 1/2 5/6 1

Fi16. 3. Estimate for a, adaptive design with k = 3, 6 = 1/50 and n = 16.

More precisely,

r(y) = \n a;,(y) + &i+1(y)|

2Y5 1 a,(y)
is the number of points which are placed in the subinterval J; for i = 1,.

k — 1. Within each of these subintervals, the spacing is proportlonal to the
linear density with boundary values &;( y) and &;,(y). Formally,

,/;_Si'j(y)(&i(y)(tiﬂ,o —t)+ a,(y)(t—t;,))dt
_ .(&i(y) + d’i+1(y))(1/k - k8)2
2(ri(y) +1)

for j =1,...,r,(y). We use equidistant points in the subintervals , and J,.
The respective numbers of points are given by

a(y)
2252 1 a;(y)

a,(y)

rO(y) :\»n 2253:1&J(y) :

| and r,(y) ={n

Therefore
- 1/k - kS
s0,;(¥) =J—2(r0(y) +1)
with j=1,...,r,(y) and
1/k — kS
sp(¥) =1—(r(y) +1- J)m

with j=1,...,r,(y).
Summarizing, the first stage depends on the parameters 2 and &, and the
second stage depends on the parameters ¢ and n, as well as on A, defined in
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(5). The whole design consists of
N(y)<n+k(k+1)+2=N

points. For reconstruction we use the piecewise linear interpolation of the
whole observations from stage one and two. For integration, we apply the
trapezoidal rule to these data. We denote our adaptive method by Yy.

In the sequel we use = to denote the strong equivalence of sequences of
real numbers a, and b,. By definition,

a,=b, iff lima,/b, =1.
noo

In order to obtain asymptotic results we study sequences of methods Y}(}"
which are defined by sequences of the respective parameters %,, 6, and &,.
There are many ways to adjust the parameters such that the correct error
rate is achieved. The approach taken here is based on the following considera-
tions. Clearly, the number %,(k, + 1) + 2 of nonadaptive points should be
small compared to the number of points chosen adaptively in the second
stage. On the other hand, %2, should be sufficiently large in order to obtain a
good estimate of a* even for a small sample size. Hence we take

(i) k, =[n/?77],
where
0<y<1/2.
Hereby the maximum size N, of the adaptive design satisfies
N, = n.

The parameters §, must satisfy

(ii) 8, <c(1/n)

with a constant ¢ > 0. This guarantees that each subinterval [¢, ,,, ] is
sufficiently small; its length is of order at most n~*/2-7),

Finally, we adjust the truncation parameter ¢, according to the quality of
our estimate of a*. Due to Lemma 3, the corresponding error is of order at
most n~1/277/2 Therefore we take
(iii) g, =n"",
where

0<7<(1/2 - vy)/2.

4. Results and remarks. Let

r2(p/2+1)

1 p/2
Vp=f0(t(1—t)) /% dt = TET)

and recall that
¢, = (2m) /7 [1t1” exp(—¢2/2) dt.
R

We extend the definition of [|-||, to 0 < p < o, as usual. The error of our
method is given as follows.
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THEOREM 1. Let Y denote any process of the form (1) such that the
conditions (A)—(F) hold. Let a be given by (2). If A is selected according to (5)
and (1)-(iii) are satisfied, then

R 1 )
ea( V3 Int) = S llallin ™,

e Yy, L) = (c,v,)"llallin"%, 1<p<ow
p\*N,> ~p p°p A ’ =p :

In the following two remarks we present results for integration and
reconstruction of Y that require the mean m and the transformations f and
g to be known. We impose the same kind of smoothness as required in
Theorem 1.

REMARK 1. The design problem for integration of an arbitrary random
function of second order is equivalent to a regression design problem for a
linear model with correlated errors; see Sacks and Ylvisaker (1970). There-
fore, the result of Sacks and Ylvisaker (1966) on regression design yields

ilrife2(?n , Int) =

1
-1
= n -.
2‘/§ ||a||2/3

Here the infimum is over all methods that use n observations. Let

P(t) = a?3(t)llell)3
and define the nonadaptive design (¢{", ..., ") € [0, 1]" by

o i1 g o
(8) /Ozp(t)dt—njfolp(t)dt, i=1,...,n.

