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BARTLETT IDENTITIES AND LARGE DEVIATIONS IN
LIKELIHOOD THEORY 1

By Per Aslak Mykland

University of Chicago

The connection between large and small deviation results for the
signed square root statistic R is studied, both for likelihoods and for likeli-
hood-like criterion functions. We show that if p − 1 Barlett identities are
satisfied to first order, but the pth identity is violated to this order, then
cumq�R� = O�n−q/2� for 3 ≤ q < p, whereas cump�R� = κpn

−�p−2�/2 +
O�n−p/2�. We also show that the large deviation behavior of R is deter-
mined by the values of p and κp. The latter result is also valid for more
general statistics. Affine (additive and/or multiplicative) correction to R
and R2 are special cases corresponding to p = 3 and 4. The cumulant be-
havior of R gives a way of characterizing the extent to which R-statistics
derived from criterion functions other than log likelihoods can be expected
to behave like ones derived from true log likelihoods, by looking at the num-
ber of Bartlett identities that are satisfied. Empirical and nonparametric
survival analysis type likelihoods are analyzed from this perspective via
the device of “dual criterion functions.”

1. Introduction. What does it take for a criterion function to resemble
a likelihood? This is gradually becoming an important question with the pro-
liferation of approximate likelihoods. By this we mean criterion functions l
for which Eθ0

exp�l�θ� − l�θ0�� is approximately 1, but not exactly so. For this
purpose, ordinary, partial [Cox (1975), Wong (1986)], projective [McLeish and
Small (1992)] and dual [Mykland (1995)] likelihoods are exact, whereas the
following are approximate:

1. Quasi-likelihood [Wedderburn (1974), Godambe and Heyde (1987); see also
McCullagh and Nelder (1989); cf. the end of Section 3];

2. Empirical likelihood [Owen (1988), exact for means and estimating equa-
tions; cf. Section 4];

3. Nonparametric point process likelihood [Jacod (1975); see also Andersen,
Borgan, Gill and Keiding (1993); cf. Section 4];

4. Sieve likelihood [Wong and Severini (1991)] and
5. Bootstrap likelihood [Davison, Hinkley and Worton (1992)].
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This is in no way an exhaustive list; one could include, for example, pro-
file likelihoods with various adjustments, such as those of Barndorff-Nielsen
(1983), Cox and Reid (1987) and McCullagh and Tibshirani (1990).

There are, obviously, several aspects to this question. We shall in the follow-
ing be concerned with accuracy of asymptotic approximations and specifically
with the likelihood ratio statistic R2 and its signed square root R. Other
questions that need to be asked include efficiency and what is often called
inferential correctness, but we shall not discuss these issues here.

The accuracy question is a very important one. The approximation proper-
ties ofR andR2, either taken “raw” or corrected in ways to be discussed below,
are usually superior to those of most other statistics on offer. The normal and
χ2 approximations are generally excellent in small samples as most simula-
tion studies will confirm, which is not to say that counter-examples cannot be
found.

A major question is then what large sample properties, if any, are there
that attach to R and R2 and that can possibly predict their nice behavior
in small samples. One approach to this issue is to study Edgeworth expan-
sion properties of the mean and variance corrected R and R2 [Lawley (1956),
Barndorff-Nielsen and Cox (1979, 1984), McCullagh (1987)]. Then R can be
adjusted to �R−E�R��/sd�R�, and R2 to R2 ×d/E�R2�, where d is the num-
ber of degrees of freedom. The latter is the famous Bartlett correction. Such
correctability has also been studied for empirical likelihood by DiCiccio and
Romano (1989) and DiCiccio, Hall and Romano (1991). These corrections to R
and R2 are often referred to as “affine” corrections, as the new statistic is an
affine transformation of the original one.

Affine correctability, however, is by no means the whole story, as witnessed
by the substantial body of work on large deviations; see, in particular,
Barndorff-Nielsen and Wood (1998), Jensen (1992, 1995, 1997) and Skovgaard
(1990, 1996). Starting with Barndorff-Nielsen (1986), this approach also yields
types of correction other than the affine ones, such as in the R∗ statistic.

We shall show in this paper that these two angles of research can be unified,
at least for smooth families. The connection between small and large deviation
expansions is, at least heuristically, clear-cut. They both rely on cumulants,
though the cumulants show up in terms of different order in the two types of
expansion. For an example of a rigorous study concerning this connection, see
Robinson, Höglund, Holst and Quine (1990).

Our angle on this is to show a result (in Section 2) describing how the
intermediate deviation behavior of the density of a statistic is controlled by
the asymptotic behavior of its cumulants. From this, we shall use large de-
viation properties of R to calculate the first-order structure of cump�R�, and
we shall see that this yields a remarkable property which generalizes affine
correctability.

