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BREAKDOWN THEORY FOR BOOTSTRAP QUANTILES1

BY KESAR SINGH

Rutgers University

Ž .A general formula for computing the breakdown point in robustness
for the tth bootstrap quantile of a statistic T is obtained. The answern
depends on t and the breakdown point of T . Since the bootstrap quantilesn
are vital ingredients of bootstrap confidence intervals, the theory has
implications pertaining to robustness of bootstrap confidence intervals.
For certain L and M estimators, a robustification of bootstrap is sug-
gested via the notion of Winsorization.

Ž . Ž1. Introduction. Consider the 10% trimmed mean T 0.1 i.e., 5% trim-
.ming each side on a random sample of size n � 20. If there is one outlier in

the upper side, that is, X is extraordinarily large, T stays unaffected dueŽn. 0.1
to the trimming. Now, suppose a bootstrap sample of size 20 is drawn from
this sample. The outlier X could appear one time, two times or, in the mostŽn.
extreme case, 20 times in the bootstrap sample. Consider the resampling

Ž .distribution of the bootstrap trimmed mean T* 0.1 . If X appears only oneŽn.
Ž .time in the bootstrap sample, T* 0.1 is free of it. If it appears more than one

Ž .time, T* 0.1 will be influenced by the outlier. The chances for the event that
Ž .T* 0.1 is free of the outlier is

P Bin 20, 0.05 � 1 � p say ,Ž . Ž .Ž . 0

Ž .which is about 73.6%. This means that if X converged to ��, 100 1 � p %Žn. 0
Ž .of all the T* 0.1 will converge to �� as a consequence. In other words, the

� Ž .bootstrap quantiles Q of T* 0.1 , where t ranges from 0 to 1, will go to � fort
all t � p � 0.736. In the terminology of the celebrated concept of breakdown0

Ž . Ž .in robustness, T 0.1 has upper breakdown UB � 0.1, meaning that at least
Ž . Ž .10% i.e., 2 out of 20 of the data have to go to � in order to carry T 0.1 to �.

Asymptotically, though, this breakdown is 5%. The above reasoning takes us
to the following conclusions:

1. The UB for Q� is � 0.05 for t � p .t 0
2. The UB for Q� is � 0.1 for t � p .t 0

Thus the lower bootstrap quantiles are more robust than the upper ones in
terms of going to �. Of course a parallel reasoning can be given for the lower

Ž .breakdown LB .
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Ž .There is a miniscule, though positive, probability that T* 0.1 � X . As aŽn.�
consequence of that, SE*, that is, the bootstrap-based estimated standard

Ž . Ž .error, has UB � 1�n i.e., 0 as n � � and it remains so for all the
trimming proportions as well as for the sample median. A recent article by

Ž .Stromberg 1997 presents this phenomenon and some resampling-based
robust estimators of SE in a multivariate setting.

In this paper, we shall first present the foregoing discussion in the form of
a general theorem. Then we present a device to boost the breakdown of�
bootstrap quantiles as well as that of SE* while retaining the same asymp-
totic distribution for certain robust statistics. The device is simply to Win-
sorize the data, with a suitable proportion, prior to bootstrapping. Winsoriza-

1tion at a level 2� , for some 0 � � � , replaces upper 100�% data by the2
Ž .1 � � th sample quantile and the lower 100�% data by the � th sample
quantile. In modern statistics, Winsorization is usually cited in the context of

� Ž .	the S.E. of a trimmed mean see page 366 of Lehmann 1983 . In some cases,
Žtrimming the data prior to bootstrapping works as well see Remark 4 in

.Section 4 . Formal results on improved breakdown and unaltered asymptotics
are presented for trimmed type L-statistics, the sample median and M-

1� Ž . Ž .	estimators see Huber 1964 , 1981 with breakdown approximately . A2

version of scale-invariant M-estimators is also considered. We later remark
on the normalized and Studentized bootstrap statistics. The case of multivari-
ate estimators is also discussed briefly.