Then the trapezoidal rules Y, that are based on Y(¢{™),...,Y(¢+\») are
asymptotically optimal, that is,

Y,,Int : lally/sn"
e ,Int) = —|la n”'.
»(Y,, Int) oy3 " *l2/s

A sequence of nonadaptive designs (¢{”, ..., t(") that is defined by (8) for
some fixed positive density ¢ on [0, 1] is called a regular sequence of designs.
Note that any design from a regular sequence is nonadaptive.

REMARK 2. Consider the reconstruction problem in L ,-norm with 1 < p <
. The minimal error that is achievable from n observations satisfies
infe,(¥,, L, ) = (¢,1,)"lalln~",
where A = (1/2 + 1/p)~1, as in (5). A regular sequence of designs together
with piecewise linear interpolation is asymptotically optimal. The optimal
density is given by

Y(t) = a’(t)llell.
See Speckman (1979) and Ritter (1996a). The case p = 2 is studied in Su and
Cambanis (1993) and Miiller-Gronbach (1996a).
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Obviously the results from Remarks 1 and 2 motivate the definition of our
adaptive method. Furthermore, these results yield the lower bounds from
Theorem 1.

COROLLARY 1. The methods YA’}” are asymptotically optimal for every pro-
cess of the form (1) that satisfies (A)—(F).

Hence we have a single sequence of methods that works well for every
process from some large class, which is defined by smoothness properties.
This optimality property cannot be achieved by any sequence of nonadaptive
methods Y, , as shown by the following corollary.

COROLLARY 2. Adaption helps for integration and reconstruction of ran-
dom functions of the form (1) with unknown mean m and transformations f
and g.

Proor. Let 2 N and consider a sequence of nonadaptive methods.
There exists a subinterval I c [0, 1] of length 1/ which contains at most
n/k + 1 observation points for infinitely many n. Take, for instance, a
Brownian motion X and functions f and g such that « = 1 on I and

[ a(t)ydt=1/k.
[0,1\I

For L,y-reconstruction and A = 1, we have
es(Y), Ly) = (6n) /*2/k
and

lim supe2(?n, LZ)(Gn)l/2 > k12,

n— o

Therefore,

Y, L
limsupez(An—’z) > kY2/2.
n— ez( ]\);n7L2)

Clearly analogous estimates hold for L -reconstruction with p # 2 and for
integration. O

ReEMARK 3. If f and g are unknown in (1), then the most natural
nonadaptive design is an equidistant one. Let Y,° denote the optimal method,
either for integration or reconstruction, that is based on ¢{” = (i — 1)/(n — 1).
Then

. e,(Yg, Int)  Jall;

n—® ez(fv]\’,\”,lnt) llallz,s




2274 T. MULLER-GRONBACH AND K. RITTER

and
(Y4, L,) lall,
lim ~ =
n—w® ep(YN",Lp) ||01||(1/2+1/p)*1

for 1 < p < «. For references concerning the error of Y,f see Remarks 1 and
2. Hence, equidistant designs are asymptotically optimal only if « is con-
stant. Otherwise their performance may be arbitrarily bad for unfavorable «.

REMARK 4. We briefly sketch how to generalize our results to other, and
in particular higher, degrees of smoothness. Let r € N, and 0 < 8 < 1 and
consider a zero mean Gaussian process X such that

1/2

(E(X(s) - XO(8)))

=1
s>t |s—t|B

for every ¢ € [0,1]. Let Y be defined by (1) with unknown smooth functions
m, g and f. Then

on1/2
(E(Y"(s) = YO (1))
lim
st |S — t|’B

= a(t)
with
a(t) =g()(f' ()",

Note that Y is essentially a local stationary process; see Berman (1974).
We suggest the following modification of our method. Take

_ (r+B+1/p) ~',  for reconstruction in L,-norm,

(r+p+1)", for integration,

and estimate a* at equally spaced points (2i + 1) /2k. Use a smooth interpo-

lation of the estimated values and construct an adaptive design with density
proportional to this interpolation. We conjecture that these modifications lead
to asymptotically optimal methods. The conjecture is motivated by results for
the case when m is sufficiently smooth, f(¢) =¢ and g is known. See
Benhenni and Cambanis (1992), Stein (1995a), Ritter (1996a, b), Istas and
Laredo (1997), Seleznev (1997) and Miuller-Gronbach and Ritter (1997a).

