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BAYESIAN BOOTSTRAP CREDIBLE SETS FOR
MULTIDIMENSIONAL MEAN FUNCTIONAL1

By Nidhan Choudhuri

Michigan State University

This paper shows that the Bayesian bootstrap (BB) distribution of
a multidimensional mean functional based on i.i.d. observations has a
strongly unimodal Lebesgue density provided the convex hull of the data
has a nonempty interior. This result is then used to construct the finite
sample BB credible sets. The influence of an outlier on these credible sets
is studied in detail and a comparison is made with the empirical likelihood
ratio confidence sets in this context.

1. Introduction. Let X1� � � � �Xn be i.i.d. d-dimensional random vari-
ables having an arbitrary unknown distributionF0 with finite expectation. Let
� denote the class of all distribution functions on d-dimensional Euclidean
space R

d and �̃ denote the subclass of � with finite expectation, that is,

�̃ =
{
F ∈ � �

∫
R
d

�x�dF�x� < ∞
}
�

and µ denote the mean functional on �̃ defined as

�1�1� µ�F� =
∫

R
d
xdF�x�� F ∈ �̃ �

The focus of this paper is to construct a set estimate for µ�F0�.
Bayes’ approach to this problem is to construct a prior probability on � .

One assumes F to be a random element of � according to this prior probabil-
ity, F0 to be a particular realization of F and given F, X1� � � � �Xn are i.i.d.
F. Then one uses the posterior distribution of F and µ�F� to infer about F0
and µ�F0�. A nonparametric prior often used in the literature is a Dirichlet
process prior with a finite shape measure α [Ferguson (1973)]. A probability on
� is said to be a Dirichlet process with shape measure α if for every measur-
able finite partition B1� � � � �Bk of R

d, the random variable �F�B1�� � � � �F�Bk��
has a Dirichlet distribution on R

k with parameter �α�B1�� � � � � α�Bk��. In this
case, the posterior distribution of F is also a Dirichlet process with the shape
measure α+ ∑n

1 δXi
. A choice of α with∫

R
d

�x�dα�x� < ∞
ensures that both the prior and the posterior probabilities are concentrated
on �̃ . [See Ferguson (1973) for more on Dirichlet processes.]
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But most often one does not have enough initial information about F to
construct any kind of prior. Besides, quantifying the prior knowledge in the
form of a Dirichlet process is not an easy task. The need for a noninforma-
tive prior to represent vague initial information in nonparametric Bayesian
statistics is thus well justified.

Rubin (1981) introduces the concept of Bayesian bootstrap to express the
posterior knowledge about F and its functionals in the absence of any prior in-
formation. Replacing the mass 1/n of the empirical distribution Fn by random
weights, he defines a random distribution function on R

d as

�1�2� Dn =
n∑
1

WiδXi
�

where the joint distribution of �W1� � � � �Wn� is uniform on the simplex

�1�3� �n =
{
w ∈ R

n�
n∑
i=1

wi = 1� wi ≥ 0
}

⊂ R
n

and is independent of the sample X1� � � � �Xn. The Bayesian bootstrap (BB)
distribution of any functional θ on � is the conditional distribution of θ�Dn�,
given X1� � � � �Xn.

Rubin (1981) argues that for a fixed finite sample, the BB distribution of
F can be obtained as a weak limit of the posterior distribution under Dirich-
let priors when the total mass of the shape measure α tends to zero, that is,
α�Rd� → 0. The results thus obtained are then comparable to standard fre-
quentist results, as illustrated by the applications in Section 5 of Ferguson
(1973). Gasparini [(1995), Theorem 3], proves that if α = α�Rd�Q where Q is
a probability measure with ∫

R
d

�x�2 dQ�x� < ∞�

then as α�Rd� → 0, the posterior distribution of µ�F� converges weakly to
µ�Dn�. These facts establish the role of Bayesian bootstrap as a noninforma-
tive prior in nonparametric Bayesian statistics. Hence, in the absence of any
prior knowledge, using the �1 −p� central part of the BB distribution of µ�F�
as a posterior credible set and in turn using it as a �1 −p� level Bayesian set
estimate for µ�F0� is natural.

The concept of using the BB distribution to produce credible sets has been
used before. Example 1.1 of Lo (1987) uses the BB distribution to obtain a
95% probability band for a univariate distribution function F. For the multi-
dimensional mean functional, the difficulty lies in selecting the central �1−p�
part of the BB distribution. In the one-dimensional case, the interval between
the �p/2�th and the �1 −p/2�th quantiles represents the central �1 −p� part
of the distribution. Hence this interval can be used as a credible set. But this
quantile approach does not extend to higher dimensions due to the lack of
a proper definition of quantile. To identify the central part of a multivariate
distribution, it is important to know the nature of the distribution.
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This paper establishes the existence of a strongly unimodal Lebesgue den-
sity for the exact BB distribution of the multidimensional mean functional
under a mild condition. This result is then used in the construction of credible
sets. The construction procedure is then extended for the cases when the con-
dition fails. Then this paper finds the influence of an outlier on BB credible
sets and compares these credible sets with the empirical likelihood confidence
sets of Owen (1990) in this context.

The plan for the rest of the paper is as follows. A brief literature survey
ends Section 1. Section 2.1 presents the main strong unimodality results and
identifies the BB credible sets. A two-step procedure for constructing the cred-
ible sets is presented in Section 2.2. Section 3 compares these sets with the
empirical likelihood confidence sets in connection with an outlier. The proofs
of the four main theorems are deferred to the Appendix.

1.1. Related work. In the case F has finite support �d1� � � � � dk�, a vec-
tor θ with θj = F�dj�� F�dj� being the probability of the singleton set
�dj�, uniquely identifies F. Hence the space of all probability measures on
�d1� � � � � dk� can be parameterized by the k-variate unit simplex. Now a prior
on θ with density proportional to

∏
θ
pj
j leads to the posterior density propor-

tional to
∏
θ
pj+nj
j , where nj’s are the number of observations equal to dj’s. A

noninformative prior (improper) with all pj = −1 leads to the fact that θi = 0
with posterior (improper) probability 1 for any unobserved di, and the poste-
rior distribution becomes the BB distribution. An important fact is that one
does not need to know the values of unobserved di’s, as pointed out in Owen
(1990). This gives a justification for using BB as an noninformative prior in
the finite support case.

Owen (1990) introduces the concept of empirical likelihood as a nonpara-
metric generalization of the well-studied parametric likelihood and uses it to
construct confidence sets and test statistics for several nonparametric func-
tionals. He observes that in the finite support case the empirical likelihood is
proportional to the BB density. He thus argues in favor of connecting empir-
ical likelihood with the posterior density under a noninformative prior as in
the parametric case.