Our results are then used (in Section 3) to assess how close a criterion
function is to a likelihood. We shall see that this relates to the number of
Bartlett identities satisfied to first order. As a main application, we shall an-
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alyze empirical and survival analysis-type likelihoods through what we call
dual criterion functions (Section 4).

2. Small and large deviations. An important folk theorem in statistics
is that standard behavior of an asymptotically normal statistic Tn is, for q ≥ 3,

�2�1� cumq�Tn� = n−�q−2�/2κq +O�n−q/2��
In the case of statistics that are functions of means of i.i.d. random variables,
conditions for this to hold are set out in Theorem 2.1, page 53, of Hall (1992).
This asymptotic behavior, however, is valid in considerably greater generality,
as discussed in Chapters 2.3 and 2.4 of Hall (1992). The result (2.1) is crucial to
the behavior of Edgeworth expansions of asymptotically normal statistics, see,
in particular, Wallace (1958), Bhattacharya and Ghosh (1978) and Hall (1992).

What is special about the small deviation behavior of R and R2 is that, for
R, κ3 and κ4 are zero. This is what leads the null distribution of the affinely
corrected statistics to be N�0�1� +O�n−3/2� and χ2 +O�n−2�, respectively, in
the sense of Edgeworth and related expansions; see, for example, Chapter 7
of McCullagh (1987). Affine correction, however, cannot take you any further
than this; in general, the O�n−3/2� term in the Edgeworth expansion for R,
even when affinely corrected, does not vanish. This is because the O�n−3/2�
term in the expansion for cum3�R� does not vanish, as we shall see at the end
of this section.

What we shall see in the following is that R satisfies

�2�2� κq = 0 for all q ≥ 3�

In other words, affine correctability is only a special case, relating to cumu-
lants number 3 and 4, of a property affecting all cumulants. Also, since the
O�n−q/2� term in the expansion (2.1) does not generally vanish for theR statis-
tic (see the end of this section) (2.2) would seem to be the main asymptotic
property governing the accuracy behavior of R.

Why is this important? After all, in an Edgeworth expansion, the O�n−3/2�
term for the third cumulant is as important as κ5, and more important than κ6.

What we shall show (Theorem 1) is that for largeish deviations, this pic-
ture is different. In such a setup, the asymptotic behavior of the density of a
statistic Tn is characterized by the first κq that is nonzero. The bigger this
q is, the better off one is approximation-wise. The fact that, for R, q = +∞,
may go some way towards explaining its nice small sample properties.

The theory hinges on the saddlepoint approximation. Under a variety of
regularity conditions, one can show that for an asymptotically normal statistic
Tn with density fn, one can write

�2�3� fn�r� =
1

�2πK′′
n�τ̂n��1/2

exp
(
Kn�τ̂n� − τ̂nK′

n�τ̂n�
)�1 + o�1���

where K′
n�τ̂n� = r. Here, Kn is the cumulant generating function for Tn,

or an approximation to this function. The approximation (2.3) is often valid
uniformly either for all r, or in a large deviation neighborhood rε
−cnα� cnα�.
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In the statistics literature, such approximations go back to Daniels (1954).
An important paper is Chaganty and Sethuraman (1985), where conditions
are found for the approximation to hold for a general statistic (and not just a
mean). Another way to proceed for general statistics is to adapt the “smooth
function of means” model; see in particular Chapter 4 of Jensen (1995). This
approach has also been very successful in permitting the establishment of
rigorous results for Edgeworth expansions; see, for example, Bhattacharya
and Ghosh (1978) and Hall (1992). Note that R-statistics in finite-dimensional
curved exponential families are covered by this model.

To see the asymptotic role of of the first nonzero κq from (2.1), consider the
following result.

Theorem 1. Suppose that Tn is a statistic with density fn and cumulant
generating function Kn. Suppose that (2.3) holds, uniformly in rε
−cnα� cnα�,
for some c > 0 and some α, 1/6 ≤ α ≤ 1/2. Suppose, for some integer p,
3 ≤ p ≤ 1/�0�5 − α�, that the p first cumulants satisfy (2.1), with κ1 = 0 and
κ2 = 1. Also suppose thatKn is at least p+1 times continuously differentiable,

and that ψ
�p+1�
n �t� is bounded uniformly in n and �t� ≤ c′n−1/p, where c′ > 0

and ψn�t� =Kn�
√
nt�/n. The following statements are equivalent:

(i)

�2�4� κq = 0 for 2 < q < p�
(ii) If rn is of order O�n1/2−1/p� or smaller as n tends to infinity,

�2�5� fTn�rn� = φ�rn� exp
(

1
p!
κpr

p
nn

−�p−2�/2
)
�1 + o�1���

(iii) If rn = sn1/2−1/p, then

�2�6� P�Tn ≥ rn� = �1 −!�rn�� exp
(

1
p!
κpr

p
nn

−�p−2�/2
)
�1 + o�1���

uniformly for sε
c1� c2�, where 0 < c1 < c2 <∞.