REMARK 5. In a series of papers, Stein studies the effect of a misspecified
mean m and/or covariance function K for prediction problems; see Stein
(1990). Two second-order structures (m,, K,) and (m,, K;) on D are called
compatible if the corresponding Gaussian measures on R” are mutually
absolutely continuous. Stein analyzes prediction of linear functionals ¢ of the
random field Y on the basis of a fixed sequence of designs T, that get dense
in D. The correct second-order structure is assumed to be compatible to the
structure (m,, K,) that is actually used for prediction. Let Y, ; denote the
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best linear predictor that is based on 7, and (m;, K;). Stein shows that YAn,l
is asymptotically efficient, that is,

lim sup (¢(Y)_Y )2
T B(e(Y) ¥, )

Here E denotes expectation under the correct second-order structure (m, K,).
Since (m, K;) is fixed, the result is not directly applicable to problems where
the second-order structure is estimated from observations of Y.

In this paper we make specific assumptions on the smoothness of m, and
K,. However, we do not analyze only prediction on the basis of a fixed
sequence of designs. Instead, estimating «?, which is the essential ingredient
of K, and constructing an asymptotically optimal adaptive design form the
main part of our analysis.

Compatibility of (m,, K,) and (m,, K,) is rather restrictive. For instance,

=1.

if
K,(s,t) = g/(s)gi(t)R(fi(s), (1))

with f;, g, and R satisfying the assumptions from our paper, then compati-
bility of (0, K,) and (0, K;) implies

Ay = Oy

for o; = g,(f))'/2. A proof can be based on Lemma 3.

5. Simulation results. Our results are asymptotic, and we do not have
explicit expressions or estimates for the error of the adaptive method for
finite n. Therefore we use a simulation to study errors for small to moderate
numbers of observations. Here we present results for L,-reconstruction of the
process Y that is defined by (4).

We compare the adaptive method YN with A = 1 and the optlmal method
YN that is based on the equidistant de51gn 0,1/(N, — 1),...,1 of the same
size. By

ez(?z\erna Lz)/%(ﬁ\)}na L2)

we measure the efficiency of the adaptive method. The latter quantity tends
to

lelle/llally = 1.720,...,

and this asymptotic behavior is optimal among all methods; see Corollary 1
and Remark 3.

Figure 4 illustrates the dependence of the efficiency on N,, the total
number of observations, and k, the number of points where the regularity of
Y is estimated. We take 6 = 1072 for k =4 and 6 = 107* for £ = 3, 7, and
10. The parameter ¢ turned out to be of minor importance in this example,
whence we take £ = 0. For every choice of n and 2 we use 50 simulations of
the process Y to determine approximately the error of the respective variant
of the adaptive method.
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Fic. 4. Efficiency versus total number N, of observations.

The simulation shows that & = 3 leads to poor results, which get even
worse for § = 1073, For £ = 4 we have a good efficiency already for a small
number of observations. Larger values of %2 lead to improvements only for
rather large numbers of observations.

For fixed £ and 6, the efficiency decreases when N, is large; actually it
tends to zero like N, !/2. This is caused by the error on the subintervals
[z, , —k8/2,2, ;, + k6/2], where z; , = (2i — 1)/2k. Hence we have to de-
crease 8 with increasing n. If % is still fixed, one cannot reach the efficiency
1.720... . Thus we also have to increase k£ with increasing n.

Suppose that the estimate &; of « at z, , is replaced by the exact value
a(z; ). Proceeding as in stage two of the adaptive method, we get a nonadap-
tive method. Errors of these methods can be computed exactly. Further
experiments have shown that the values a(z; ,) are estimated with sufficient
accuracy by the adaptive method. Therefore, one might reduce the number of
points in the first stage that are clustered around z; ,.