Asymptotic equivalence of the BB distribution and the posterior distribu-
tion under a Dirichlet prior with nonzero α has been noticed earlier. Lo (1987)
shows that in one dimension, the posterior distribution of F under a Dirichlet
prior and the BB distribution, conditional on the data, are first-order asymp-
totically equivalent in the sense that for almost all sample sequences and
subject to proper centering and n1/2 scaling, they achieve the same limiting
conditional distribution. Weng (1989) points out that for the one-dimensional
mean functional, the two distributions are equivalent up to a second-order
asymptotic if ∫

R
d

�x�3 dα�x� < ∞�

and F0 has finite third moment. This helps one to approximate the posterior
distribution under a Dirichlet prior through a simulation of the BB distri-
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bution. The approximation thus is useful since it is easier to simulate a BB
distribution than a posterior Dirichlet process.

The operational and structural similarities between BB and the bootstrap
of Efron (1979) are mentioned in Rubin (1981) and Efron (1982). Rubin has
shown that the ordinary bootstrap is the same as BB except the very fact
that the weights �W1� � � � �Wn� are continuous in the BB, whereas they are
replaced by some discrete weights in the ordinary bootstrap. Further, he gives
an example in which the histogram of 1000 BB correlation coefficients is sim-
ilar to, but smoother than, a histogram of 1000 ordinary bootstrap correlation
coefficients. Lo (1987) proves the first order asymptotic equivalence of the two
procedures for a variety of functionals, including the mean functional and the
identity functional. Similar results for the finite population case are obtained
in Lo (1988). This gives a frequentist perspective on the BB method.

Variants of BB can be obtained by replacing the uniform weights �W1� � � � �
Wn� by some other continuous exchangeable weights. Let Y1� � � � �Yn be i.i.d.
positive continuous random variables and independent of the data. Then
�Y1/

∑
Yi� � � � �Yn/

∑
Yi� give continuous exchangeable weights. The class

of random distribution functions obtained by using different Yi is called
Bayesian bootstrap clone (BBC) in Lo (1991). Many asymptotic results on
BBC for several functionals is found in Lo (1991) including the conditions on
the random variable Yi. Weng (1989) shows that using a Gamma (4,1) random
variable for Yi, a two-term Edgeworth expansion for the BBC distribution of
the mean functional is identical to that of the sampling distribution of the
sample mean, like the bootstrap; whereas the BB distribution is as accurate
as the normal approximation. But the optimal choice of Yi’s depends on the
functional of interest and is not universal.

2. The BB credible sets for the mean functional.

2.1. Identifying the credible sets. Let X denote the sample sequence �X1�
X2� � � ��, F∞

0 denote the infinite product measure on �Rd�∞, X̄n = µ�Fn� de-
note the sample mean and �n�X denote the BB distribution of the mean func-
tional. The aim is to find a central high probability concentration set of �n�X.
When

�2�1�
∫

R
d

�x�2 dF0�x� < ∞�

a normal approximation of the BB distribution may be useful for this purpose.

Theorem 2.1. If (2.1) holds, then for almost every sample sequence X,

�2�2� √
n�µ�Dn� − X̄n��X �⇒ Nd�0� ���

where � is the dispersion matrix of F0.

The result for one dimension is proved in Lo (1987), which can be extended
to d-dimension by the Cramér–Wold device.
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If � is of full rank, then one can substitute � by the sample dispersion
matrix

Sn = 1
n− 1

n∑
1

�Xi − X̄n��Xi − X̄n�T

in the limiting normal distribution and obtain

Ap = {
x� n�x− X̄n�TS−1

n �x− X̄n� ≤ χ2
d�1−p

}
as an approximate central high probability concentration region of �n�X. But
the convergence in (2.2) is in the first-order sense as indicated by Weng (1989).
So Ap cannot reflect any higher order moment structure of �n�X such as
skewness. Besides, Ap is always elliptical in shape. Note that Ap is the same
as the frequentist confidence set obtained by Hotelling’s T2-distribution up
to a scale factor; that is, the cut-off point χ2

d�1−p is replaced by a multiple
of some quantile of an F-distribution. Naturally Ap cannot represent a BB
credible set. If the posterior distribution under a noninformative prior is the
prime object, then it is important to find the central part of the exact BB
distribution.

There are some difficulties in identifying the central part of an arbitrary
multivariate probability distribution. A probability on R

d is said to be strongly
unimodal if it has a Lebesgue density g such that every high density contour
�x ∈ R

d� g�x� ≥ c� is a convex set. The existence of the density implies that
any high density contour is the smallest set (in terms of Lebesgue measure)
among all sets with the same probability. Strong unimodality implies that such
a high density contour is a convex set and is surrounded by a low probability
concentration region. Hence a high density contour in some sense represents
a central high probability concentration region and can be used as a credible
set. We shall prove the strong unimodality of �n�X.

Definition 2.1 [Prékopa (1973), equation (1.1)]. A nonnegative function
f on R

d is said to be logconcave if for every x�y ∈ R
d� t ∈ �0�1�,

�2�4� f�tx+ �1 − t�y� ≥ �f�x��t �f�y��1−t�

with the understanding that 00 = 1.

Proposition 2.1. A probability with logconcave Lebesgue density is strongly
unimodal.

Theorem 2.2. If the convex hull of X1� � � � �Xn has a nonempty interior,
then �n�X is absolutely continuous with respect to the Lebesgue measure on R

d

and there is a logconcave version of the Lebesgue density.

Remark 2.1. The conclusion of Theorem 2.2 still holds if the joint distri-
bution of �W1� � � � �Wn� belongs to a general class of probability measures on
�n besides being uniform. The general class is identified in Corollary A1.1 of
the Appendix.
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Note that the convex hull of X1� � � � �Xn has nonempty interior if and only if
all Xi’s are not confined in a hyperplane; that is, Fn is nonsingular. (F on R

d

is nonsingular if F�H� < 1 for every hyperplane H.) If F0 is nonsingular, then
for almost every sample sequence X, there is an N, depending on X, such that
Fn is nonsingular for n > N. Hence �n�X is eventually strongly unimodal.
Moreover if F0�H� = 0 for any hyperplane H, then with F∞

0 probability 1,
Fn is nonsingular for every n ≥ �d + 1�. Hence the condition of Theorem 2.2
is satisfied in most of the cases.

