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MODULATION OF ESTIMATORS AND CONFIDENCE SETS

By Rudolf Beran1 and Lutz Dümbgen2

University of California, Berkeley and Universität Heidelberg

An unknown signal plus white noise is observed at n discrete time
points. Within a large convex class of linear estimators of ξ, we choose
the estimator ξ̂ that minimizes estimated quadratic risk. By construction,
ξ̂ is nonlinear. This estimation is done after orthogonal transformation
of the data to a reasonable coordinate system. The procedure adaptively
tapers the coefficients of the transformed data. If the class of candidate
estimators satisfies a uniform entropy condition, then ξ̂ is asymptotically
minimax in Pinsker’s sense over certain ellipsoids in the parameter space
and shares one such asymptotic minimax property with the James–Stein
estimator. We describe computational algorithms for ξ̂ and construct con-
fidence sets for the unknown signal. These confidence sets are centered at
ξ̂, have correct asymptotic coverage probability and have relatively small
risk as set-valued estimators of ξ.

1. Introduction. The problem of recovering a signal from observation of
the signal plus noise may be formulated as follows. LetX = Xn = �X�t��t∈T be
a random function observed on the setT = Tn = �1�2� � � � � n	. The components
X�t� are independent with EX�t� = ξ�t� = ξn�t� and Var�X�t�� = σ2 for
every t ∈ T. Working with functions on T rather than vectors in Rn is very
convenient for the present purposes. As just indicated, we will usually drop the
subscript n for notational simplicity. The signal ξ and the noise variance σ2

are both unknown. For simplicity, we assume throughout that X is Gaussian.
Portions of the argument that hold for non-Gaussian X are expressed by the
lemmas in Section 6.2.

For any g ∈ RT, the space of real-valued functions defined on T, let

ave�g� 
= n−1 ∑
t∈T
g�t��

The loss of any estimator ξ̂ for ξ is defined to be

L�ξ̂� ξ� 
= ave
[(
ξ̂ − ξ)2](1.1)

and the corresponding risk of ξ̂ is

ρ�ξ̂� ξ� σ2� 
= EL�ξ̂� ξ��
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The first goal is to devise an estimator that is efficient in terms of this risk. If ξ
and X are electrical voltages, then ave�ξ2� and L�ξ̂� ξ� are the time-averaged
powers dissipated in passing the signal ξ and the error ξ̂ − ξ through a unit
resistance.

Any estimator ξ̂ of ξ is governed by the asymptotic minimax bound

lim inf
n→∞ inf

ξ̂
sup

ave�ξ2�≤c
ρ�ξ̂� ξ� σ2� ≥ σ2c

σ2 + c(1.2)

for every positive c and σ2. Inequality (1.2) follows from a more general bound
proved by Pinsker (1980) for signal recovery in Gaussian noise [see Nussbaum
(1996) and Section 2]. It may also be derived from ideas in Stein (1956) by
considering best orthogonally equivariant estimators in the submodel where
ave�ξ2� = c [see Beran (1996b)]. Let σ̂2 = σ̂2

n be an estimator of σ2 that is
consistent as in (2.2). Then

ξ̂S 
= [
1 − σ̂2/ave�X2�]+

X

is essentially the James–Stein (1961) estimator, where �·�+ denotes the positive
part function. It achieves the Pinsker bound (1.2) because

lim
n→∞ sup

ave�ξ2�≤c
ρ�ξ̂S� ξ� σ2� = σ2c

σ2 + c(1.3)

for every positive c and σ2. The limit (1.3) follows from Corollary 2.3 or from
the asymptotics in Casella and Hwang (1982). For the maximum likelihood
estimator ξ̂ML = X, the risk is always σ2, which is strictly greater than the
Pinsker bound.

Section 2 of this paper constructs estimators of ξ that are asymptotically
minimax over a variety of ellipsoids in the parameter space while achieving, in
particular, the asymptotic minimax bound (1.2) for every c > 0. These modula-
tion estimators take the form f̂X = �f̂�t�X�t��t∈T. Here f̂
 T → �0�1� depends
on X and is chosen to minimize the estimated risk of the linear estimator fX
over all functions f in a class � = �n ⊂ �0�1�T. Many well-known estima-
tors are of this form with special classes � . In the present paper we analyze
such estimators under rather general assumptions on � . How large this class
may be is at the heart of the analysis. Taking � to be the set of all functions
from T to �0�1� leads to a poor modulation estimator. It is better to let �
be a closed convex set of functions with well-behaved uniform covering num-
bers. One example is the set of all functions in �0�1�T that are nonincreasing.
The asymptotic theory of such modulation estimators, including links with
the literature, is the subject of Section 2. Section 4 develops algorithms for
computing f̂X in the example of � just cited.

Section 3 constructs confidence sets that are centered at a modulation es-
timator f̂X and have asymptotic coverage probability α for ξ. The risk of
the modulation estimator at the center is shown to determine the risk of the
confidence set, when that is viewed as a set-valued estimator for ξ. In this
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manner, the efficiency of a modulation estimator determines the efficiency of
the associated confidence set.

Before estimation of ξ, the data X may be transformed orthogonally with-
out changing their Gaussian character. A modulation estimator computed in
the new coordinate system can be transformed back into the original coordi-
nate system to yield an estimator of ξ. Standard choices for such preliminary
orthogonal transformations include Fourier transforms, wavelet transforms
or analysis-of-variance transforms. When applied in this manner, modula-
tion estimators perform data-driven tapering of empirical Fourier, wavelet
or analysis-of-variance coefficients. Section 5 includes numerical examples of
modulation estimators and confidence bounds after Fourier transformation.

2. Modulation estimators. After defining modulation estimators, this
section obtains uniform asymptotic approximations to their risks. Let � = �n
be a given subset of �0�1�T. Each function f ∈ � is called a modulator and
defines a candidate linear estimator fX = �f�t�X�t��t∈T for ξ. The risk of this
candidate estimator under quadratic loss (1.1) is

ρ�fX�ξ� σ2� = EL�fX�ξ� = ave
[
σ2f2 + ξ2�1 − f�2]�(2.1)

For brevity, we will write R�f� ξ� σ2� in place of ρ�fX�ξ� σ2�.
We will first construct a suitably consistent estimator R̂�f� of this risk.

Suppose that σ̂2 = σ̂2
n is an estimator of σ2, constructed (for instance) by

one of the methods described later. Let X∗ be a bootstrap random vector in
RT such that � �X∗ �X� σ̂2� = �T�X� σ̂2I�. The corresponding bootstrap risk
estimator for R�f� ξ� σ2� is

E
(
L�fX∗�X� ∣∣X� σ̂2) = R�f�X� σ̂2��

We callR�f�X� σ̂2� the naive risk estimator because it is badly biased upward,
even asymptotically. The key point is

ER�f�X�σ2� = ave
[
f2σ2 + �1 − f�2�ξ2 +σ2�]