6. Proof of Theorem 1. In the sequel we use the following notation. Let
Y denote an arbitrary stochastic process and let T'= (¢,,...,¢,) denote an
arbitrary n-point design. Then

Y= (Y(t),..,Y(2,))

is the vector of corresponding observations. Furthermore, YTL denotes the
piecewise linear interpolation of Y based on Y.
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We use ¢ to denote unspecified positive constants, which only depend on
R, m, g, f and, for reconstruction, on p and q. Furthermore, we put

Z(t) =g(t)X(f(t)), 0<t<1,

where X is a zero mean Gaussian process with covariance kernel R satisfy-
ing (A)—(C). We assume that m, f, and g satisfy conditions (D)—-(F). Finally,

K(s,t) =g(s)g(t)R(f(s),f(t)), 0<s,t<1,
denotes the covariance kernel of the process Z.

6.1. Preliminary estimates. Using the assumptions (A)—(F), we obtain the
following estimates for increments of the process Z.

LEMMA 1. Let

I'=E((Z(s2) — Z(51))(Z(s4) — Z(s5)))
and
A = max(s, — 81,84 — S3),
where s; < s, and s; < s,. Then
IT| < cAZ
if sy < 83, and
IT — a2(s;)A| < cA?

if s; = s5 and s, = 4.

As a consequence of Lemma 1 and the Lipschitz continuity of m, the
process Y turns out to be Holder continuous with exponent 1/2 in quadratic

mean. Furthermore, Lemma 1 yields an upper bound for the error due to
piecewise linear interpolation of the process Z.

LEMMA 2. Let

M(u,v) = B((Z(u) = 2, (0))(Z(v) = Z&, (),

where s; < sy and s; < s,. Define A as in Lemma 1, and let w denote the
modulus of continuity of K&V, Then

fssz4M(u,v) dudv

S1 " S3

< co(A)A*

if s < 84, and

[ M, v) dud

S1 751

IA

(1/12)(A%3(s;))(1 + cA),

IA

fszM(u,u)p/2 du

S1

v, AMP/ %P (s1)(1 + cA)

if s; = s5 and s, = s,.
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For proofs of Lemmas 1 and 2, we refer to Miiller-Gronbach and Ritter
(1997D).

6.2. Properties of the adaptive design. Henceforth let T' denote the non-

adaptive design that is defined by (7). Recall that the estimate of the function

a’ on the subinterval J; =[¢; ,,%;,;,] depends on a4,(Y;) and &; (Yy),

where

a(y) =a(y),  dpa(y) = ().

LEMMA 3. Let 6 € J,_, Ud,. Then

(E(laxy) - aro)]) " = e(1/12)

for any q > 1.

ProOF. Fix i and put a = a?(0)/c?/* as well as

V. = (c)}/A51/2)71(Y(ti,j) — Y(ti,j,l))

J

for j =1,..., k. Clearly,

1 - N
9) a;(Yr) = Z Z |VJ| .
Lemma 1 and (6) yield

|Var(V;) — a < C/a‘E(Z(ti,j) = Z(t, ;) - O‘Q(ti,j—l)a‘

(10) +c|a2(t9) —aZ(ti,j,1)|

<c(8+c)(1/k) <c(1/k)
and
(11) |COV(VJ»,VZ)| <cd<c(1/k?)
it - L

Let V=(V,,...,V,) and put
C = Cov(V), B = diag(Var(V,),...,Var(V})).

Then (10) and (11) yield

(12) |x" Cx —x" Bx| <c(1/k)x" Bx

for all x = (x,,...,x,)" € R*. For matrices A, B € R*** we write A < B if
B — A is positive semidefinite. By (12) we have

(13) (1-é/k)B < C < (1+é/k)B

with some positive constant ¢. Let

V=(V,,....V,) ~N(E(V),(1 +¢é/k)B),
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Furthermore let G( u, 3) denote the expectation of

q

vl £ (- 2171

with respect to the normal distribution N( u, 3) on R*. Using (9) and (13), we
get

q

k
&,(Yp) — (1/k) ¥ E(IV,)
J=1

=G(E(V),C)
< (det((1 + é/k)B) /det(C))"*G(E(V), (1 + é/k)B)

kY (v = B(v,))

Jj=1

< (((1+¢é/k)/(1—é/R))"*)E

q)
Applying a moment inequality of Dharmadhikari and Jogdeo (1969), we have

q

k) Y. (V1" = B(1V)1)
j=1

k ~ ~ q
<ck 02 Y E(|Iv1 - B(1V)[)
j=1

<c(1/k97%),
and therefore
q
E

k
&,(Yp) = (1/k) L E(IV)| | < e(1/k72).
j=1

It remains to show that

(14) < c(1/k2).

k
E|(1/k) ¥ n@v) ~ a’(6)

j=1

Let F(u, 02) denote the expectation of x — |x|* — a*(0) with respect to the
normal distribution N( u, o2). Then

E(|VJ|’\) —a’h) = F(E(Vj),Var(Vj)),
and F is continuously differentiable on R X (0, «). Using (D) we get
|E(V))| = (/" 8V2) '|m(t, ;) — m(t,; 1)| < 82 < c(1/k).