One can proceed even if the interior of the convex hull of the data is empty.
In this case, all the Xi’s are confined in an affine of R

d. [An affine in R
d is

a subset � of R
d such that for every x�y ∈ � and −∞ < t < ∞ we have

tx+ �1 − t�y ∈ � ; that is, the entire line passing through x and y are in � .
If 0 ∈ S, then � is called a subspace. Affines are sometimes known as lower
dimensional planes.] Define the affine hull of a set A in R

d as

�2�5� � �A� = �tx+ �1 − t�y� x�y ∈ A� −∞ < t < ∞��
This is the smallest affine containing A. Let �0 be the affine hull of the data
set �X1� � � � �Xn� and s be the dimension of �0. Then we have the following
theorem.

Theorem 2.3. If 0 < s < d, then �n�X is absolutely continuous with re-
spect to the s-dimensional Lebesgue measure restricted to �0 and there is a
logconcave version of the corresponding density.

Proof. Let λs denote the Lebesgue measure on R
s and λ̃s denote the s-

dimensional Lebesgue measure restricted to �0. Then there exists a bijective
affine map L� �0 → R

s such that λ̃sL
−1 = λs. (λ̃sL

−1 denotes the induced
measure of λ̃s on R

s.) Let Yi = L�Xi�. Linearity of L implies that the affine
hull of �Y1� � � � �Yn� is the image of the affine hull of X1� � � � �Xn under L, that
is, the entire R

s. Hence the convex hull of �Y1� � � � �Yn� has nonempty interior
in R

s. Note that �n�XL
−1 is the same as the BB distribution on R

s obtained
by the transformed data �Y1� � � � �Yn�. Hence by Theorem 2.2, �n�XL

−1 has
logconcave Lebesgue density gs on R

s. Since L is one-to-one, �n�XL
−1 � λs =

λ̃sL
−1 implies �n�X � λ̃s and g̃�x� = g�L�x�� defines a version of d�n�X/dλ̃s.

Affine property of L and logconcave property of gs implies g̃ is logconcave on
�0. ✷

Note that the map L is not unique and gs depends on L. But gs ◦ L is a
version of d�n�X/dλ̃s and hence is independent of the choice of L. Since L is
one-to-one and affine, the inverse image of a high density contour of gs will be
a high density contour of g̃ in �0. The high density contours of gs may depend
on L but their inverse images in �0 under the map L will not depend on L, as
they are the high density contours of g̃. Hence these high density contours of
g̃ can be used as BB credible sets in �0.

To apply this result, one needs to find an L . As �0 has dimension s, the
rank of the sample dispersion matrix Sn is s. So Sn has exactly s nonzero
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eigenvalues. Take a spectral decomposition of Sn, and let e1� � � � � es be the
eigen vectors corresponding to the nonzero eigenvalues. Then a candidate for
L is

L�x� = �e1� � � � � es�T�x− X̄��
In this case the inverse function L

−1� R
s → �0 is of the form L

−1�y� =
�e1� � � � � es�y+ X̄�

The above logconcavity result can be extended to the BB distribution of a
linear functional. Let ϕ� R

d → R
q be a Borel measurable function and µϕ be

a linear functional on � defined as

µϕ�F� =
∫

R
d
ϕdF�

Let Yi denote ϕ�Xi�. Then the BB distribution of µϕ is the same as the
BB distribution of the mean functional on R

q based on the transformed data
Y1� � � � �Yn. Hence all the logconcavity results follow for µϕ�F�. The case q > d
will be taken care of by Theorem 2.3.

2.2. Constructing the confidence region. When the convex hull of X1� � � � �
Xn has a nonempty interior, a Monte Carlo simulation can be used for con-
structing the high density contours of �n�X. Throughout this subsection, the
original sample size n and the data X1� � � � �Xn are fixed. Let g be the logcon-
cave Lebesgue density of �n�X and

�2�6� �BB = �x ∈ R
d� g�x� ≥ λ�

be the high density contour such that �n�X��BB� = 1−p. A two-step procedure
for constructing �BB is described here.

First we need to generate uniform distribution on �n. Two different proce-
dures for that are described below.

Procedure 1. Let U�1�� � � � �U�n−1� be the order statistics of n− 1 i.i.d. U�0�1�
and U�0� = 0� U�n� = 1. Define Wi = U�i� −U�i−1�, i = 1� � � � � n.
Then �W1� � � � �Wn� is uniform on �n.

Procedure 2. Define Wi = Yi/
∑n

1 Yi, i = 1� � � � � n, where Y1� � � � �Yn are i.i.d.
exponentials. Then �W1� � � � �Wn� is uniform on �n.

These two methods of generating uniform random variables on �n have
been known in the literature for a long time and proofs can be found in De-
vroye [(1986), pages 207–210]. Procedure 2 is much easier to perform on a com-
puter, while Procedure 1 is useful in proving some theoretical results about
BB distributions.

Step 1. Simulate w1� � � � �wm i.i.d. with uniform distribution on �n. Then
obtain m points X̃1� � � � � X̃m in R

d with X̃j = ∑n
i=1w

j
iXi, where wj

i is the ith
component of wj.
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Note that X̃1� � � � � X̃m obtained in Step 1 are i.i.d. �n�X. In the next step, we
shall use a histogram smoothing on X̃1� � � � � X̃m to obtain a density estimate
gm of g. Then we shall use the �1 − p� probability high density contour of
gm as an approximation of �BB. A similar idea of using density estimation to
bootstrap replicates for constructing likelihood-based confidence regions for a
vector parameter is found in Hall (1987).

For l = 1� � � � � d, let us define

al = min
{
X

�l�
i � 1 ≤ i ≤ n

}
�

bl = max
{
X

�l�
i � 1 ≤ i ≤ n

}
�

where X�l�
i is the lth component of the ith observation Xi. Then the hyper-

rectangle

� = {
x ∈ R

d� al ≤ x�l� ≤ bl� 1 ≤ l ≤ d
}

contains all the data points X1� � � � �Xn and hence contains the support of
�n�X. Define a hypercube of length h > 0 around a point x ∈ R

d as R�x�h� =
�y ∈ R

d� �y�l� −x�l�� ≤ h/2, ∀ l = 1� � � � � d�. Now we will partition the region �
into small hypercubes. Fix an h > 0. For l = 1� � � � � d, let Sl = ��i+ 1/2�h� i =
0� � � � � ��bl − al�/h�� ⊂ R, where �c� denotes the largest integer less than or
equal to c. Define the grid set on R

d as �h = ∏d
1 Sl, the Cartesian product of

Sl’s. Then the hypercubes �R�x�h�� x ∈ Rh� cover the set � and are disjoint
except at the boundaries. For each x ∈ R

d, define

�2�7� τ�x� =
m∑
j=1

�X̃j ∈ R�x�h�� = # of X̃j’s belonging to R�x�h��

Step 2. For the data X1� � � � �Xn, obtain the set �. Choose h = m−1/�d+2�

and obtain the grid set �h. Calculate τ�x� for each x ∈ �h and order the grid
points according to the descending order of τ�x�. Let �x1� � � � � xk� denote the
ordered grid points, where k is the number of points in �h. Find the integer
k0 such that

k0−1∑
1

τ�xj� < �1 − p�m and
k0∑
1

τ�xj� ≥ �1 − p�m�

This can be done by adding τ�xj�’s one at a time until we reach �1−p�m. Now
use the set