= R�f� ξ� σ2� + ave
[�1 −f�2σ2]�

Two possible corrections to the naive risk estimator are

R̂C�f� 
= ave
[
f2σ̂2 + �1 − f�2�X2 − σ̂2�] = R�f�X� σ̂2� − ave��1 − f�2σ̂2��

R̂B�f� 
= max
{
ave�f2σ̂2�� R̂C�f�} = ave�f2σ̂2� + ave

[�1 − f�2�X2 − σ̂2�]+
�

The risk estimator R̂C is essentially Mallows’ (1973) CL criterion or Stein’s
(1981) unbiased estimator of risk, with estimation of σ2 incorporated. The
risk estimator R̂B corrects the possible negativity in ave��1 − f�2�X2 − σ̂2��
as an estimator for ave��1 − f�2ξ2�. Let X∗ be a random vector in RT such
that � �X∗ �X� σ̂2� is �T�ξ̂� σ̂2I�, where ξ̂ = ξ̂�X� σ̂2� is a vector such that
ave�ξ̂2� = ave��1 − f�2�X2 − σ̂2��+/ave��1 − f�2X2�. Then the bootstrap risk
estimator E�L�fX∗� σ̂2��X� σ̂2� is precisely R̂B.
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Let R̂ denote either R̂C or R̂B. We propose to estimate ξ by the modulation
estimator f̂X, where f̂ is any function in � that minimizes R̂�f�. Unless
stated otherwise, it is assumed throughout that

� is a closed convex subset of �0�1�T containing all constants c ∈ �0�1�.
Because both R̂C�·� and R̂B�·� are convex functions on �0�1�T, the minimizer
f̂ over � exists in each case. These minimizers are unique with probability
1 because R̂C�f� is strictly convex in f whenever X�t� �= 0 for every t ∈ T.
Similarly, the risk function R�f� ξ� σ2� defined through (2.1) is strictly convex
over �0�1�T, with unique minimizer f̃.

Remark A. The modulation estimator f̂X behaves poorly when the class
� is too large. For instance, let � be the class of all functions in �0�1�T. The
minimizer of R�·� ξ� σ2� over �0�1�T is the “oracle” modulator [cf. Donoho and
Johnstone (1994)]

g̃ 
= ξ2/�σ2 + ξ2��
the division being componentwise, while the minimizer of R̂�·� over � is now
the greedy modulator ĝ+, where

ĝ 
= �X2 − σ̂2�/X2�

To simplify the discussion, suppose that σ2 is known and σ̂2 ≡ σ2. Then the
estimator ĝ+X is of the general form ξ̂ 
= �S�X�t���t∈T for some measurable
function S on the line. Since the maximum likelihood estimator X is com-
ponentwise admissible, the risk function ρ�ξ̂� ·� σ2� of ξ̂ is either identical to
ρ�X� ·� σ2� ≡ σ2 or there is a real number θ such that

∫ �θ−S�2 d� �θ� σ2� >
σ2. Then, if ξ�·� ≡ θ,

ρ�ξ̂� ξ� σ2� > σ2 = ρ�X�ξ�σ2� > σ2θ2/�σ2 + θ2��
the latter being the asymptotic risk of the James–Stein estimator ξ̂S. Thus, the
maximum risk of ĝ+X is worse than that of estimators achieving Pinsker’s
asymptotic minimax bound (1.2) and is even worse than that of the naive
estimator X.

It should be mentioned that greedy modulation can be made successful
in some sense if one overestimates the variance σ2 systematically. Donoho
and Johnstone (1994) propose threshold estimators of the form ξ̂ = �1 −
λnσ/�X��+X or ξ̂ = 1��X� ≥ λnσ	X, and prove that they have surprising op-
timality properties if λn = �2 log n�1/2�1 + δn� with a suitable sequence �δn�n
tending to 0. These estimators are similar to ĝ+X if ĝ is computed with
σ̂2
n 
= λ2

nσ
2. While showing good performance in case of “sparse signals,” these

estimators do not achieve the Pinsker bound (1.2) or the minimax bounds in
Corollary 2.3. Also, the construction of confidence bounds for their loss seems
to be intractable. Section 5 illustrates the possibly poor performance of hard
thresholding for nonsparse signals.
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Remark B. Kneip’s (1994) ordered linear smoothers are equivalent to cer-
tain modulation estimators computed after suitable orthogonal transforma-
tion of X. The conditions that we impose on � in this paper are substantially
weaker than the ordering of � required by Kneip. Consequently, our results
also apply to the ridge regression, spline estimation and kernel estimation
examples discussed in Kneip’s paper. The earlier paper of Li (1987) treated
nondiagonal linear estimators indexed by a parameter h. Li’s optimality result
may be compared with Theorem 2.1. However, it does not seem easy to relate
Li’s conditions on the range of h to our conditions on � . The latter conditions
give access to empirical process results that yield asymptotic distributions
for the loss of f̂X and hence confidence sets for ξ centered at modulation
estimators.

Remark C. Nussbaum (1999) surveyed constructions of adaptive estima-
tors that achieve Pinsker-type asymptotic minimax bounds. For instance, Gol-
ubev and Nussbaum (1992) treated adaptive, asymptotically minimax estima-
tion when ξi = g�xi� and g lies in an ellipsoid of unknown radius within a
Sobolev space of unknown order. Corollary 2.3 is of related character. How-
ever, our results make no smoothness assumptions on ξ. For instance, sample
paths up to time n of suitably scaled, discrete-time, independent white noise
ultimately lie, as n → ∞, within the ball ave�ξ2� ≤ c.

Useful classes of modulators � can be characterized through their uniform
covering numbers, which are defined as follows. For any probability measure
Q on T, consider the pseudo-distance dQ�f�g�2 
= ∫ �f − g�2 dQ on �0�1�T.
For every positive u, let

N�u�� � dQ� 
= min
{
#�0
 �0 ⊂ � � inf

f0∈�0

dQ�f0� f� ≤ u ∀f ∈ �
}
�

Define the uniform covering number

N�u�� � 
= sup
Q

N�u�� � dQ��

where the supremum is taken over all probabilities on T. Let

J�� � 
=
∫ 1

0

√
logN�u�� �du�

ThroughoutC denotes a generic universal real constant which does not depend
on n, ξ, σ2 or � , but whose value may be different in various places.

Theorem 2.1. Let � be any closed subset of �0�1�T containing 0, let f̃ be a

minimizer of R�f� ξ� σ2� over f ∈ � and let f̂ minimize either R̂C�f� or R̂B�f�
over f ∈ � . Then

E

∣∣G−R�f̃� ξ� σ2�∣∣ ≤ C
(
J�� �σ

2 + σ√ave�ξ2�√
n

+ E�σ̂2 − σ2�
)
�
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where G is any one of the following quantities:

L�f̂X� ξ�� inf
f∈�

L�fX�ξ�� R̂C�f̂�� R̂B�f̂��

In particular,

∣∣ρ�f̂X� ξ� σ2� −R�f̃� ξ� σ2�∣∣ ≤ C
(
J�� �σ

2 + σ√ave�ξ2�√
n

+ E�σ̂2 − σ2�
)
�

This theorem is about convergence of losses and risks. The next result uses
convexity of � to establish that f̂ and f̃, as well as f̂X and f̃X, converge to
one another. Note that the second bound holds uniformly in ξ ∈ RT.

Theorem 2.2. Let f̂ be the minimizer of R̂C. Then

E ave
(�σ2 + ξ2��f̂− f̃�2) ≤ CJ�� �σ

2 + σ√ave�ξ2�√
n

+ E�σ̂2 − σ2��

E ave
(�f̂X− f̃X�2) ≤ CJ�� � σ

2

√
n

+ E�σ̂2 − σ2��

Given the consistency of σ̂ and the boundedness of σ2 + ave�ξ2�, a key
assumption on � that ensures success of the modulation estimator f̂X defined
previously is that J�� � = o�n1/2�. Here are some examples of modulator
classes � to which Theorem 2.1 applies.