2. The breakdown formula. Let T be a statistic based on a randomn
sample of size n. Let b denote its UB, that is, nb is the smallest number of
observations that needs to go to �� in order to force T to go to ��. Here nbn
is an integer between 1 and n. It is assumed here that the minimum number

Ž .of outliers which cause UB i.e., T � � are either all in the upper side of then
sample or all in the lower side, but not some in the upper side and some in
the lower side. Of course, this is almost always the case, though counter-ex-
amples can be constructed. For t between 0 and 1, let Q� denote the ttht
quantile of the bootstrap distribution of T�, that is,n

Q� � min x : P T� � x � t .� 4Ž .t B n

The following theorem states a formula for b , the UB for Q�.t t

THEOREM 1. The UB b for Q� is the min p, with np as an integer betweent t
1 and n, such that

P Bin n , p � nb � 1 � tŽ .Ž .
Ž .b is the UB of T .n

� Ž Ž . .Let us fix a t and ponder the UB of Q . As b increases, P Bin n, p � nbt
decreases, when p is held fixed. This entails that it would take larger values

Ž .of p to make this binomial probability exceed 1 � t . Thus, for a fixed t,
higher UB of T means higher UB of Q�. Now, let us fix a statistic T withn t n
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UB � b and let t move upwardly toward 1. It will take smaller values of p to
Ž Ž . . �make P Bin n, p � nb exceed 1 � t. This means that UB of Q will de-t

crease as t moves outwardly toward 1. The conclusion thus is that it pays to
start out with a robust T at any level of t. Furthermore, given a T , it paysn n
to stay away from extreme quantiles, that is, t near 0 and 1, in choosing
Q�-based inferences, considering the lower breakdown LB of Q� also.t t

With the sample size n � 10, Table 1 contains the values for nb with thet
choices of nb as 2, 3, 5 and t as 0.5, 0.75, 0.9, 0.99. As the table displays, for a
fixed b, b decreases as t increases, and for a fixed t, b increases as bt t
increases. These phenomena perfectly agree with the above discussion.

PROOF OF THEOREM 1. In order to prevent the breakdown of a T�, then
corresponding bootstrap sample should have the number of upper outliers
less than nb. If Q� has to break down, it means that the proportion oft
nonbreakdown class of T� is less than t. This implies that b is equal to then t
min p, with np as an integer between 1 and n, such that

P Bin n , p � bn � t ;Ž .Ž .
this is equivalent to the statement of the theorem. Similar reasoning is given
when T goes to �� due to lower outliers. �n

When T is a scale statistic, like the S.D. and the interquartile range, then
UB can occur due to nb* upper outliers or nb** lower outliers. In such a case,

Ž .if b � min b*, b** and b* � b**, one appeals to the fact that b given byt
Theorem 1 is a monotonic function of b to make the theory work.

ŽAn asymptotic formula. Let us recall that b and b are UB uppert
.breakdown for T and its tth bootstrap quantile, respectively. For any fixedn

Ž .t in 0, 1 , the following expansion holds:

'z b 1 � b 1Ž .t
2.1 b � b � � O ,Ž . t ž /' nn

Ž .where � z � t. A notable feature in this expansion is that the lead term int
the right side is free from t. The second-order term is monotonically decreas-

Žing in t. Just the opposite will be found in the case of LB the lower
.breakdown .

TABLE 1
Ž .nbt

t 0.5 0.75 0.9 0.99
nb

2 2 1 1 1
3 3 2 2 1
5 5 4 3 2
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PROOF. To prove the expansion, one takes

1�2�1�2 �1p � b � n b 1 � b z � cnŽ . t

and obtains a Berry�Esseen type bound for the normal approximation of the
binomial c.d.f., uniform in c belonging to a fixed compact set. For all c and n

Ž Ž . .large enough, P Bin n, p � nb is less than t, and for all c small enough
and n large enough, this binomial probability is greater than t. The expan-
sion thus follows. �

3. Winsorizing prior to bootstrapping. In robust estimation, typically
the data values in the exterior have limited or no influence on the estimator.
Therefore, some of the exterior data can be altered in order to boost the
breakdown and hence the robustness of bootstrap quantiles. This can be done
while keeping the bootstrap distribution more or less the same. This robusti-
fication of bootstrap will be demonstrated in this section on certain robust L
and M estimators.