�m =
k0⋃
1

R�xj� h�

as an approximation to �BB.
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To measure the performance of �m in approximating �BB, one needs to
define a measure of proximity between sets. Define a metric d1 on the subsets
of R

d as

d1�B1�B2� = Leb�B1�B2�� B1�B2 ⊂ R
d�

where � defines the symmetric difference of sets and “Leb” denotes the
Lebesgue measure on R

d. Then we have the following convergence result on
�m.

Theorem 2.4. If the convex hull of any n − 1 data points has nonempty
interior, then for a.e. simulation sequence,

d1��m��BB� = O�m−1/�d+2� ln�m�� as m → ∞�

Some simulation results are presented in Figure 1 using the simulation
size m = 200�000 for each case. Figure 1a shows the BB credible sets with
confidence level 80%, 95% and 99% for the twelve observations from the bi-
variate normal distribution with mean 0 variance 1 for each component and
the correlation coefficient −0�5. The credible sets are almost elliptical in shape
as expected with data coming from an elliptically symmetric distribution. Fig-
ure 1b shows these credible sets based on twelve observations from the skewed
bivariate distribution with density f�u� v� = uve−�u+v�, u� v > 0, that is, a
bivariate gamma distribution whose components are independent univariate
gamma with the shape parameter 2 and the scale parameter 1. Note that these
credible sets are able to reflect the skewness of the underlying distribution in
their shape. The moderate sample BB credible sets with 40 observations from
these two distributions are presented in Figure 1c and 1d. These credible sets
for the gamma observations in Figure 1d are almost elliptical in shape with
very little skewness. This is expected, because the standardized BB distribu-
tion is asymptotically normal.

Commenting on the computational aspect, Step 1 takes time proportional to
the simulation size m. The number of grid points k = ∏d

1 ��bl − al�m−1/�d+2� +
1� � cmd/�d+2�. Hence the calculation of τ�x� for x ∈ �h will take time pro-
portional to km, which is of the order smaller than o�m2�. Ordering of grid
points will take time proportional to k2, which is also of the order smaller than
o�m2�. Hence the magnitude of time taken for the entire procedure will be of
the order smaller than o�m2�. This allows one to perform the simulation with
large m and thus to make the approximation more accurate. Another advan-
tage here is that the computational time depends mainly on m and remains
almost unchanged with a change in dimension d or in sample size n. However,
the convergence rate of �m decreases with an increase in the dimension, and
one needs to use a larger m to achieve the same resolution.

An alternate procedure to the one described in Step 2 can be found using
the excess mass approach. The idea here is to chose the set with the small-
est Lebesgue measure among all convex sets containing �1 − p�m or more
simulated points X̃j. This is the multidimensional extension of Hartigan’s
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Fig. 1. The 80%, 95% and 99% level BB credible sets for the mean functional, based on small
sample as well as moderate sample observations from two different bivariate distributions using
a histogram smoothing approach with simulation size 200�000. (a) Bivariate normal with n = 12�
(b) bivariate gamma with n = 12� (c) bivariate normal with n = 40� (d) bivariate gamma with
n = 40�

(1987) idea in two dimensions. Lemma A2.1 (see Appendix) shows that g sat-
isfies the second equation in Section 5 of Tsybakov (1997) with regularity
parameter 1. Then by the results in Section 5 of Tsybakov [(1997), second
paragraph on page 957], the rate of convergence for this procedure in d1 met-
ric is o�m−2/�d+5��. Though the convergence rate is better than the histogram
smoothing approach, the problem here lies in the computational part. In di-
mension two, the computational time of the excess mass approach is O�m3�,
which is much larger compared to that of the density estimation approach,
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whereas the achievement in the convergence rate over the histogram smooth-
ing approach is not that significant. Besides this fact, the calculation of the
area of a region is so time-consuming that the excess mass approach takes a
long time even for moderate m. On the other hand, in a given amount of time,
the histogram smoothing approach can handle a much larger simulation size,
resulting in more accuracy.

3. Comparison of BB credible sets with empirical likelihood ratio
confidence sets. For i.i.d. data X1� � � � �Xn, Owen (1990) defines the empir-
ical likelihood of a distribution function F ∈ � as

�3�1� L�F� =
n∏
i=1

F�Xi��

where F�x� denote the probability of the singleton set �x� under F. This
likelihood function is maximized at the empirical distribution function Fn,
the nonparametric MLE of F0. In some cases, the empirical likelihood ratio
function,

�3�2� R�F� = L�F�
L�Fn� = nn

∏
F�Xi�

can be used to construct confidence sets and test statistic for a functional θ
on � . Consider sets of the form �θ�F�� F � Fn, R�F� ≥ r� for 0 < r < 1.
Owen (1990) gives conditions on θ and F0 under which these sets can be used
as confidence sets for θ�F0�. For θ = µ, the mean functional, define

�3�3� �EL = �µ�F�� F � Fn� R�F� ≥ r��
Then we have the following result by Owen (1990), Theorem 1.

Result 3.1. If F0 has finite second moment, that is, (2.1) holds, and the
dispersion matrix � is of rank s > 0, then for every 0 < r < 1, �EL is a convex
set and

lim
n→∞PF0

��EL � µ�F0�� = P�χ2
s ≤ −2 log r��

If one chooses r = exp�− 1
2χ

2
s�p�, then �EL serves as a confidence set for

µ�F0� with the (frequentist) asymptotic coverage probability 1 − p. Theorem
1 of Owen (1990) also contains some results related to O�n−1/2� rate of con-
vergence of the above limit. DiCiccio, Hall and Romano (1991) have shown
that the rate is O�n−1� if the assumptions justifying Edgeworth expansions
are met and the Bartlett factor improves the rate to O�n−2�. Results related
to some other functionals can be found in Owen (1990).