Example 1 (Stein shrinkage). Suppose that � consists of all constant
functions in �0�1�T. The minimizer over � of R�f� ξ� σ2� is

f̃S ≡ 1 − σ2/�σ2 + ave�ξ2���
The minimizer of both R̂C and R̂B is

f̂S ≡ �1 − σ̂2/ave�X2��+�

The resulting modulation estimator f̂SX is the (modified) James–Stein (1981)
estimator ξ̂S. Here one easily shows that N�u�� � ≤ 1+�2u�−1, whence J�� �
is bounded by a universal constant.

Example 2 (Multiple Stein shrinkage). Let � = �n be a partition of T
and define

� 
=
{ ∑
B∈�

1B c�B�
 c ∈ �0�1��
}
�

where 1B is the indicator function of B. The values of c�B� that define f̃ and
f̂, respectively, are

c̃�B� = ave�1Bξ2�/ave�1B�σ2 + ξ2���
ĉ�B� = ave�1B�X2 − σ̂2��+/ave�1BX2��
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The modulation estimator f̂X now has the asymptotic form of the multi-
ple shrinkage estimator in Stein (1966). Elementary calculations show that
N�u�� � ≤ �1 + �2u�−1�#�. Thus J�� � is bounded by a universal constant
times �#��1/2, so that J�� � = o�n1/2� follows from the intuitively appealing
condition #� = o�n�.

Example 3 (Monotone shrinkage). Let �mon be the set of all nonincreas-
ing functions in �0�1�T. The class of candidate estimators �fX
 f ∈ �mon	
includes the nested model-selection estimators fkX, 0 ≤ k ≤ n, defined by
fk�t� 
= 1�t ≤ k	. In fact, �mon is the convex hull of �MS 
= �f0� f1� � � � � fn	.
Elementary calculations show that

N�u��MS� ≤ 1 + u−2 ≤ 2u−2

for 0 < u ≤ 1. Together with Theorem 5.1 of Dudley (1987) it follows that

logN�u��mon� ≤ Cu−1 for all u∈ �0�1��

Example 4 (Monotone shrinkage w.r.t. a quasi-order). Let � be a quasi-
order relation on T [cf. Robertson, Wright and Dykstra (1988), Section 1.3],
and let �� be the set of all functions in �0�1�T that are nonincreasing with
respect to �. That means, for all f ∈ �� and s� t ∈ T,

f�s� ≥ f�t� if s � t�
Here one can easily deduce from the conclusion of Example 3 that

logN�u���� ≤ CN�u
−1

for 0 < u ≤ 1, where N� = N�� n is the minimal cardinality of a partition of
�T��� into totally ordered subsets. Thus J���� is of order O�N1/2

� �. To give an
example, suppose that X consists of n = 2k+1 − 1 empirical Haar (or wavelet)
coefficients, arranged as a binary tree. If this tree is equipped with its natural
order �, then the monotonicity constraint f̂ ∈ �� means that f̂X is a mixture
of histogram estimators [cf. Engel (1994)]. Here N� = 2k > n/2. Therefore,
in order to apply our theory, one has to replace the class �� with suitable
subclasses.

Example 5 (Shrinkage with bounded total variation). Let ��M� be all func-
tions f in �0�1�T with total variation not greater than M = Mn, that is,

n∑
t=2

�f�t� − f�t− 1�� ≤ M�

For instance, the class of functions f�t� 
= max�min�p�t��1	�0	, where p is
a polynomial of degree less than or equal to M, belongs to ��M�. Any f ∈ ��M�
can be written as �M+ 1��f1 − f2� with f1� f2 ∈ �mon. Hence

logN�u���M�� ≤ 2 logN
(�2�M+ 1��−1u��mon

) ≤ C�M+ 1�u−1

for 0 < u ≤ 1. In particular, J���M�� = O��M+ 1�1/2�.
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The minimizers f̃ and f̂ in Examples 3–5 lack closed forms. Section 4 de-
scribes computational algorithms for f̃ and f̂ in Examples 3 and 4. Example 5
differs from the remaining examples both theoretically as well as computation-
ally and will be treated in detail elsewhere.

A particular consequence of Theorem 2.1 is that the modulation estimators
are asymptotically minimax optimal for a large class of submodels for �ξ� σ2�.
Namely, for a ∈ �1�∞�T and c > 0 define the linear minimax risk

ν2�a� c� σ2� 
= inf
g∈�0�1�T

sup
ave�aξ2�≤c

R�g� ξ� σ2��

It is shown by Pinsker (1980) that the linear minimax risk approximates the
unrestricted minimax risk in that

inf
ξ̂

sup
ave�aξ2�≤c

ρ�ξ̂� ξ� σ2�/ν2�a� c� σ2� → 1 as nν2�a� c� σ2� → ∞�

Moreover,

ν2�a� c� σ2� = sup
ave�aξ2�≤c

R�g0� ξ� σ
2� = R�g0� ξ0� σ

2��

where g0 
= �1−�a/µ0�1/2�+, ξ2
0 
= σ2��µ0/a�1/2 −1�+ and µ0 > 0 is the unique

real number satisfying ave�a��µ0/a�1/2 − 1�+� = c/σ2. The special case a ≡ 1
yields (1.2).

If the minimax modulator g0 = g0�· �a� c/σ2� happens to be in � , which is
certainly true for a ≡ 1, then

sup
ave�aξ2�≤c

ρ�f̂X� ξ� σ2� ≤ sup
ave�aξ2�≤c

∣∣ρ�f̂X� ξ� σ2� −R�f̃� ξ� σ2�∣∣ + ν2�a� c� σ2��

Thus Theorem 2.1 immediately implies the following minimax result, where
the distribution of �X� σ̂2� is assumed to depend on �ξ� σ2� only.

Corollary 2.3. Suppose that J�� � = o�n1/2� and that, for every c� σ2 > 0,

εn�c� σ2� 
= sup
ave�ξ2�≤c

E�σ̂2 − σ2� → 0� n → ∞�(2.2)

Then the modulation estimator f̂X achieves the asymptotic minimax bound
(1.2).

More generally, let a = an ∈ �1�∞�T such that

�1 − �a/µ�1/2�+ ∈ � for all constants µ ≥ 1�(2.3)

Then, for every c� σ2 > 0,

sup
ave�aξ2�≤c

ρ�f̂X� ξ� σ2� ≤ ν2�a� c� σ2� +O�n−1/2J�� � + εn�c� σ2���
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Specifically, let a�t� = 1 for t ∈ A ⊂ T and a�t� = ∞ otherwise. Then
ave�aξ2� ≤ c is equivalent to ave�ξ2� ≤ c and ξ2 = 0 on T \A. Here one can
easily see that condition (2.3) is equivalent to 1A ∈ � . The linear minimax
risk equals

ν2�a� c� σ2� = σ2 ave�1A�c
σ2 ave�1A� + c�

which can be significantly smaller than the bound in (1.2).
In the case of � = �mon condition (2.3) is equivalent to a being nondecreas-

ing on T.
We end this section with some examples for σ̂ . Internal estimators of σ2

depend only on X and require additional smoothness or dimensionality re-
strictions on the possible values of ξ to achieve the consistency property (2.2).
One internal estimator of σ2, analyzed by Rice (1984) and Gasser, Sroka and
Jennen-Steinmatz (1986), is

σ̂2
�1� = �2�n− 1��−1

n∑
t=2

�X�t� −X�t− 1��2�(2.4)

Here E�σ̂2
n − σ2

n� → 0 as n → ∞ and

n−1
n∑
t=2

�ξn�t� − ξn�t− 1��2 → 0�

External estimators of variance are available in linear models, where one
observes anN-dimensional normal random vector Y with mean EY = Dξ and
covariance matrix Cov�Y� = σ2IN for some design matrix D ∈ RN×n, N =
Nn > n. After suitable linear transformation of Y and ξ, one may assume that
ξ is the expectation of the vector X 
= �Y1�Y2� � � � �Yn�. Then the standard
estimator for σ2 is given by

σ̂2
�2� 
= �N− n�−1

N∑
i=n+1

Y2
i �

which is independent of X with �N − n�σ−2σ̂2
�2� ∼ χ2

N−n. This estimator also
satisfies (2.2), provided that N− n → ∞.