Let the order statistics of the original data be denoted by X , . . . , X . TheŽ1. Žn.
empirical and quantile process of the X-data is defined as follows:

F x � number of X � x �n, �� � x � �;Ž . Ž .n i

F�1 t � min x : F x � t , 0 � t � 1.� 4Ž . Ž .n n

1For some fixed � between 0 and , define the 2�-trimmed mean2

1 1�� �1L � F t dt .Ž .Hn n1 � 2� �

Ž .Thus in essence, one is trimming approximately 100�% data from each side
1and computing the mean on the rest. For some � between 0 and , let us2

define the Winsorization of the �-fraction of the X-data from each end. Let
� 	l � n� � largest integer less than or equal to n�. Let

X , if X � X ,
 Ž l�1. i Ž l .
� �X , if X � X ,X � Žn�l . i Žn�l�1.i �X , otherwise.i

The X� are the Winsorized data.i
Specifically for bootstrapping a trimmed mean L defined above, then

1proposal is to fix some � , � such that 0 � � � � � and resample from the2

X*-data instead of the X-data. In effect, this resampling is equivalent to
the following: let Y , Y , . . . , Y be random draws with replacement from1 2 n

Ž � 	.the original X-data. Define recall that l � n�

X , if Y � X ,
 Ž l�1. i Ž l .
� �X , if Y � X ,Y � Žn�l . i Žn�l�1.i �Y , otherwise.i
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� � �4It is easily seen that Y are random draws from X . Let us further definei i

1 1��� �1L � G t dt ,Ž .Hn n1 � 2� �

1 1���� �1L � H t dt ,Ž .Hn n1 � 2� �

Ž . Ž . � 4where G � and H � are the empirical c.d.f. of the bootstrap data Y andn n i
� �4Y , respectively.i

� Ž . �Let b and b denote the UB upper breakdown of the tth quantile of Lt t n
and L�� respectively, under the bootstrap distribution. Then one has then
following theorem.

Ž . � Ž . Ž� 	 . �THEOREM 2. a b � max ��, b , where �� � n� � 1 �n. Thus b � �.t t t
A similar result holds for the corresponding LB.

Ž . � ��b If � � � , the bootstrap probability of the event L � L goes to 0,n n
exponentially fast as n � �, a.s.

Ž .c Assume that F has a density, bounded below and above, in neighbor-
�1Ž . �1Ž .hoods of F � as well as F 1 � � . If � � �, one has

L� � L�� � O n�1 log nŽ .n n p

in bootstrap probability, a.s.

The proof of the theorem is deferred to the Appendix.
Ž� 	 . �The UB of L itself is � n � 1 �n. The UB of the tth quantile of L cann n

be as low as 1�n, for t near 1. Thus b� � � for all t is a genuine improve-t
� ��'Ž . Ž . Ž .ment in the robustness. Parts b and c essentially assert that n L � Ln n

� 0 in bootstrap probability. Thus, normalized L� and L�� will have then n
same limiting distribution. Hence, L�� can replace L� .n n

1The sample median is the limiting case of L defined above as � � andn 2

it is not covered by Theorem 2. However, the robustification by Winsorizing
prior to the bootstrap works just fine, as in the case of L . In the median casen

Ž .UB and LB both are n�2 when n is even, and n � 1 �2 when n is odd. Any
1Winsorizing factor � � is acceptable in theory for the median case. In2

1 1practice, though, � should be chosen well below , say less than or equal to .2 4

This theory for trimmed means extends, without requiring any additional
efforts, to the following class of scale functionals:

1�� 1�2�1 �1W � F t dt � F t dtŽ . Ž .H Hn n n
1�2 �

1�� �1 �1� F t � F 1 � t dt .Ž . Ž .H n n
1�2

The robustification device stays the same. For the scale functional interquar-
tile range,

3 1�1 �1IQR � F � F ,Ž . Ž .n n4 4
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1one could Winsorize at some level � � for the robustification purpose4

without affecting the asymptotics. In the foregoing discussion, one could use a
Ž . 1�� Ž .general weight w t such that H w t dt � 1 in the location case and�

1�� Ž .H w t dt � 0 in the scale case.�

Now, we turn to certain m-estimators; specifically, the class considered is
defined as follows: let g be a monotonically increasing function from � � �,

Ž . Ž . Ž .such that g �x � �g x . For a positive constant c, define g � asc
g �c , if x � �c,Ž .�g x , if �c � x � c,Ž .g x �Ž .c �g c , if x � c.Ž .
The m-estimator � is defined as the unique solution of the equationn

n

g X � � � 0.Ž .Ý c i n
1

The corresponding parameter � is a solution of
E g X � � � 0,Ž .F c

where F is the underlying population. The solution � of the above equation is
� Ž . 	assumed to be unique see Huber 1964 for details on m-estimation .

Elementary arguments show that
n
 � 1, when n is even,
2�b � UB of � �n n � 1

, when n is odd.� 2
1The same hold for LB and thus the breakdown of � is , in limit. However,n 2

for the reasons explained earlier, the breakdown of its bootstrap quantiles
can be as low as 1�n. Winsorization is proposed here, too, in order to raise
the breakdown of the corresponding Q�, the tth bootstrap quantile of � .t n

Let Y , . . . , Y be a bootstrap sample. For a positive d � c, let us define1 n

� � d , if Y � � � d ,
 n i n
� �� � d , if Y � � � d ,Y � n i ni �Y , otherwise.i

� �� � 4 � �4Let � and � be the m-estimators based on the samples Y and Y ,n n i i
respectively. We assume the following regularity conditions:

1. The function g has a bounded continuous derivative on the interval
� 	�c � 	 , c � 	 , for 	 � 0.

2. The c.d.f. F has a nonzero, bounded density near the points � � c and
� � c.

Ž . �THEOREM 3. a If b and b denote the UB for the tth bootstrap quantilest t
of � � and � ��, respectively, thenn n

b� � max b , b ,Ž .t t
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� 1where b is the UB of � and b is given by Theorem 1. Thus b � . A similarn t t 2

result holds for LB.
Ž . � � ��4b The bootstrap probability of � � � decays exponentially fast ifn n

d � c, a.s.
Ž .c In the case c � d, a shrinkage occurs which causes inconsistency.

ŽAssume in addition that the population is symmetric. Let 
 � F � �1
. Ž . � Ž .	 Ž . ��c Ž . Ž .c g � �c � 1 � F � � c g � c and 
 � H g � x dF x . Then2 ��c

� �� � � � � � � � 
 � o 1Ž . Ž .Ž .n n n n p

Ž . Ž . Ž . Žin bootstrap probability a.s. , where 
 � 
 � 
 � 
 . If F � � c � 1 � F �2 1 2
. Ž . Ž .� c � � and g x � x, then 
 � 1 � �� 1 � � , which is approximately

equal to 1 if � is very small.

The proofs are in the Appendix.
We consider now the scale-invariant version of the m-estimator, when the

Ž .scale is estimated separately. See Carroll 1978 for asymptotics on such
Ž .m-estimators. Let W be a robust scale functional with UB � � � � n satis-n

Ž .fying 1 � n� � n�2 � 1. Consider the solution � of the equationn

n X � �i n
3.1 g � 0.Ž . Ý c ž /Wni�1

Clearly � is scale invariant if W has proper invariance. We impose a fairlyn n
nonrestrictive condition on W :n

Wn
3.2 � a constant,Ž .