One advantage of both the BB and ELR methods for constructing set esti-
mates is that the shapes of these sets are determined by the data. These sets
are also able to incorporate the skewness of the data in their shapes and hence
in turn capture the skewness of the underlying distribution. Figure 2a shows
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Fig. 2. The BB credible sets, the empirical likelihood confidence sets and the normal approxima-
tion credible sets with coverage level 95% based on four different types of data sets. (a) Bivariate
normal; (b) bivariate gamma; (c) data with small outlier; (d) data with large outlier.

95% confidence sets using the BB, ELR and normal approximation methods
based on twelve normal observations used in Section 2.2. Figure 2b shows
these three sets based on the twelve observations from the skewed distribu-
tion used in Section 2.2. For the normal data, all three sets behave similarly,
whereas in the skewed distribution case, the BB credible set and the ELR
confidence set are able to reflect the skewness in the underlying distribution
while the normal approximation method fails to do so.

However, a problem with the BB and ELR methods is that both regions are
sensitive to outliers. This can be seen from Figure 2c and 2d. An outlier (not
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random) is added to the twelve normal observations used earlier. Figure 2c
and 2d show 95% confidence sets using the three methods based on all the
thirteen observations for two different values of the outlier. One can see that
the outlier has deformed all the three regions and inflated them towards itself.
But the extent of inflation in the BB credible set is less than that of the ELR
confidence set, while the normal approximation method is least affected. A
quantitative study of the extent of the sensitivity of BB and ELR confidence
sets is done here.

We shall define two measures of nonrobustness by considering how much
an outlier can deform a set estimate. Let X1� � � � �Xn−1 be the first n − 1
observations and X̄n−1 denote their average. Let the nth observation Xn be
such that �Xn − X̄n−1� is large compared to

�3�4� η = sup��Xi − X̄n−1�� 1 ≤ i ≤ n− 1��

Then call X1� � � � �Xn−1 the data cloud and Xn an outlier. A diagram in two
dimensions (d = 2) is presented in Figure 3. Let � be an arbitrary set estimate
for µ based on all observations including the outlier. To measure the inflation
of � , introduce the quantity

�3�5� U = sup��x− X̄n−1�� x ∈ � ��

which is the distance of the farthest point in � from X̄n−1. (See Figure 3a.)
Large U signifies � has a long nose toward the outlier Xn, and one can con-
clude that the outlier has inflated the region � towards itself, whereas small
U implies less effect of Xn on � .

Fig. 3. Diagram to identify the inflation effect and the shift effect of an outlier. (a) Measuring
inflation effect; (b) measuring shift effect.
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Sometimes the influence of an outlier is so much that the whole region
shifts away from the data cloud towards the outlier. (See Figure 3b.) We say
that � has shifted from the data cloud if X̄n−1 /∈ � and we measure the shift
by the quantity

�3�6� L = inf��x− X̄n−1�� x ∈ � ��
Note that L = 0 implies no shift and the reverse. Large L implies the region
� has largely shifted from the data cloud, indicating the large influence of the
outlier.

Let UBB and UEL denote the extent of inflation of the BB credible set and
the ELR confidence set with coverage level �1 − p�. Let LBB and LEL denote
the shifts for these two sets. Note that in Figure 2c and 2d, both LBB and LEL
are zero, indicating that there is no shift effect of the outlier. However, there
is a large inflation effect. The following two theorems give theoretical bounds
on UBB, UEL and LEL.

Theorem 3.1. For any data set X1� � � � �Xn,

�3�7� UEL ≥ un
�Xn − X̄n−1�

n

and

�3�8� LEL ≥ ln
�Xn − X̄n−1�

n
− η23/2�− log r�1/2�n− 1�−1/2�

where ln and un are the smallest and the largest roots of the equation

�3�9� fn�h� �= h

(
1 + 1 − h

n− 1

)n−1

= r� 0 ≤ h ≤ n�

with r = exp�− 1
2χ

2
d�p�. Moreover, as n → ∞,

�3�10�
ln = l0 + o�n−1��
un = u0 + o�n−1��

where l0 and u0 are the smallest and the largest roots of the equation

�3�11� f�h� �= he1−h = r� 0 ≤ h < ∞�

Observation 3.1. The function fn is continuous, strictly increasing on
�0�1�, strictly decreasing on �1� n� and fn�0� = 0� fn�1� = 1 and fn�n� = 0.
So for every 0 < r < 1, fn�h� = r has exactly two solutions, ln in �0�1� and
un in �1� n� and �h� fn�h� ≥ r� = �ln� un�.

Observation 3.2. For a fixed coverage level �1−p�, the quantity r in (3.9)
and (3.11) decreases with an increase in the dimension d, as the percentiles of
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a χ2 distribution increase with an increase in the degrees of freedom. Thus un
increases with an increase in the dimension d as both fn and f are decreasing
for x > 1.

Theorem 3.2. Let the outlier Xn satisfies �Xn� = O�n�. Then

�3�12� UBB ≈ �− logp��Xn − X̄n−1�
n

�

Theorems 3.1 and 3.2 help one in comparing the nonrobustness of the BB
credible sets and the ELR confidence sets. The extent of inflation on both types
of sets is proportional to the distance of the outlier from the data cloud and
is inversely proportional to the sample size n. Here un describes the constant
of proportionality for an ELR set which increases with an increase in the
dimension of the data as well as with an increase in the coverage level. On
the other hand, − logp in (3.12), the BB constant, does not depend on the
dimension of the data, and most importantly, the BB constants are always
smaller than the ELR constants at every level of coverage and whatever the
dimension. Table 1 presents the values of un for n = 13 and d = 2�3 along with
the values of − logp at four different levels of noncoverage probability p. Since
un → u0, as n → ∞, the values of u0 are also attached. These observations
indicate some robustness advantage for the BB method over the ELR method,
but neither method is robust.

No theoretical bound is found for LBB. The BB credible sets usually contain
X̄n−1 and LBB = 0 unless the outlier is too big. For small magnitude of the
outlier, LEL is also equal to zero. The first term in the lower bound of (3.8)
is O�n−1�, whereas the second term is O�n−1/2�. Hence the right-hand side is
often negative, making the inequality trivial. This implies that the shift effect
of an outlier on both of these set estimates is negligible, but the inflation effect
is very prominent.