Together with (10) this implies that (E(V)), Var(Vj)) belongs to some compact
and convex subset of R X (0, «) if % is sufficiently large. Moreover,

|F(E(V),Var(V})) - F(0,Var(V}))| < e(1/%).
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Lemma 1 and the Lipschitz continuity of a?

(o, var(V,))

= |(ex8?72) @+ e/k) P E(| (8 ) — 2t 5 )|') - @X(0)]

imply

(o +emr(z,) - 2, ) - (a20)

<d+emyas0)E(2(t ) - 2(t 1)) — a2(0)]
<c(1/k).

Combining the last two estimates we obtain
|E(IVI") = a*(0)| < c(1/),
which proves (14). O

In the sequel we derive asymptotic estimates, taking into account the
properties (i)—(iii) of the parameters k,, 8, and ¢,. The corresponding
notation T, &; ,, J; , and so on, is canonical. We suppress the dependence on
n as long as no asymptotics are involved.

We prove that asymptotically the adaptive designs behave like the regular

sequence generated by a?. More precisely, consider the n-point design

(tf ,,...,t; ) from this regular sequence. The length of each subinterval
[tF,,t5 ] cd, , is approximately
1 1
in = M¢) dt.
Pin nmaxg%w(e)foa (t)

In fact, this also holds true for the adaptive points placed in J; ,. However,
we only need the following upper bound.
Put

s;o(y) =t 1) Sirn+1(Y) =tiv1o
and let

ATEx = max s - -8, i_
i (y) lsjsri(y)+1( L,j(y) i,] l(y))

denote the maximum distance between two consecutive points in J;.
LEMMA 4. For any q = 1,

limsup max E(A‘?,a,i‘(YTn)/Pi,n)q

now 0<i<k,

<1.

ProoF. We have
(15) (E(am(Yy))"
see Miller-Gronbach and Ritter (1997b).

)l/q

<c/(ne);



SPATIAL ADAPTION 2281

Let 6 J, for1 <i <k — 1. Then

aM(0)AT(y) = (|a’(8) = &(y)] +]a*(0) = &a(3) )AT(5)
k
+ %j;l a(y).

Clearly, the same estimate holds for i = 0 and i = k. Lemma 3 and (15) yield

(E(la*(0) - a(Yp)|ar=(¥;)") " < e(1/k172)(1/(ne))

for I =i + 1. Furthermore,

2 q\ 1/q
Jj=1
1/q .
1 R 27— 1\ 1 % 2j—1
< e+ %jgl E a](YT) a)‘( 5% ) + %jgla)‘( 2% )
1 1 N 2j—1
S8+ck1/2+gj¥la( 5% )
Therefore

, .
A max a\/a l L l A 2.]_1
(Elat)ar= ()} < oot iy + 3 Bl =g )|

The result now follows, observing that k!/%, tends to infinity. O

6.3. The conditional mean of Z. For the proof of Theorem 1 we will use
the decomposition

Z(t) = U, (t) +V,(¢), 0<t<l,
where
U(t) =E(Z(t)Zy )
is the optimal approximation of the process Z on the basis of Z; , and
V. =7Z-U,
denotes the corresponding error process. As previously, we suppress the

dependence on n as long as no asymptotics are involved.
Put ¢, , ., =t;,1, for 0 <i <k and define the function W: [0,1]*> — R by

(#(ti,;+1) — max(s, ¢))(min(s, ¢) — f(t,))

W(S’t) = f(ti,j+1) _f(ti,j)

if
s,t € [f(ti’j)’ f(ti,j+1)]
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and W(s, ¢) = 0 otherwise. Next, let
e () = [[REO(s, f(t, )W (s, f() ds, 0<t<1,
0

and put

¢ = (¢0,k""a ‘Pk+1,0)T .
Finally, put

f(T) = (f(to,k)7""f(tk+l,0))’

and assume that the covariance matrix R,;, of X,;, = (X(f(¢,,),...,
X(f(t), 1)) is positive definite.
Observing

U(t) =g()E(x(f()Xpr)),

the following representation of the process U can easily be derived from
equation (3.2) in Miiller-Gronbach (1996b).