Rn

� 4where R denotes the range of the data X .n i
Ž . Ž .Under condition 3.2 , we show now that the UB of � , defined by 3.1 , is �.n

Let us write � � W � where � is the solution ofn n n n

n Xi
3.3 g � � � 0.Ž . Ý c nž /Wni�1

Ž . Ž .Under condition 3.2 , the solution � of 3.3 stays bounded away from 0, inn
the positive side of the real line, as the upper n� data tend to ��. Conse-
quently, � � W � moves towards ��. One can argue easily that n� is then n n
minimum number of data that can move � to ��. Thus the UB of � is �n n
and Theorem 1 is applicable with T � � and b � �. All the scale functionalsn n
of the form

W � F�1 t dB tŽ . Ž .Hn n

1 Ž . Ž .with H dB t � 0 satisfy condition 3.2 . So does the popular scale functional0

� �W � med X � M ,� 4n i n
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where M is the median of the original data. This W has limiting break-n n
1down . This particular choice of the scale functional is one of the most2

suitable choices for our purpose.
It should be mentioned here that while studying the LB of � defined byn

Ž .3.1 , one has to consider the minimum number of lower data that must go to
�� in order to send W to ��.n

The recommended Winsorization in the case of scale-invariant m-estima-
tors is described as follows:


 Y � �i n
Y , if � d ,i Wn

Y � �i n� �� � W d , if � d ,Y � n ni Wn

Y � �i n
� � W d , if � �d,n n� Wn

� Ž .	where d � c see the definition of the function g � . In order to obtain anc
Ž � �� .exponential bound for P � � � , one would need a large deviation-typen n

bound on the scale functional W . Such a bound typically holds for robustn
scale functionals.

The improved UB for the Q� of the scale-invariant m-estimator � is givent n
by

max � , b .Ž .t

Here b denotes the UB of Q� of � prior to the Winsorization, as given byt t n
Theorem 1. The inconsistency in the case c � d is quite general and hence it

Ž .is recommended that d is kept greater than c perhaps d � 1.5c .

4. Miscellaneous remarks. Let us recall that Q� denotes the tth boot-t
Ž . Ž .strap quantile of a statistic T , UB � and LB � are the upper and lowern

breakdown of the statistics within parentheses.

REMARK 1. Some implications. Consider the one-sided, percentile-method
� � . Ž � 	based, confidence intervals of the type Q , � or ��, Q . A breakdown oft t

Q� in either direction could be regarded as the breakdown of such ant
interval. Thus, one could utilize Theorem 1 to compute the breakdown of a

� � 1� 	one-sided C.I. Consider now an interval of the type Q , Q , 0 � � � .� 1�� 2

Lower breakdown of Q� or the upper breakdown of Q� could render this� 1��

two-sided interval useless. Thus the breakdown of the latter interval is given
by
4.1 min LB Q� , UB Q� .� 4Ž . Ž . Ž .� 1��

A robust measure of scale of the sampling distribution of T , could be definedn
� � 1� 	 Ž .as Q � Q , 0 � � � . One could similarly argue that 4.1 can be1�� � 2

regarded as a breakdown of this scale statistics, too. The most commonly used
scale statistic is

2�4.2 E T � T ,Ž . Ž .B n n
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� Ž .where T is the statistic T , computed on a bootstrap sample. Since 4.2n n
involves the most extreme quantile Q�, its breakdown is usually 1�n, even ift

1 �� Ž .	that of T is see Stromberg 1997 . If the breakdown of Q , for all t andn t2
Ž .that of T is greater than or equal to �, then the same holds for 4.2 . Thusn

the Winsorization techniques of the earlier section can be called upon to raise
Ž .the breakdown of 4.2 , while retaining its consistency.

' ŽREMARK 2. Normalized statistics. Consider the normalized statistic n Tn
�'. Ž .� T . The corresponding bootstrap statistic is n T � T . The relatedF n n

�' Ž .bootstrap quantiles are n Q � T . We observe here thatt n

� �'4.3 UB n Q � T � min UB Q , LB T� 4Ž . Ž . Ž . Ž .Ž .t n t n

Ž .and the analogous inequality holds in the LB case. The observation 4.3 is
based on the reasoning that even if Q� is dragged out to �, Q� � T mayt t n

Ž .refuse to follow suit i.e., when T itself goes to � .n

REMARK 3. Studentized statistics. A Studentized statistic is of the form� �
Ž .t � T � T � SE, where SE is the estimated standard error of T , obtainedn n F n

using the bootstrap or otherwise. The bootstrap statistic which corresponds to� � �
� �Ž .t is clearly t � T � T � SE*, where SE* is precisely SE computed on an n n n

bootstrap sample. Following the same reasoning as in the normalized case
Ž . �i.e., Remark 2 , one can deduce that the UB of the sth quantile of t isn