The data diameter η is stochastically increasing in n and the magnitude
is O�n1/r� if the rth moment is finite. Hence an observation O�n� is rare. But
the effect of an outlier is inversely proportional to n and so only an outlier
with magnitude O�n� or more will be of concern.

Table 1

Values of un in �3�7� along with u0 for dimensions 2 and 3� and values of
�− logp� in �3�12� for four values of p

d � 2 d � 3

p u13 u0 u13 u0 �� log p�

0.01 5.954 7.638 6.609 8.853 4.605
0.05 4.796 5.744 5.480 6.828 2.9957
0.10 4.214 4.890 4.899 5.901 2.3026
0.20 3.560 3.994 4.230 4.912 1.6094
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APPENDIX

A1. Proof of Theorem 2.2. For a nonempty set A ∈ R
k, let � �A� denote

the affine hull of A defined in (2.5). For a t ∈ �0�1� and two nonempty sets, A
and B, define a convex combination of these two sets as

tA+ �1 − t�B = �tx+ �1 − t�y� x ∈ A� y ∈ B��

Definition A1.1 [Prékopa (1973), equation (1.2)]. A probabilityP on Borel
sets of R

k is said to be logconcave if for all Borel measurable sets A, B and
every t ∈ �0�1�,

P�tA+ �1 − t�B� ≥ �P�A��t �P�B��1−t�

A probabilityP in R
d is nonsingular ifP�H� < 1 for every hyperplaneH. To

prove Theorem 2.2, first we shall show that the distribution �n�X is logconcave
and nonsingular and then we shall use the standard logconcavity results to
prove the existence of a logconcave density. Lemmas A1.1–A1.4 develop the
required machinery for this purpose.

Proposition A1.1. P is nonsingular on R
k if and only if the affine hull of

its support is the whole R
k.

Lemma A1.1. Let P be a logconcave probability on R
k and L� R

k → R
s be

an affine transform. Then PL−1 is logconcave on R
s.

For the proof, see Dharmadhikari and Joag-dev [(1988), Lemma 2.1,
page 47].

Lemma A1.2. Let P be a nonsingular probability on R
k. Then P is logcon-

cave if and only if P has a logconcave Lebesgue density on R
k.

For the proof, see Dharmadhikari and Joag-dev [(1988), Theorem 2.8,
page 51].

Lemma A1.3. The joint distribution of �W1� � � � �Wn� is logconcave on R
n.

Proof. The joint distribution of �W1� � � � �Wn� is uniform on �n of (1.3).
Hence the joint distribution of �W1� � � � �Wn−1� has a Lebesgue density

f�u� = I�u1 + · · · + un−1 ≤ 1�
on R

n−1. The function f is logconcave as the indicator function of any
convex set is logconcave. Hence by Lemma A1.2, the joint distribution of
�W1� � � � �Wn−1� is logconcave on R

n−1. Since the map g� R
n−1 → R

n, defined
as

g�u� = �u1� � � � � un−1�1 − u1 − · · · − un−1�� u ∈ R
n−1�

is an affine map and g�W1� � � � �Wn−1� = �W1� � � � �Wn�, the proof is complete
by Lemma A1.1. ✷
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Define a map on �n as

�A1�1� µ̃�w� = ∑
wiXi = µ�Fw��

where Fw = ∑
wiδXi

. Let Hn denote the affine hull of �n.

Lemma A1.4. Let Pn be a probability on R
n with support in �n and let the

affine hull of its support be Hn. Let the convex hull of �X1� � � � �Xn� have a
nonempty interior. Then Pnµ̃

−1 is nonsingular in R
d.

Proof. Let Qn = Pnµ̃
−1. We need to show that Qn�H� < 1 for any hyper-

plane H of R
d. Note that Hn = �w ∈ R

n� ∑
wi = 1�.

For any hyperplaneH in R
d, there exists a vector a ∈ R

d and a real constant
c such that H = �x ∈ R

d� aTx = c�. Hence,

Qn�H� = Pn

{
w ∈ R

n� aT
(∑

wiXi

)
= c

}
= Pn

{
w ∈ R

n� ∑�aTXi�wi = c
}

= Pn

{
H̃n

}
�

where H̃n = �w ∈ R
n� ∑�aTXi�wi = c� is a hyperplane in R

n. Since the affine
hull of the support of Pn is the hyperplane Hn, so Pn�H̃n� = 1 iff H̃n = Hn.
We will prove that H̃n != Hn for the two cases, c = 0 and c != 0, separately.

Case 1. c = 0. Then H̃n = �w ∈ R
n� ∑�aTXi�wi = 0� is passing through

the origin. Thus, it can never be equal to Hn, as Hn does not pass through
the origin.

Case 2. c != 0. Then H̃n = �w ∈ R
n� ∑�aTXi/c�wi = 1�. Hence H̃n = Hn

iff �aTXi�/c = 1 for all i = 1� � � � � n. Thus H̃n = Hn implies that Xi ∈ �x ∈
R
d� aTx = c�, which in turn implies that the convex hull of �X1� � � � �Xn� lies

inside a hyperplane. This contradicts the assumption that the convex hull of
�X1� � � � �Xn� has a nonempty interior. ✷

Proof of Theorem 2.2. Let =n denote the uniform measure on �n. Then
�n�X = =nµ̃

−1. As =n is logconcave on R
n (Lemma A1.3) and µ̃ is a linear map

from R
n to R

d, by Lemma A1.1, �n�X is logconcave on R
d.

As the affine hull of the support of =n is Hn, by Lemma A1.4, �n�X is
nonsingular on R

d. Hence by Lemma A1.2, the proof is complete. ✷

Corollary A1.1. Let the weights �W1� � � � �Wn� in (1.2) be replaced by some
other weights �W∗

1� � � � �W
∗
n�, such that their joint distribution is logconcave on

�n and the affine hull of its support is Hn. Then also, under the condition that
the convex hull of X1� � � � �Xn has nonempty interior, the distribution of µ�Dn�
has logconcave Lebesgue density.
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A2. Proof of Theorem 2.4. Throughout this proof, the data X1� � � � �Xn

are fixed and the randomness comes from the simulation. Recall that the hy-
percubes �R�x�h�� x ∈ Rh� cover � and are disjoint except at the boundaries.
Then the function

gm�x� = �mhd�−1 ∑1R�xi� h��x�τ�xi�� x ∈ R
d�

is a histogram smoothing density estimate of g and the set �m is the same
as �x� gm�x� ≥ λm� with λm = �mhd�−1τ�xk0

�. Hence �m is a high density
contour of gm. First we shall show that gm → g and λm → λ a.e, where λ is
defined in (2.6).