3. Confidence sets. Having replaced the maximum likelihood estimator
X with f̂X, a natural question is to what extent f̂X is closer to the unknown
signal ξ thanX. More precisely, we want to compare the distance L�X� f̂X�1/2

with an upper confidence bound r̂ = r̂�X� σ̂2� for L�ξ� f̂X�1/2. In geometrical
terms, the confidence ball of primary interest is defined by

Ĉ = Ĉn 
= {
γ ∈ RT
 L�f̂X� γ� ≤ r̂2}�

The radius r̂ is chosen so that the coverage probability P�ξ ∈ Ĉ� converges
to α∈ �0�1� as n increases. The full definition of Ĉ follows Theorem 3.1. Un-
derlying the construction is the confidence set idea sketched at the end of



MODULATION ESTIMATION 1835

Stein (1981). The quality of Ĉ as a set-valued estimator of ξ will be measured
through the quadratic loss

L�Ĉ� ξ� 
= sup
γ∈Ĉ

L�γ� ξ� = �L�f̂X� ξ�1/2 + r̂�2�(3.1)

This is a natural extension of the quadratic loss defined in (1.1) and has an
appealing projection-pursuit interpretation; see Beran (1996a).

One main assumption for this section is that

Xn and σ̂2
n are independent with � �σ−2

n σ̂
2
n� depending only

on n such that lim
n→∞ m�� �n1/2�σ−2σ̂2

n − 1���� �0� β2�� = 0.(3.2)

Here β2 ≥ 0 is a given constant and m�·� ·� metrizes weak convergence of
distributions on the line. For instance, the estimator σ̂2

�2� of Section 2 satis-
fies condition (3.2) with β 
= 2 limn→∞ n/�Nn − n�, provided that this limit
exists. Condition (3.2) is made for the sake of simplicity. It could be replaced
with weaker, but more technical conditions in order to include special internal
estimators of variance such as σ̂2

�1�. A second key assumption is that

∫ 1

0

√
sup
n
N�u��n�du < ∞�(3.3)

Roughly speaking, this condition allows us to pretend that f̂ is equal to f̃.
It is satisfied in Examples 1–5, provided that #�n = O�1� in Example 2,
N�� n = O�1� in Example 4 and Mn = O�1� in Example 5.

First, let us consider confidence balls centered at the naive estimator X.
Since nσ−2 ave��X − ξ�2� has a chi-squared distribution with n degrees of
freedom, we consider

ĈN 
= {
γ ∈ RT
 ave��X− γ�2� ≤ σ̂2�1 + n−1/2c�}

for some fixed c. The inequality ave��X−ξ�2� ≤ σ̂2�1+n−1/2c� is equivalent to

n1/2(σ−2 ave��X− ξ�2� − 1
) − n1/2�σ−2σ̂2 − 1� ≤ σ−2σ̂2c = c+ op�1��

Thus the central limit theorem for the chi-squared distribution together with
condition (3.2) implies that c = �2 + β2�1/25−1�α� yields a confidence set ĈN
with

lim
n→∞ sup

ξ∈RT� σ2>0

∣∣P�ξ ∈ ĈN	 − α∣∣ = 0�

where 5−1�α� denotes the αth quantile of � �0�1�. Moreover,

lim
n→∞ sup

ξ∈RT

P
{�L�ĈN� ξ� − 4σ2� > ε} = 0 ∀ ε > 0�

In what follows we shall see that confidence sets centered at a good modula-
tion estimator f̂X dominate the naive confidence set ĈN in terms of the loss
L�Ĉ� ξ�.
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To construct these confidence sets, we first determine the asymptotic dis-
tribution of

d̂ = d̂n 
= n1/2�L�f̂X� ξ� − R̂C�f̂���
This difference compares the loss of f̂X with an estimate for the expected loss
of f̂X.

Theorem 3.1. Under conditions (3.2) and (3.3),

lim
n→∞ sup

ave�ξ2�≤c
m�� �d̂��� �0� τ2�� = 0

for arbitrary c� σ2 > 0, where

τ2 = τ2
n�ξ� σ2� 
= 2σ4 ave��2f̃− 1�2� +β2σ4�ave�2f̃− 1��2 + 4σ2 ave�ξ2�1 − f̃�2��

A consistent estimator τ̂2 = τ̂2
n of τ2 is obtained by substituting σ̂2 for σ2,

f̂ for f̃ and X2 − σ̂2 for ξ2 in the expression for τ2. The implied estimator of
the approximating normal distribution � �0� τ2� is � �0� τ̂2�. This leads to the
following definition of a confidence ball for ξ that is centered at the modulation
estimator f̂X:

Ĉ 
= {
γ ∈ RT
 L�f̂X� γ� ≤ R̂C�f̂� + n−1/2τ̂ 5−1�α�}�

The intended coverage probability of Ĉ is α. The next theorem establishes the
asymptotic properties of this confidence set construction. Beran (1994) treats
in detail the example where f̂X is the James–Stein estimator. That situation
is much easier to analyze than the general case.

Theorem 3.2. Under the conditions of Theorem 3.1, for arbitrary c� σ2 > 0,

lim
n→∞�K→∞

sup
ave�ξ2�≤c

P
{�L�Ĉ� ξ� − 4R�f̃� ξ� σ2�� ≥ Kn−1/2} = 0

and

lim
n→∞�K→∞

sup
ave�ξ2�≤c

P
{�r̂2 −R�f̃� ξ� σ2�� ≥ Kn−1/2} = 0�

Moreover, τ̂2 is consistent in that

lim
n→∞ sup

ave�ξ2�≤c
P
{�τ̂2 − τ2� > ε} = 0 ∀ ε > 0�

If

lim inf
n→∞ inf

ave�ξ2�≤c
τ2
n�ξ� σ2� > 0�(3.4)

then

lim
n→∞ sup

ave�ξ2�≤c

∣∣P�ξ ∈ Ĉ	 − α∣∣ = 0�
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A sufficient condition for (3.4) is the following: for every n, � = �n is such
that

1�f ≥ c	f ∈ � for all f ∈ � and c ∈ �0�1��(3.5)

Condition (3.4) ensures that � �d̂� does not approach a degenerate distribu-
tion. Note that condition (3.5) is satisfied in Examples 1–4. WhenR�f̃� ξ� σ2� =
O�n−1/2� our confidence ball has loss L�Ĉ� ξ� = Op�n−1/2�. In fact, according
to Theorem 2.1 of Li (1989), this is the smallest possible order of magnitude
for a Euclidean confidence ball, unless one imposes further constraints on the
signal ξ. The result (3.2) on the asymptotic coverage of Ĉ may be compared
with the lower bound in Theorem 3.2 of Li (1989).