� � Ž .4greater than or equal to min UB of the sth quantile of T , LB T . It isn n�
assumed here that upper or lower outliers do not cause SE to approach 0.�
Other possible reasons for SE to go to 0 are excluded from consideration.
However, this conclusion lacks substance, at least in the case of studentized

' Ž .mean, that is, t � n X �  �s . To carry this t to ��, one would need ton n n
drive 100% of the data toward ��. Thus, the sth quantile of t� has UB givenn
by

min p : B n , p � n � 1 � s.� 4Ž .
1The resulting number is generally greater than . A much more relevant2

breakdown of t occurs when just one data value goes to �. Then, then
t-statistics approximately equal �1, which is entirely independent of the
data at hand! It is not clear what the consequence of this odd phenomenon is
on the quantiles of t�. It should be a worthwhile project to study then
breakdown of bootstrap based tests along the lines of existing breakdown-re-

� Ž .lated literature for test see He, Simpson and Portnoy 1990 , Ylvisacker
Ž .	1977 .

REMARK 4. Trimming prior to bootstrapping. In the case of the one-dimen-
sional sample median, another way to robustify bootstrap would be to trim

1symmetrically prior to resampling, instead of Winsorizing. Fix a 0 � � � .2
� 	Trim off � n observation from each end and then resample from the

� 	remaining n � 2 n� data values, in order to learn about the sampling
distribution of the sample median. It turns out that one needs to lower the
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bootstrap sample size to
24.4 m � n 1 � 2�Ž . Ž .

Ž .in order to preserve consistency. To see 4.4 , consider the limiting distribu-
� 	tion function of the empirical c.d.f. of the remaining n � 2 n� data, after the

trimming. The median of this truncated limiting population is the same as
the median M of the original population; however, the population density at

Ž .M is inflated by a factor 1� 1 � 2� . The asymptotic variance of the sample
� 2Ž .	�1median is given by 4nf M . Thus, the bootstrap sample size m should

Ž .be changed to 4.4 , in order to nullify the change in the population density at
M. In the author’s opinion, Winsorizing is preferable.

� 	The resulting UB of the tth bootstrap quantile is equal to n� �n �
Ž � 	. Ž .b n � 2n� where b � b n is given by Theorem 1.t t t

REMARK 5. Multivariate estimators. Let T be p-variate estimator, p � 2.n
Let b be a fraction such that at least bn observations need to go to � in order

� �to cause the breakdown, T � �. In the cloud of all possible bootstrap-vec-n
� Ž . �tor statistics T , let us define a tth centrality-quantile CQ as a vector Tn t n

such that 100t% of the T� vectors are more central than the T� undern n
consideration. To measure centrality, one could use Tukey’s depth or some

� Ž .	other depth see Liu and Singh 1993 . Now, the same arguments which led
to Theorem 1 imply the following:

the breakdown of CQ � min p : P Bin n , p � nb � 1 � t .� 4Ž .Ž .t

� � �It should be pointed out here that as T � �, its centrality tends toward itsn
minimum value, and hence it becomes more and more of an outwardly
extreme CQ . The Winsorizing idea, discussed in Section 3, for robustizingt
the bootstrap in the case of m-estimators, extends in a straightforward
manner for multivariate m-estimators.

APPENDIX

Ž .PROOF OF THEOREM 2 Part a . If the number of outliers present in the
� 	upper side is less than or equal to n� , then the bootstrap statistic stays

� 	untouched by these outliers. If this number goes beyond n� , then suddenly
Ž .all the upper outliers become effective. The statement in a is based on this

logic.
Ž . ��Part b . Here, we are assuming � � � . In order for L to be differentn

from L� , one of the following must occur:n
�1 � 	A1 G � � X , l � n� ,Ž . Ž .n Ž l�1.

A2 G�1 1 � � � X .Ž . Ž .n Žn�l .