Note that one can identify the BB density g as a multivariate B-spline
function with knots X1� � � � �Xn from the probabilistic definition of B-spline
in Section 2 of Karlin, Micchelli and Rinott (1986). Hence, whenever the convex
hull of every n − 1 data points has nonempty interior, by Corollary 3 and its
extension in the adjacent paragraph of Micchelli (1980), g has a continuous
bounded derivative and the derivative is nonzero in the interior of the support
of g except at the mode of g. ✷

Lemma A2.1. Let λ be as in (2.6). Then there exist constants bi > 0, i = 1�
2�3 and δ0 > 0, possibly depending on λ, such that for all δ ≤ δ0, we have

�i� Leb�x� �g�x� − λ� ≤ δ� ≤ b1δ�

�A2�1� �ii� Leb�x� 0 < λ− g�x� ≤ δ� ≥ b2δ�

�iii� Leb�x� 0 < g�x� − λ ≤ δ� ≥ b3δ�

Proof. The condition 0 < 1 − p < 1 along with (2.6) implies that �y�
g�y� = λ� is in the interior of the support of g and does not contain the
mode of g. Hence �gradg�x�� is bounded away from zero in a neighborhood
of �x� g�x� = c�. Thus, by the example next to Theorem 3.6 in Polonik (1995),
for all small δ, ∫

�x� �g�x�−c�≤δ�
g�x�dx ≤ a1δ

for a constant a1. Since g�x� ≥ c− δ on �x� �g�x� − c� ≤ δ�, (A2.1i) follows.
To prove (A2.1ii) and (A2.1iii) we shall use the fact that �gradg� is bounded

above. Let A = �y� g�y� = λ� and k = supx �gradg�x��. Then for any x�y,

�g�y� − g�x�� ≤ �y− x�k�
Thus,

�x� �λ− g�x�� ≤ δ� ⊇ ⋃
y∈A

�x� �x− y� ≤ δ/k�

and
�x� 0 < λ− g�x� ≤ δ� = �x� �λ− g�x�� ≤ δ� ∩ �x� g�x� − λ < 0�

⊇ ⋃
y∈A

�x� �x− y� ≤ δ/k� ∩ �x� g�x� − λ < 0��
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Theorem 2.2 says that �x� g�x� −λ ≥ 0� is a convex set and A is its boundary.
Hence

⋃
y∈A�x� �x− y� ≤ δ/k� ∩ �x� g�x� − λ < 0� is the thin region of width

�δ/k� outside the set �x� g�x� −λ ≥ 0�. Convexity of �x� g�x� −λ ≥ 0� implies
that the Lebesgue measure of

⋃
y∈A�x� �x− y� ≤ δ/k� ∩ �x� g�x� − λ < 0� di-

vided by δ has a positive limit as δ → 0. Hence (A2.1ii). The proof of (A2.1iii)
is similar. ✷

Lemma A2.2. Let γm = supx �gm�x� − g�x��. Then for a.e. simulation se-
quence,

γm = o�m−1/�d+2�ln�m���

Since g has bounded support, continuous bounded derivative, the result
follows as a multidimensional extension of Theorem 3 in Révész (1972).

Lemma A2.3. λm − λ = O�γm� a.e.

Proof.∫
g�I�g≥λ� gm <λm� −I�g<λ� gm ≥λm��

=
∫
g�I�g≥λ� −I�gm ≥λm��

=
∫
gI�g≥λ� −

∫
gmI�gm ≥λm� +

∫
�gm −g�I�gm ≥λm�

=
∫

�gm −g�I�gm ≥λm� as the first two terms are equal to 1 −p�

(A2.2)

Suppose �λm − λ�/γm is not bounded above. Then there is a subsequence
such that �λm − λ�/γm > 1 through that subsequence. By definition of γn,

�A2�3� �g < λ� gm ≥ λm� ⊂ �λm − γm < g ≤ λ��
Hence through that subsequence λm − γm > λ, making the right-hand side of
(A2.3) a null set and by (A2.2),

�A2�4�
∫
gI�g ≥ λ� gm < λm� =

∫
�gm − g�I�gm ≥ λm� ≤ Leb���γm�

since �gm ≥ λm� ⊂ �. Again,∫
gI�g ≥ λ� gm < λm� ≥

∫
gI�λ ≥ g < λm − γm�

≥ λLeb��λ ≤ g < λm − γm��
≥ b�λm − γm − λ� by (A2.1ii)�

Dividing the above inequality by γm, the left-hand side is bounded above by
(A2.4), whereas the right-hand side diverges to +∞ through that subsequence.
Hence a contradiction to the assumption that �λm − λ�/γm is not bounded
above. Similarly, one can prove that �λm − λ�/γm is bounded below. Hence the
proof is complete. ✷
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Proof of Theorem 2.4. Note that

�m��BB = �gm ≥ λm� g < λ� ∪ �gm < λm� g ≥ λ��
By the definition of γm,

�gm ≥ λm� g < λ� ⊂ �λ < g ≤ λm + γm��
�gm < λm� g ≥ λ� ⊂ �λm − γm < g ≤ λ��

Thus by Lemma A2.2, there is a K < ∞ such that �λm − λ� ≤ Kγm. Hence by
Lemma A2.1,

Leb��m��BB� ≤ b�K+ 1�γm�
Hence the proof is complete by (A2.2i). ✷

A3. Proof of Theorem 3.1. Define a likelihood function and a likelihood
ratio on �n, respectively, as

�A3�1�
L̃n�w� = ∏

wi�

R̃n�w� = nn
∏
wi�

Lemma A3.1. For every 0 < r < 1, the set

�A3�2� �̃EL = �µ̃�w�� w ∈ �n� R̃n�w� ≥ r�
is the same as the set �EL defined in (3.3).

Proof. By Lemma 1 of Owen (1988), we have

�A3�3� R̃n�w� ≥ r �⇒ R�Fw� ≥ r

and

�A3�4� F � Fn� R�F� ≥ r �⇒
{

There is a w ∈ �n s.t.