A key step in the proof of Theorem 3.1 is that in the definition of d̂ one
may replace f̃ with f̂. Instead of the normal approximation underlying Ĉ, a
bootstrap approximation ofH = Hn 
= � �d̂� that imitates the estimation of f̃
seems to be more reliable in moderate dimension. Precisely, let Ĥ = Ĥn be the
conditional distribution (function) of d̂∗ given �X� σ̂2�, where d̂∗ is computed
as d̂ with the pair �X∗� σ̂2 ∗� in place of �X� σ̂2�. Let ξ̂ = ξ̂�· �X� σ̂2� be an
estimator for ξ. Let S2

n be a random variable with a specified distribution
depending only on n such that

lim
n→∞ m

(
� �n1/2�S2

n − 1���� �0� β2�) = 0�

where Sn and �X� σ̂2� are independent. Then

� �X∗� σ̂2 ∗ �X� σ̂2� = � �ξ̂� σ̂2I� ⊗ � �σ̂2S2
n �X� σ̂2��

the product of the probability measures � �ξ̂� σ̂2I� and � �σ̂2S2
n �X� σ̂2�. The

resulting bootstrap confidence bound r̂b�α� for L�ξ� f̂X� is given by

r̂2
b�α� = R̂�f̂� + n−1/2Ĥ−1�α��

The last theorem of this section states conditions under which Ĥ is a consis-
tent estimator for H. An interesting fact is that neither ξ̂ = X nor ξ̂ = f̂X
satisfies these conditions.

Theorem 3.3. Under the assumptions of Theorem 3.1,

lim
n→∞ sup

ave�ξ2�≤c
P
{
m�Ĥn�Hn� > ε} = 0 ∀ ε > 0�

provided that

f̂ = arg min
f∈�

R�f� ξ̂� σ̂2� almost surely�(3.6)

lim sup
n→∞�K→∞

sup
ave�ξ2�≤c

P
{
ave�ξ̂2� > K} = 0�(3.7)
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lim
n→∞ sup

ave�ξ2�≤c
P
{∣∣ave�ξ̂2�1 − f̂�2� − ave�ξ2�1 − f̃�2�∣∣ > ε}

= 0 ∀ ε > 0�
(3.8)

In particular, suppose that each �n has the following property: for allX�ξ ∈
RT with X2 > 0 and any c ∈ �0�1�,

c = ave�1�f̂ = c	�X2 − σ̂2��+/ave�1�f̂ = c	X2� if �f̂ = c	 �= ��

c = ave�1�f̃ = c	ξ2�/ave�1�f̃ = c	�σ2 + ξ2�� if �f̃ = c	 �= ��

Then the function ξ̂ 
= �σ̂2f̂/�1 − f̂��1/2 satisfies conditions (3.6)–(3.8).

One can show that the last part of Theorem 3.3 applies to Examples 1–4.
This follows from the representation of f̂ given in Section 4 and Robertson,
Wright and Dykstra [(1988), Theorem 1.3.5]. Here one can also show that
ξ̂ 
= f̂1/2X satisfies these requirements, too. This yields a natural extension
of the bootstrap method proposed by Beran (1994).

4. Computation of f̂ and f̃ � We restrict our attention to R̂ = R̂C. With
the oracle modulator g̃ 
= ξ2/�σ2 + ξ2� and its naive estimator ĝ 
= �X2 −
σ̂2�/X2, one can write

R�f� ξ� σ2� = ave��f− g̃�2�σ2 + ξ2�� + ave�σ2g̃��

R̂C�f� = ave��f− ĝ�2X2� + ave�σ̂2ĝ��
Hence both functions f̃ and f̂ are metric projections of some function g onto � .

Now we consider the family �� of Example 4. Note that this case includes
Examples 1–3 as special cases. The family �� can be written as �� ∩ �0�1�T,
where

�� 
= �nonincreasing functions h ∈ RT with respect to �	�
Given arbitrary h ∈ �� and a ∈ R, the functions max�h�a	 and min�h�a	
also belong to ��. Consequently, since 0 ≤ g̃ ≤ 1 and ĝ ≤ 1,

f̃ = arg min
h∈��

ave��h− g̃�2�σ2 + ξ2�� and f̂ = arg min
h∈� +

�

ave��h− ĝ�2X2��

where � +
� 
= �h ∈ � 
 h ≥ 0	. Hence f̃ can be computed by any algorithm for

projections onto ��, while, in the case of f̂, one has to deal with a nonnega-
tivity constraint. (Replacing ĝ with ĝ+ would yield an inconsistent estimator
for f̃ in general.) The latter problem is easy to solve. Let ĥ be the unique
unrestricted projection

ĥ 
= arg min
h∈��

ave��h− ĝ�2X2�

of ĝ. Then

f̂ = ĥ+�
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For if ĥ = ĥ+ − ĥ−, then f̂− ĥ− ∈ �� and ĥ+ ∈ � +
� . Hence

ave��ĥ− ĝ�2X2� ≤ ave��f̂− ĥ− − ĝ�2X2�
= ave��f̂− ĝ�2X2� + ave��ĥ− + ĝ�2X2� − ave�ĝ2X2�

− 2 ave�f̂ĥ−X2�
≤ ave��f̂− ĝ�2X2� + ave��ĥ− + ĝ�2X2� − ave�ĝ2X2�
≤ ave��ĥ+ − ĝ�2X2� + ave��ĥ− + ĝ�2X2� − ave�ĝ2X2�
= ave��ĥ− ĝ�2X2�

by the definition of f̂ and ĥ. Thus f̂− ĥ− equals ĥ, whence f̂ = ĥ+.
Explicit algorithms for computing ĥ are described in Robertson, Wright and

Dykstra [(1988), Section 1]. Because of the special form of g̃ and ĝ, one can
even replace weighted least squares by ordinary least squares. Namely, let

Hξ 
= arg min
h∈��

ave��h− ξ2�2� and HX 
= arg min
h∈��

ave��h−X2�2��

Then

f̃ = Hξ/�σ2 +Hξ� and f̂ = �HX − σ̂2�+/HX�

This follows from the min–max formula for antitonic regression [Robertson,
Wright and Dykstra (1988), Theorem 1.4.4]. For let L and U be generic lower
and upper sets, respectively. That means,

L = {
y ∈ T
 y � x for some x ∈ L}

and

U = {
y ∈ T
 x � y for some x ∈ U}

�

Then

ĥ�t� = max
L
 t∈L

min
U
 t∈U

ave�1L∩UX
2ĝ�/ave�1L∩UX

2�

= max
L
 t∈L

min
U
 t∈U

(
1 − σ̂2 ave�1L∩U�/ave�1L∩UX

2�)
= 1 − σ̂2/ max

L
 t∈L
min
U
 t∈U

(
ave�1L∩UX

2�/ave�1L∩U�)
= 1 − σ̂2/HX�t��

The formula for f̃ is proved analogously.