LEMMA 5. Let u: R¥**D+1 5 [0,1] > R be defined by
f(ti ;1) — F(2) .
f(ti,j+1) _f(ti,j) oY
f(¢) = f(t;)
+ Xi i+
f(t; ;1) — f(t:;)
fort €lt; ;,t; vl andx = (xg 4,0, X0q0)" Withx; 1 =%, . Then

M(x’t) =g(t)

- (t)R;(%)x

Next we analyze the smoothness of u(x,:) on each of the intervals

(26 tiv1,0l-
LEMMA 6. Lett, ), <s <t <t;,,,andput A=t —s.Then
| M’(O’l)(x’ S) - /'L(O’l)(x’ t)|
2 —2(, T p-1 .\2
<c(w(A) +k A)(Ixiﬂ,ol +lx; 4l + k (x Rf(T)x) ),
where w denotes the modulus of continuity of g'.
See Miiller-Gronbach and Ritter (1997b) for the proof.

6.4. Upper bounds for reconstruction. Let

S(¥) = (T0s850.1(3) 558k, rin(3))
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denote the adaptive design that is defined in Section 3. Here T, denotes the
nonadaptive part [see (7)], which consists of points from the set
2i—1 k8, 2i—1 k8,

I, = - , + ,
" i&{ 2k, 2 2k 2

n

together with the endpoints 0 and 1. The adaptively chosen points 8i, A
belong to [0,1]\ I,. For L -reconstruction, the adaptive method YA is de-
fined by

YZG = YSIEYT )
where A = (1/2 + 1/p)~! according to (5).

On I,, the piecewise linear interpolation YS(Y ) coincides with YTL, and
the respectlve error is small. Namely,

([ #(ver w0l )]

< (fl |m(t) — mk(0)[ dt

1/p
+

1/p
/IE(|Z(t) - Z%ﬂ(t)|p) dt)

n

fln(E(Z(t) - Z%n(t))z)p/z dt)

<c(k28,)7 (5, + 81/2)

< cn~@v/p+1/2)

1/p
< c(k25,87)" +c

n-n-n

for every 1 < p < . Here we have used (D), Lemma 2, and properties (i) and
(i1). Hence

1/p
1imsupn1/2(j E(\Y(t) - Yk, )(t)\p) dt) ~o0.
n— o In "

It remains to study the error on [0,1]\ I,, and the upper bound in
Theorem 1 follows from

n—w

1/p
A p
(16) 1imsupn1/2(f E(‘Y(t) — Yy, (1) ) dt) < (e, ) llall,.
[0, 1N\I, "
In the proof of (16) we use the decomposition Y = m + U, + V, that was
introduced in Section 6.3. First we analyze the piecewise linear interpolation

of U,, based on the adaptive design S(Yy ).

LEMMA 7. Forevery 1 <p < o,

1/p
lim n ( ) = 0.
n—o ('[[0,1]\1 )

= (@)sar,
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PrOOF. Let @ denote the distribution of X/, and define

P(x) = (m(ty,) +8(to, 1) %0 1> M(tri1.0) T &(tri1,0)Xks10)

for x = (% 4,..., X4 1,0)- Then Y = (X p)), and Lemma 5 yields

B(|0(t) - Oty ) = [, e = w50 Q).