R̃n�w� ≥ r and Fw = F�

where Fw = ∑
wiδXi

. Hence �̃EL ⊂ �EL is straightforward from (A3.3). To
prove the converse, let z ∈ �EL. So there is an F � Fn such that z = µ�F�
and R�F� ≥ r. By (A3.4) there is a w ∈ �n such that R̃n�w� ≥ r and Fw = F.
Hence µ̃�w� ∈ �̃EL. But µ̃�w� = µ�Fw� = z. So �EL ⊂ �̃EL and the proof is
complete. ✷

By Lemma A3.1, it is enough to consider �̃EL instead of �EL. Define

fn�h� = sup�R̃n�w�� w ∈ �n� wn = h/n��
It is easy to see that the supremum in the right-hand side is attained at wh,
where the n-vector wh is defined as wh

i = �1 − h/n�/�n− 1�, i = 1� � � � � �n− 1�
and wh

n = h/n. So the fn defined here is the same as that in (3.9) and

�fn�h� ≥ r� �⇒ �µ̃�wh� ∈ �̃EL��
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Now

µ̃�wh� = �h/n�Xn + ��1 − h/n�/�n− 1��
n−1∑

1

Xi

= �h/n��Xn − X̄n−1� + X̄n−1�

so that

�µ̃�wh� − X̄n−1� = h

n
�Xn − X̄n−1��

Hence, using the definition of U in (3.5) for UEL and by Observation 3.1,

UEL ≥ sup��µ̃�wh� − X̄n−1�� fn�h� ≥ r�

= un
�Xn − X̄n−1�

n
�

Hence (3.7) is proved.
To prove (3.8), let hw = nwn and w̃ = �w1/�1 − wn�� � � � �wn−1/�1 − wn�� ∈

�n−1. Then for any w ∈ �n,

�A3�5� �µ̃�w� − X̄n−1� ≥ wn�Xn − X̄n−1� −
∥∥∥∥
n−1∑

1

w̃i�Xi − X̄n−1�
∥∥∥∥

and

R̃n�w� = fn�hw�R̃n−1�w̃��
As fn ≤ 1 and R̃n−1 ≤ 1,

�A3�6� R̃n�w� ≥ r �⇒
{

�i� R̃n−1�w̃� ≥ r�

�ii� fn�hw� ≥ r�

The definition of η in (3.4) yields

�A3�7�
∥∥∥∥
n−1∑

1

w̃i�Xi − X̄n−1�
∥∥∥∥ ≤ ηKn−1�r��

where

Kn−1�r� = sup
{n−1∑

1

∣∣∣∣w̃i − 1
n− 1

∣∣∣∣� w̃ ∈ �n−1� R̃n−1�w̃� ≥ r

}
�

By equation (5.1) of Owen (1988),

Kn−1�r� ≤ 2�−2 log r�1/2�n− 1�−1/2�

Again by (A3.6ii) and Observation 3.1, R̃n�w� ≥ r implies hw ≥ ln and

wn�Xn − X̄n−1� ≥ ln
�Xn − X̄n−1�

n
�
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Hence for any w ∈ �n with R̃n�w� ≥ r,

�µ̃�w� − X̄n−1� ≥ ln
�Xn − X̄n−1�

n
− η23/2�− log r�1/2�n− 1�−1/2�

and (3.8) is proved. ✷

The proof of (3.10) is routine calculus and is omitted.

A4. Proof of Theorem 3.2. Since all the distances are measured from
X̄n−1, without loss of any generality one can assume X̄n−1 = 0. As the BB dis-
tribution is the conditional distribution of µ�Dn�, given X1� � � � �Xn; through-
out this proof, the sample sequence X is fixed and the randomness comes from
�W1� � � � �Wn�. Let Vn denote

∑n
1 WiXi. Then

Vn = WnXn + �1 −Wn�
n−1∑

1

W̃iXi�

where W̃i = Wi/�1 −Wn�. Identify Wi’s in terms of U�i�’s, the order statistics
of i.i.d. U�0�1�, as in Procedure 1 in Section 2.2. As the joint distribution of
�U�1�/U�n−1�� � � � �U�n−2�/U�n−1�� is independent of U�n−1�, so the joint distri-
bution of �W̃1� � � � � W̃n−1� is independent of Wn. Let Ṽn−1 denote

∑n−1
1 W̃iXi.

Then

Vn = WnXn + �1 −Wn�Ṽn−1�

and Ṽn−1 is independent of Wn.
Let Zn denote �VT

nXn�/�Xn� and Z̃n−1 denote �ṼT
n−1Xn�/�Xn�. We shall

find a tn > 0 such that P�Zn > tn� ≈ α. To this effect, observe that �Z̃n−1� ≤ η

and �Xn� > η. Therefore, for a t > η, using the independence of Wn and Z̃n−1,

P�Zn > t� = E�P�Wn�Xn� + �1 −Wn�Z̃n−1 > t�Z̃n−1��

= E

{
1 − t− Z̃n−1

�Xn� − Z̃n−1

}n−1

=
(

1 − t

�Xn�
)n−1

E

{
1 − Z̃n−1

�Xn�
}1−n

�

Let cn = n�t/�Xn��. Then (
1 − t

�Xn�
)n−1

≈ e−cn

and

�A4�1�
{

1 − Z̃n−1

�Xn�
}1−n

= 1 + �n− 1� Z̃n−1

�Xn� + �n− 1�n
2

{
Z̃n−1

�Xn�
}2

O�1��
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Note that for every i = 1� � � � � �n− 1�,

Var�W̃i� = n− 2
n�n− 1�2

�

and for i != j,

Cov�W̃i� W̃j� = −1
n− 2

Var�W̃1��

Hence for an unit vector l ∈ R
n−1,

lT Var�Ṽn−1�l = Var
(n−1∑

1

W̃il
TXi

)

= n− 2
n�n− 1�2

[n−1∑
1

�lTXi�2 − 1
n− 2

∑
i!=j

�lTXi��lTXj�
]

= n− 2
n�n− 1�2

[
n− 1
n− 2

n−1∑
1

�lTXi�2
]

≤ η2 n−1 as �lTXi� ≤ η�

Again by the construction of Z̃n−1, we obtain

�A4�2� EZ̃n−1 = X̄n−1 = 0

and

�A4�3� EZ̃2
n−1 = XT

n Var�Ṽn−1�Xn

�Xn�2
≤ η2 n−1�

Using (A4.1) and (A4.2) in (A4.3),

E

{
1 − Z̃n−1

�Xn�
}1−n

= 1 +O�n−1�

and

P�Zn > t� ≈ e−cn �

Hence

tn ≈ �− log α��Xn − X̄n−1�
n

�

Note that Ṽn−1 is confined in a small region around 0 with the diameter η,
Xn is far away from 0 and the random variable Wn is concentrated around
zero with the density �n−1��1−u�n−2I�0�1��u�. Hence the density of Vn is high
near zero and decreases as we approachXn. So tn will serve as an approximate
upper bound for UBB. Thus (3.12) is proved. ✷
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