5. Numerical examples. In this section we apply the proposed methods
to empirical Fourier coefficients. We simulated data

Y�z� = µ�z/n� + ε�z�� z ∈ T�
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where n = 1000, ε ∼ �T�0� I� and µ is one of the following two functions on
�0�1�:

Case 1
 µ�u� 
= 2 �6�75u2�1 − u��3�

Case 2
 µ�u� 
=




1�5� if 1�5 < u < 0�3�
0�5� if 0�3 < u ≤ 0�6�
2� if 0�6 < u ≤ 0�8�
0� else�

With the orthonormal functions φ1 ≡ n1/2, φ2k−1�z� 
= �2n�1/2 cos�2πkz/n�
and φ2k�z� 
= �2n�1/2 sin�2πkz/n�, 1 ≤ k < n/2, and φn/2�z� 
= n1/2�−1�z on
T, these data were transformed into

X 
= �ave�φtY��t∈T = �ave�φtµ�·/n���t∈T + �ave�φtε��t∈T =
 ξ +E�

so that E ∼ �T�0� I�. Then we computed the modulation estimator f̂X using
σ̂2 ≡ 1 (for simplicity) and the modulator class

� 
= {
f ∈ �mon
 f2k−1 = f2k for 1 ≤ k < n/2}�

This yielded the estimator

µ̂�z/n� 
= ∑
t∈T

ave�φtf̂X�φt�z�

for µ�z/n�. The additional requirement on f ∈ �mon takes into account the
ambiguity of labeling sine and cosine functions of the same frequency. It
also makes the resulting estimator µ̂ equivariant under cyclical shifts of the
data Y.

Figures 1a and 2a depict the data Y and the estimator µ̂�·/n� in the two
cases, respectively. Figures 1b and 2b show the estimator µ̂�·/n� and the true
function µ�·/n�. Figures 1a′ and 2a′ contain Y and µ̂�·/n�, too, but this time
the modulator f̂ was computed with σ̂ ≡ 0�9 and σ̂ ≡ 1�1, respectively. A
higher estimated variance leads to a smoother estimate. These plots show
clearly that estimating the variance is a crucial step. They also indicate the
possibility to pick σ̂ visually.

Figures 1c and 2c show what is going on in the Fourier domain. The first plot
shows the ideal greedy modulator g̃ and the ideal monotone modulator f̃ ∈ � .
The second plot gives the empirical counterparts ĝ+ and f̂. Apparently, the
functions g̃ and ĝ+ have little in common. On the other hand, the estimators
f̂ and f̃ are close to one another, as predicted by Theorem 2.2.

Note that a (hard) threshold estimator keeps all coefficients X�t� of X such
that ĝ�t� is above a certain level while replacing the remaining coefficients
with 0. In examples the authors looked at, this often led to peculiar estimators
using only very few low frequencies or including some high frequencies. For
cases 1 and 2, Figure 3 shows “oracle” (in a strong sense defined by the next
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Fig. 1a. Y and µ̂�·/n�.

Fig. 2a. Y and µ̂�·/n�.
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Fig. 1b. Estimator µ̂�·/n� �line� and true function µ�·/n� �broken line�.

Fig. 2b. Estimator µ̂�·/n� �line� and true function µ�·/n� �broken line�.
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Fig. 1a′. Y and µ̂�·/n� with σ̂ = 0�9 �top� and σ̂ = 1�1 �bottom�.
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Fig. 2a′. Y and µ̂�·/n� with σ̂ = 0�9 �top� and σ̂ = 1�1 �bottom�.
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Fig. 1c. Greedy and monotone modulators: g̃ and f̃ �top�! ĝ+ and f̂ �bottom�.
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Fig. 2c. Greedy and monotone modulators: g̃ and f̃ �top�! ĝ+ and f̂ �bottom�.
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Fig. 3. Oracle threshold estimator µ̃th�·/n� for Case 1 �top� and Case 2 �bottom�.
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Table 1

L� f̂ X�X� R̂� f̂ � r̂2
b �0�9� L� f̂ X� �� L��̃th� ��

Case 1 0.9317 0.0108 0.0801 0.0109 0.0083
Case 2 0.9170 0.0755 0.1441 0.0546 0.1013

display) threshold estimators µ̃th�·/n� 
= ∑
t∈T ave�φtξ̃th�φt, where ξ̃th�t� 
=

1��X�t�� ≥ cth	X�t� and

cth = cth�X�ξ� 
= arg min
c≥0

L
(
1��X� ≥ c	X�ξ)�

In case 1 the function µ is very smooth, thus leading to a sparse signal ξ. In
fact, the threshold fit is excellent. In case 2 the threshold fit seems useless.

Finally, we computed the bootstrap upper confidence bounds r̂2
b�0�9� for the

actual loss L�f̂X� ξ� as described in Section 3. The quantile Ĥ−1�0�9� was
estimated in 3000 Monte Carlo simulations. Table 1 contains the distance
L�X� f̂X�, the estimated risk R̂�f̂�, the bootstrap bound r̂2

b�0�9�, the actual
loss L�f̂X� ξ� as well as the loss L�ξ̃th� ξ�.

6. Proofs.

6.1. Auxiliary results. Our results utilize well-known techniques from em-
pirical process theory. Theorem 6.1 follows from standard symmetrization ar-
guments and Pisier’s (1983) version of the chaining lemma [see also Pollard
(1990), Sections 2 and 3]. Theorem 6.2 is a simplified and modified version of
Alexander’s (1987) general results [see also Pollard (1990), Theorem 10.6].

Let S = ∑n
i=1φi with independent stochastic processes φ1� φ2� � � � � φn on

an index set � . Examples for S are empirical processes and partial sum pro-
cesses; see also Pollard (1990). For technical reasons we suppose that all φi
have continuous paths with respect to some metric d on � such that �� � d�
is separable. Now define a random pseudo-distance ρ̂ on � via

ρ̂�s� t�2 
=
n∑
i=1

�φi�s� −φi�t��2�

Further let

ρ�s� t� 
= E�ρ̂�s� t�2�1/2�

For any pseudo-metric ν on � define the covering numbers

N�u�� � ν� 
= min
{
#�0
 �0 ⊂ � � inf

t0∈�0

ν�t0� t� ≤ u ∀ t ∈ �
}
�

Theorem 6.1. Suppose that S�t0� ≡ 0 for some t0 ∈ � . Then

E"S− ES"� ≤ CE

∫ D̂
0

√
logN�u�� � ρ̂�du�

where D̂ 
= supt∈� ρ̂�t� t0� and "x"� 
= supt∈� �x�t��.
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Theorem 6.2. Suppose that � = �n, φi = φn� i depend on n such that the
following conditions are satisfied as n → ∞:

E

n∑
i=1

"φi"2
� = O�1� and

E

n∑
i=1

1�"φi"2
� > u	 "φi"2

� = o�1� for all u > 0�

(6.1)

∫ ε�n�

0

√
logN�u�� � ρ̂�du →p 0 whenever ε�n� ↓ 0�(6.2)

Then

E"ρ̂2 − ρ2"� ×� = o�1� and N�u�� � ρ� = O�1� for all u > 0�

sup
s� t∈� 
ρ�s�t�≤α

∣∣�S− ES��s� − �S− ES��t�∣∣ →p 0 as n → ∞� α ↓ 0�

"S− ES"� = Op�1��
Moreover, let an
 � → R be arbitrary functions such that

∑
t∈� �an�t�� = O�1�.