� 4 � 4 � �4Let us recall that F , G , H are the empirical c.d.f. of X , Y and Y ,n n n i i i
� �4respectively, and Y are the Winsorized bootstrap data as prescribed ini

�1Ž . �1Ž .Section 3. Because if A and A do not hold then G t � H t for all1 2 n n
� � t � 1 � � ; which means L� � L��.n n
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Consider A1:

G�1 � � X ,Ž .n Ž l�1.

� � � G X .Ž .n Ž l�1.

The bootstrap mean of this right-hand side equals

1
F X � � � .Ž .n Ž l�1. n

Thus A1 is a subset of

1
� �sup G x � F x � � � � � ,Ž . Ž .n n nx

which is a large deviation-type event and it is well known that its probability
goes to 0, exponentially. One could deduce it from the famous DKW inequal-

� Ž . Ž .	ity see Dvoretzky, Kiefer and Wolfowitz 1956 and Massart 1990 . The
DKW inequality states that if � , � , . . . , � are i.i.d. observations from a1 2 n

Ž .population with c.d.f. � and � � is the empirical c.d.f., then for any d � 0,n

2' � �P n sup � x � � x � d � 2 exp �2d .Ž . Ž . Ž .nž /
x

A similar result is proved for A2.
Ž .Part c . Here, we have � � �. Let us define

� � sup t : H�1 t � G�1 t .Ž . Ž .� 4n n n

The result in this segment of the theorem hinges on the following two claims:

1�2�1�2A3 P � � � � cn log n � 0Ž . Ž .Ž .B n

for c large enough, a.s.

Ž . � �1�2Ž .1�2 	A4 With I � � , � � cn log n ,n

1�2�1 �1 �1�2� �P sup G t � H t � c�n log n � 0,Ž . Ž . Ž .B n nž /
tIn

a.s. for some c� depending upon c.
� 	Similar results are derived around the upper end of the interval � , 1 � � .

From these results, it is concluded that

1�� �1 �1 �1� �P G t � H t dt � cn log n � 0Ž . Ž .HB n n½ 5
�
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a.s. for some c large enough and thus the theorem follows. It remains to
establish A3 and A4:

1�2�1�2� � � � cn log nŽ .n

1�2 1�2�1 �1�2 �1 �1�2� H � � cn log n � G � � cn log nŽ . Ž .Ž . Ž .n n

1�2�1 �1�2� H � � cn log n � X ,Ž .Ž .n Ž l�1.A3Ž .
� 	 � 	l � n� � n�

1�2�1�2� � � cn log n � H X � G X ,Ž . Ž . Ž .n Ž l�1. n Ž l�1.

Ž .the bootstrap mean of which F X � � � 1�n. Thus, the event in A3 is an Ž l�1.
subset of

1�2�1�2� �sup G x � F x � cn log n ;Ž . Ž . Ž .n n

on which DKW can be applied to derive the desired conclusion.

Ž .A4 In a neighborhood of � , with the bootstrap probability going to 1
exponentially,

H�1 t � G�1 t .Ž . Ž .n n

As a consequence,
1�2�1 �1 �1 �1�2 �1� �sup G t � H t � H � � cn log n � G � .Ž . Ž . Ž . Ž .Ž .n n n n

In

Also,
1�2 1�2�1 �1�2 �1 �1�2H � � cn log n � max X , G � � cn log n .Ž . Ž .Ž . Ž .½ 5n Ž l�1. n

Thus,

� �1 �1 �sup G t � H tŽ . Ž .n n
In

1�2�1 �1 �1�2 �1� � � �� X � G � � G � � cn log n � G �Ž . Ž . Ž .Ž .Ž l�1. n n n

� �1 � � �1 �1 �� X � G � � G � � F �Ž . Ž . Ž .Ž l�1. n n n

1�2 1�2�1 �1�2 �1 �1�2� �� G � � cn log n � F � � cn log nŽ . Ž .Ž . Ž .n n

1�2�1 �1�2 �1� �� F � � cn log n � F � .Ž . Ž .Ž .n n

The last term above is further written as

� �1 �1 �F � � F �Ž . Ž .n

1�2 1�2�1 �1�2 �1 �1�2� �� F � � cn log n � F � � cn log nŽ . Ž .Ž . Ž .n

1�2�1 �1 �1�2� �� F � � F � � cn log n .Ž . Ž .Ž .
�1Ž . �1Ž . �1Ž . �1Ž .Now, everything above is in terms of G � � F � , F � � F � andn n n