Let o denote the modulus of continuity of g'. Put A(x) = AT**(4(x)). By
Lemma 6 we have

‘ m(x,t) - /-L(xa')g(n//(x))(t)‘ < c(A(x)B(x))

for every t € [t; ,,¢;,1 ], where

k(k+1)+1

_ _ 1/2
B(x) =lx; 10l +lx; | + & 2(ocTRf(})ac)

and
A(x) = A(x)(w(A(x)) + E*A(x)).
We thus conclude that

(E(|U(t) - 0SL(YT)(,:)|”))1/F

2p\1/2p 2p\1/2p
= c((E(A(Xf(T))) p) )((E(B(Xf(T))) p) )
Clearly
2p\1/2P 1/2 1/2
sup (E|X(¢)[") <cy?? sup RYV?(t,t) <,
O<t<1 0<t<1
and
B p\1/2p
(BE(Xin R Xpr) ) < c(k(k+1) +2) < ck®.
Hence

(E(B(XﬂT)))“)l/zp <e.
Furthermore, by Lemma 4,
2p\1/2P
(E(A(X;0)") " < 0(1/k)e(1/n) + k2e(1/n%)
<c¢(1/n)(w(1/k) + 1/n*).
Summarizing, we have
(E(|U(t) - I}SL(YT)(t)r’))l/p < ¢(1/n)(w(1/k) + 1/n27),

which completes the proof. O
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Next, we turn to the error process V,.

LEMMA 8. Let A= (1/2 + 1/p) L. Then

lim supnl/z(f[0 . ( ( )S(YT

Proor. Let P denote the distribution of Y. By independence of V and Y,
it holds

1/p
) ) < (c,v,) " Pllall,.

B(|v(e) = Vi) = [, E(V(e) = Vi) )Py
for each 0 < ¢ < 1. Clearly,

E(|V(t) - VSL(y)(t)r’) < E(|Z(t) — Z2E(8) |p),
such that
(V) = Vi, (1)) at
(17)
ff (| 20) - ZE (0 ) atP(ay).

Fix y and let
max a(t) = a(6;)

Liks<t<tii1)0

for some 6, € [¢; ,,t;,, (]. Lemma 2 yields

/”“‘y’ (|2(6) = 2&,(0)[) at

s; ()

”+1(y) p((E Z(t) - ZASL(y)(t))Q)p/z) @

,J(y)
<c,v,a’(b, )( s; +1(y) — i,j(y))1+p/2)(1 + c(si’jﬂ(y) — si,j(y)))
< ¢, 1, a?(6)((51,501(2) = 55, ,(0))(AT™())%)(1 + e (y))

for each j = 0,...,7r,(y). Thus

/tt”l.OE“Z(t) - Z§<y>(t)|p) dt

ik

C
(A= ()

1
< cpvp%ap(ﬂi)(AI?ax(y))p/z + 2
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and therefore

k
T [ E(|Vee) = Vi, (o)) e
1= ik

k

1
<¢yu7 ¥ a’(6)E(AT™(Y))"* + ¢ max E(A™(Yy))" """
i=0 <i<

by (17).
Note that AM(p/2) = p%2/(2 + p). Now Lemma 4 yields
( np/z kn

> ap(oi,aE(Af;za;(YTn))”“)

n =0

lim sup

n— o

1k
< limsup(k— Y. «2P/@P)(g, ) max E((na)‘(Oi,n)A‘?,af(YTn))pﬂ))

n—w ni=0 0<i<k,

< (/Oloﬂ(t)olt)p/A

and

lim n?/2 max E((av(v,)) " =

n—o» 0<i<k, "

which completes the proof. O
Proor oF (16). Clearly

A —\L —\L
Y - YSL(YTn) = (m - mg(YT")) + (Un - (Un)S(YTu)) + (Vn - (Vn)S(YT,l))‘
Let w denote the modulus of continuity of m'. Then
|m(8) = g, ()| < AT (V) w(1/k)

for every t € [t, ;,t,,, 0] Lemma 4 implies

f[o N E(|m(t) - mS(YTn)(t)r) dt < max E(A‘;‘aX(YTn))pwp(l/kn)

0<i<k,

<c(l/n?)w?(1/k,).
Now (16) follows from Lemma 7 and 8. O
6.5. Upper bounds for integration. Our methods for integration and re-
construction in L;-norm basically coincide. The respective designs are the

same, since A = 2/3 in both cases. Formally, the method for integration is
given as

A 1A
Yy = [ Y&, (t)dt
%= [ ¥ ()

where the right-hand side is also defined with A = 2/3.
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The proof is similar to the proof of the upper bounds for reconstruction in
the previous section, hence we omit it here. For a detailed analysis, see
Miiller-Gronbach and Ritter (1997b).
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