Then

m

(
�

( ∑
t∈�

an�t��S− ES��t�
)
��

(
0�Var

[∑
t∈�

an�t�S�t�
]))

→ 0�

6.2. Proofs for Section 2. With the vector E 
= X−ξ of residuals we define
random functions

W1 
= E2 − σ2 and W2 
= ξE

on T. Then one can write

L�fX�ξ� −R�f� ξ� σ2� = ave��fE− �1 − f�ξ�2 − f2σ2 − �1 − f�2ξ2	
= ave�f2W1 + 2�f2 − f�W2��

Moreover, X2 = E2 + 2ξE+ ξ2 = W1 + 2W2 + σ2 + ξ2, and with

V 
= σ̂2 − σ2

one obtains

R̂C�f� −R�f� ξ� σ2�
= ave�f2σ̂2 + �1 − f�2�X2 − σ̂2� − f2σ2 − �1 − f�2ξ2�
= ave��f2 − 2f+ 1��W1 + 2W2� + �2f− 1�V��

R̂B�f� −R�f� ξ� σ2�
= ave

(�1 − f�2ξ2 + �1 − f�2�W1 + 2W2 −V�)+ − ave��1 − f�2ξ2 + f2V�
= λ�f� ave

(�f2 − 2f+ 1��W1 + 2W2� + �f2 − λ�f��1 − f�2�V)
�

where 0 ≤ λ�f� ≤ 1. Hence the following inequalities hold:
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Lemma 6.3.

sup
f∈�

∣∣R̂�f� −R�f� ξ� σ2�∣∣ ≤ 4 sup
g∈�

� ave�gW1�� + 8 sup
g∈�

� ave�gW2�� + �V��

sup
f∈�

∣∣L�fX�ξ� −R�f� ξ� σ2�∣∣ ≤ sup
g∈�

� ave�gW1�� + 4 sup
g∈�

� ave�gW2���

where � 
= �fg
 f�g ∈ � 	.

If � is the convex hull of a family � of (indicators of) subsets of T, which is
closed under intersection, then � = � . In fact, in that case one may replace
J�� � in Theorems 2.1 and 2.2 and Corollary 2.3 with J�� �.

Theorem 2.1 follows easily from Lemma 6.3 and the following result, which
is stated for potentially non-Gaussian error E.

Lemma 6.4. Let X = ξ + E, where E has independent components with
mean 0 and variance σ2. Then

E sup
g∈�

� ave�gW1�� ≤ CJ�� �
√

E ave�E4�
n

�

E sup
g∈�

� ave�gW2�� ≤ CJ�� �
√
σ2 ave�ξ2�

n
�

Proof. Elementary calculations show that the uniform covering numbers
of � satisfy

N�u�� � ≤ N�u/2�� �2 for all u > 0�

Thus J�� � ≤ 4J�� �, and � may be replaced with � . Now the asserted
inequalities forW1,W2 are direct consequences of Theorem 6.1. For let � 
= �
and

φi�g� 
=
{
n−1E�i�2g�i�� for j = 1�
n−1ξ�i�E�i�g�i�� for j = 2�

Then supg∈� � ave�gWj�� = "S− ES"� .
For j = 1 and arbitrary g�h ∈ � ,

ρ̂�g�h�2 = n−1 ave�E4�g − h�2�
= n−1 ave�E4�dQ̂�g�h�2

≤ n−1 ave�E4�
for some (random) probability measure Q̂ on T. Thus D̂ ≤ n−1/2 ave�E4�1/2

and

N�u�� � ρ̂� ≤ N�n1/2 ave�E4�−1/2u�� ��
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Hence∫ D̂
0

√
logN�u�� � ρ̂�du ≤

∫ n−1/2 ave�E4�1/2

0

√
logN�n1/2 ave�E4�−1/2u�� �du

= n−1/2 ave�E4�1/2
∫ 1

0

√
logN�u�� �du�

and E�ave�E4�1/2� ≤ �E ave�E4��1/2.
For j = 2 the same arguments yield

∫ D̂
0

√
logN�u�� � ρ̂�du ≤ n−1/2 ave�ξ2E2�1/2

∫ 1

0

√
logN�u�� �du�

and E�ave�ξ2E2�1/2� ≤ σ ave�ξ2�1/2. ✷

Proof of Theorem 2.2. Let w1 
= X2, w2 
= σ2 +ξ2, g1 
= ĝ and g2 
= g̃.
Then f̂ = f1 and f̃ = f2, where generally

fi 
= arg min
f∈�

ave�wi�f− gi�2��

Let �i� j� be either �1�2� or �2�1�. By the convexity of � ,

∂

∂t

∣∣∣∣
t=0

ave
(
wi�fi + t�fj − fi� − gi�2)

= 2 ave�wi�fi − gi��fj − fi�� ≥ 0�

(6.3)

Hence

∂

∂t

∣∣∣∣
t=1

ave
(
wi�fi + t�fj − fi� − gi�2)

= 2 ave
(
wi�fi − gi��fj − fi�

) + 2 ave
(
wi�fj − fi�2)

≥ 2 ave
(
wi�fj − fi�2)�

On the other hand,

∂

∂t

∣∣∣∣
t=1

ave
(
wi�fi + t�fj − fi� − gi�2)

= − ∂

∂t

∣∣∣∣
t=0

ave
(
wi�fj + t�fi − fj� − gi�2)

= −2 ave
(
wi�fj − gi��fi − fj�)

≤ 2 ave
(�wj�fj − gj� −wi�fj − gi���fi − fj�)�

where the latter inequality follows from (6.3) with i and j interchanged. Thus
we end up with the inequality

ave�wi�fj − fi�2� ≤ ave
(�wj�fj − gj� −wi�fj − gi���fi − fj�)�
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Elementary algebra yields

wj�fj − gj� −wi�fj − gi� =
{

�f̂− 1��W1 + 2W2� +V� if �i� j� = �1�2��
�1 − f̃��W1 + 2W2� −V� if �i� j� = �2�1��

Consequently, Lemma 6.4 yields

E ave
(
X2�f̂− f̃�2) ≤ 2E sup

f∈�

∣∣ave
(�1 − f̃��W1 + 2W2�f)∣∣ + E�V�

≤ CJ�� �n−1/2(σ2 + σ ave��1 − f̃�2ξ2�1/2) + E�V�
≤ CJ�� �n−1/2σ2 + E�V��

E ave
(�σ2 + ξ2��f̂− f̃�2) ≤ 4E sup

g∈�

∣∣ave��W1 + 2W2�g�∣∣ + E�V�

≤ CJ�� �n−1/2(σ2 + σ ave�ξ2�1/2) + E�V��

In the first case we applied Lemma 6.4 with �1 − f̃�ξ in place of ξ and utilized
the fact that ave��1 − f̃�2ξ2� ≤ R�f̃� ξ� σ2� ≤ R�1� ξ� σ2� = σ2. ✷

6.3. Proofs for Section 3. Throughout this subsection asymptotic state-
ments are meant as n → ∞ uniformly in ave�ξ2

n� ≤ c, where c� σ2 > 0 are
arbitrary and fixed.