�1Ž .F � . A standard set-inequality argument in conjunction with the DKW
inequality is applied to finish off this proof. The details are omitted. �
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Ž .PROOF OF THEOREM 3 Part a . Until � itself breaks down, all the outliersn
are totally ineffective, due to the Winsorization at � � c. However, as soon asn
� � �, all the upper outliers become effective and then the formula inn

� Ž .Theorem 1 for b applies. Thus, one has b � max b , b . A similar logict t t
applies in the lower case.

Ž . � 4Part b . Here, the bootstrap data Y are Winsorized at d � c. Thei
� �4 � ��Winsorized data are denoted by Y . We begin by noting that � � � ifi n n

� � � c is contained in � � d.n n

As a consequence,

� � �� 4 � � 4 � � 4� � � � � � c � � � d � � � c � � � dn n n n n n

� � �� � � � � d � c � 0 .� 4n n

This is a large deviation event in the bootstrap probability, in terms of � � asn
an estimator of � . This can be converted into a large deviation event in termsn
of a sample mean, with bounded summands, as follows: for a � � 0,

n
�� 4� � � � � � g Y � � � � � 0 .Ž .Ýn n c i n½ 5

1

Ž .Let us look at the bootstrap mean of the summand g Y � � � � . Clearly,c i n

n1
E g Y � � � � � g X � � � � � 0.Ž . Ž .ÝB c 1 n c i nn 1

Ž .Since � � � , a.s., E g Y � � � � � �� � � 0 for all large n, a.s. Then B c 1 n
Ž .random variables g Y � � � � are uniformly bounded. Thus it takes ac i n

Ž � .standard asymptotic bound to conclude that P � � � � � dwindles expo-B n n
Ž � .nentially fast. One can treat P � � � � � similarly.B n n

Ž . �Part c . Here, we take c � d. Consider the case when � � � . The othern n
� � �4 � 4case, � � � , is handled similarly. When Y replace Y , the total changen n i i

�1 Ž � .that occurs in n Ý g Y � � isc i n

�F � � c g � �c � � � � � o� 1 � 
 � � � � � o� 1Ž . Ž . Ž . Ž . Ž . Ž .n n p 1 n n p

Ž � .o refers to bootstrap probability . To counter this change, so that thep
average remains 0, one has to move � � upward, in the direction of � . By then n
time � � is taken all the way to � , one has already exceeded the neededn n
correction. This explains the shrinkage phenomenon.

Let us attempt to measure this shrinkage. Suppose, � � is moved up by ann
Ž � . �1 Ž � � .amount � � � � � . Then, n Ý g Y � � moves down by the amountn n n c i n

Ž .using the assumed regularity conditions

��c � �F � � c g � �c � g � dF � o 1 � � 
 � 
 � o 1 � .Ž . Ž . Ž . Ž .H p n 1 2 p n
��c

Thus the balance occurs when
� � �
 � 
 � o � � 
 � o 1 � � � .Ž . Ž .1 2 p n 1 p n n
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Ž �� . Ž � . Ž .Ž � .If � � � � A � � � , then � � 1 � A � � � . Thus the balancingn n n n n n n n n
� Ž .equation becomes, with A � 
 � o 1 ,n p


 � 
 1 � 
 � � � � � 
 � � � � .Ž . Ž . Ž . Ž .1 2 n n 1 n n

Ž � .Cancelling � � � from both sides, one hasn n

1 � 
 � 
 � 
 � 
Ž . Ž .1 1 2

or

 
1 2


 � 1 � � .

 � 
 
 � 
1 2 1 2

Ž . Ž . Ž .If F � � c � 1 � F � � c � � and g x � x, one has 
 � � and 
 � 1 �1 2
2� . Therefore,

1 � 2� �

 � � 1 � . �

1 � � 1 � �
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