Proof of Theorem 3.1. First, it is shown that

d̂ = d̂�f̃� + op�1��(6.4)

where d̂�f� 
= n1/2�L�fX�ξ� − R̂C�f��, that is, d̂ = d̂�f̂�. The formulas of
Section 6.2 for L�fX�ξ� and R̂C�f� yield

d̂�f� = n1/2 ave
(�2f− 1�W1 + 2�f− 1�W2 + �1 − 2f�V)

�

In particular,

d̂�f� − d̂�f̃� = 2n1/2 ave
(�f− f̃��W1 +W2 −V�)�

It follows from the proof of Theorem 2.2 that

ave
(�σ2 + ξ2��f̂− f̃�2) = op�1��(6.5)

Hence �n1/2Vave�f̂− f̃�� = op�1�, and it suffices to show that

n1/2 ave��f̂− f̃�Wj� = op�1� for j = 1�2�(6.6)

For j = 1 one can apply Theorem 6.2 with � = � and φi�f� 
=
n−1/2f�i�E�i�2 similarly as in the proof of Theorem 2.1. The assumptions of
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Theorem 6.2 are satisfied, because

E

n∑
i=1

"φi"2
� = E ave�E4� = 3σ4�

E

n∑
i=1

1
{"φi"2

� > u
} "φi"2

� = E ave�1�E4 > nu	E4� = o�1� ∀ u > 0�

∫ ε�n�

0

√
logN�u�� � ρ̂�du ≤ ave�E4�1/2

∫ ε�n�/ave�E4�1/2

0

√
N�u�� �du

→p 0 whenever ε�n� ↓ 0�

Hence assertion (6.6) for j = 1 follows from the fact that

ρ�f̂� f̃�2 = E ave��f− f̃�2E4�∣∣
f=f̂ = 3σ4 ave��f̂− f̃�2� = op�1��

according to (6.5).
As for j = 2, f $→ n1/2 ave�fW2� is a centered Gaussian process with contin-

uous paths with respect to ρ�f�g� = σ ave�ξ2�f− g�2�1/2 = Var�n1/2 ave��f−
g�W2�	1/2. Hence Pisier’s (1983) maximal inequality yields

E sup
f�g∈� 
ρ�f�g�≤ε�n�

∣∣n1/2 ave��f− g�W2�∣∣ →p 0 whenever ε�n� ↓ 0�

and (6.6) follows from ρ�f̂� f̃� = op�1�, again a consequence of (6.5).
Because of the expansion (6.4) it suffices to show that the distribution of

d̂�f̃� = n1/2 ave��2f̃− 1�W1 + 2�f̃− 1�W2 + �1 − 2f̃�V�
is asymptotically normal with mean 0 and variance τ2. By assumption (3.2),
�W1�W2� and V are independent with m�� �n1/2V��� �0� β2σ4�� → 0. Fur-
ther, Lindeberg’s central limit theorem entails

m
(
�

(
n1/2 ave��2f̃− 1�W1�)�� (

0�2σ4 ave��2f̃− 1�2�)) → 0�

whereas

�
(
n1/2 ave��f̃− 1�W2�) = �

(
0� σ2 ave�ξ2�1 − f̃�2�)�

Thus it remains to show that n1/2 ave��2f̃−1�W1�� and n1/2 ave��f̃−1�W2� are
asymptotically independent. For that purpose we split T into the two subsets
T�1� 
= �ξ2 ≤ n1/2	 and T�2� 
= T \ T�1�. For any a ∈ RT let a�k��t� 
= 1�t ∈
T�k�	a�t�. Note that �W�1�

1 �W
�1�
2 � and �W�2�

1 �W
�2�
2 � are independent. In addition,

nE ave��2f̃− 1�W�2�
1 �2 ≤ 2σ4#T�2�/n ≤ 2σ4 ave�ξ2�/n1/2 = o�1��

while n1/2 ave��2f̃ − 1�W�1�
1 � and n1/2 ave��f̃ − 1�W�1�

2 � are asymptotically in-
dependent, according to the bivariate CLT. ✷
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Proof of Theorem 3.2. It follows from Theorem 3.1 and the proof of The-
orem 2.1 that

r̂2 = R̂C�f̂� +Op�n−1/2� = R�f̃� ξ� σ2� +Op�n−1/2�
and

L�f̂X� ξ� = R�f̃� ξ� σ2� +Op�n−1/2��
Consequently,

L�Ĉ� ξ� = �L�f̂X� ξ�1/2 + r̂�2 = 4R�f̃� ξ� σ2� +Op�n−1/2��

As for the consistency of τ̂2, we know already that σ̂2 = σ2 + op�1� and
ave��f̂− f̃�2� = op�1�. Thus the assertion follows from Theorem 2.1 via

ave��X2 − σ̂2��1 − f̂�2� = R̂C�f̂� − σ̂2 ave�f̂2�
= R�f̃� ξ� σ2� − σ2 ave�f̃2� + op�1�
= ave�ξ2�1 − f̃�2� + op�1��

Given the consistency of τ̂2, the fact that (3.4) implies the asymptotic level
α of Ĉ follows from standard arguments. It remains to show that (3.5) implies
(3.4). Suppose that the latter condition is violated. This is equivalent to

lim inf
n→∞ inf

ave�ξ2�≤c

(
ave��f̃− 1/2�2� + ave�ξ2�1 − f̃�2�) = 0�(6.7)

However,

R�f̃� ξ� σ2� ≥ σ2 ave�f̃2� ≥ σ2/4 − ave��f̃− 1/2�2�1/2�

while for f0 
= 1�f̃ ≥ 3/4	f̃ ∈ � ,

R�f̃� ξ� σ2� ≤ R�f0� ξ� σ
2�

= ave�ξ2�1 − f0�2� + σ2 ave�f2
0�

≤ 16 ave�ξ2�1 − f̃�2� + 9σ2 ave��f̃− 1/2�2��
These two inequalities are incompatible with (6.7). ✷

Proof of Theorem 3.3. It follows from the fact that σ̂2 = σ2 + op�1�
and Theorem 3.1, applied to � �X∗� σ̂2 ∗ �X� σ̂2� in place of � �X� σ̂2�, that
m�Ĥ�� �0� τ̂2�� = op�1�, where τ̂2 is defined as τ2 with �ξ̂� σ̂2� f̂� in place of
�ξ� σ2� f̃�. One easily checks that τ̂2 = τ2 + op�1� = Op�1�, whence

m�Ĥ�H� ≤ m�Ĥ�� �0� τ̂2�� +m�� �0� τ̂2��� �0� τ2��
+m�H�� �0� τ2�� = op�1��
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Now suppose that � has the special properties described in Theorem 3.3.
If σ̂2 > 0, then f̂ < 1, so that ξ̂ is well defined. Condition (3.6) follows from

arg min
g∈�0�1�T

R�g� ξ̂� σ̂2� = ξ̂2/�σ̂2 + ξ̂2� = f̂�

The special construction of ξ̂ entails that

ξ̂2 = ∑
c∈f̂�T�

1�f̂ = c	 ave�1�f̂ = c	�X2 − σ̂2��+/ave�1�f̂ = c	��

Consequently, the moment condition (3.7) follows from

ave�ξ̂2� = ∑
c∈f̂�T�

ave�1�f̂ = c	�X2 − σ̂2��+ ≤ ave�X2� = Op�1��

while (3.8) follows from

ave�ξ̂2�1 − f̂�2�
= ave�σ̂2f̂�1 − f̂��
= ave�σ2f̃�1 − f̃�� + op�1�
= ave�σ2f̃/�1 − f̃� �1 − f̃�2� + op�1�
= ∑
c∈f̃�T�

ave
[
1�f̃ = c	 ave�1�f̃ = c	ξ2�/ave�1�f̃ = c	� �1 − f̃�2] + op�1�

= ∑
c∈f̃�T�

ave�1�f̃ = c	ξ2�1 − f̃�2� + op�1�

= ave�ξ2�1 − f̃�2� + op�1�� ✷
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Wallstrasse 40
23560 Lübeck
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