In other words, the large deviation properties of T are controlled by κp.
Note that under the conditions of Theorem 2.1 of Chagany and Sethuraman
(1985), the 1 + o�1� term in (2.5) can be replaced by 1 +O�rn−1/2� +O�n−1�.
This is easily seen from the proof in the Appendix. The result covers the case
where Kn is exactly the cumulant generating function. Similar conclusions
can, obviously, be obtained in the function-of-means case.

A corollary to this is that if α = 1/2, (2.2) is equivalent to

�2�7� fTn�r� = φ�r��1 + o�1��
and

�2�8� P�Tn ≥ r� = �1 −!�r��1 + o�1���
uniformly for r of order O�nα�, for any α, 0 < α < 1

2 .
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We now return to the signed square root statisticR. One of the main results
of contemporary likelihood theory [cf. Barndorff-Nielsen and Wood (1998),
Jensen (1992, 1995, 1997) and Skovgaard (1990, 1996)] is that, in curved expo-
nential families, and subject to the existence of all moments and to regularity
conditions, for r of order o�n1/2�, (2.7) and (2.8) do indeed hold when Tn = Rn
where Rn is the statistic R based on n observations. One can now use this to
infer that (2.2) holds for R statistics from curved exponential families.

In fact, the family does not need to be of the curved exponential type; (2.2)
remains valid in the smooth case – analytic families as in Skovgaard (1991).
By the type of stochastic expansion given on page 214 in McCullagh (1987),
one can approximate Rn by Rn +Op�n−p/2�, where Rn is the corresponding
statistic in a �1� p + 2� curved exponential family, and hence (2.2) also holds
for Rn.

One can then use Theorem 1 to assert that under the conditions of this
theorem, (2.7) and (2.8) are also valid for R-statistics from analytic families.
We have not investigated the precise regularity conditions needed to assert
(2.7) or (2.8) on the assumption that such conditions are not likely to prove
particularly informative.

Finally, we provide an example to show that that one cannot, in general,
expect the pth cumulant of R to vanish at the O�n−p/2� level. Consider p = 3,
and write

�2�9� cum3�R� = n−3/2ν3 +O�n−5/2��
The rationale for focusing on ν3 might be that since (2.2) is satisfied, ν3 is the
leading error term in the expansion of fRn�r� for moderate deviations as n
tends to infinity, that is, r→ ∞, but r = o�n1/2�.

It is easy to see that for the exponential family exp�θT− k�θ��,

�2�10� νEXPO
3 = −(

625k3
3 − 630k3k4k2 + 108k5k

2
2

) 1
360

k
−9/2
2 �

where kq is the qth derivative of k�θ�. Similarly, the expression for ν3 for
empirical likelihood is nonzero and is given by Corcoran, Davison and Spady
(1995).

3. Approximate likelihoods. So what happens when a criterion func-
tion l�θ� is not quite a log likelihood?

The connection between Theorem 1 and approximate log likelihood func-
tions can be characterized as follows. We shall here still only be concerned
with the one parameter case, and, as before, the statistic R is defined by

�3�1� R = sign�θ̂− θ�(2�l�θ̂� − l�θ��)1/2
�

where θ̂ maximizes l�θ�.
The characterization is now that if all l�q� = ∂ql/∂θq exist and all cumu-

lants of the l�q� are of order O�n�, then (2.2) remains valid if all the Bartlett
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identities [Bartlett (1953a, b); see McCullagh (1987)] hold to first order, that is,

�3�2� E�l�q�� + · · · + cumq�l̇� = O�1�
for all q. If this is not the case, so that (3.2) is only valid for q < p �p > 2�,
with

�3�3� E�l�p�� + · · · + cump�l̇� = nkp +O�1��
then cumq�R� = O�n−q/2� for q < p, �q �= 2�, and cump�R� = n−�p−2�/2κp +
O�n−p/2�, with

�3�4� κp = 1
p
σ−pkp�

where σ2 is asymptotically equal to var�l̇�/n. See the Appendix for the deriva-
tion.

In particular, affine correctability [toO�n−3/2�] ofR andR2 depends on (3.2)
being valid for q ≤ 4. As an example of a criterion function that is particularly
far from likelihood in the sense that we consider, note that quasi-likelihood
only satisfies (3.2) for q = 1 and 2.

Since the coefficients in the Taylor expansion for the expectation of the
exponential of the criterion function can be expressed as sums of products of
the terms on the left-hand side of (3.2) and (3.3) [cf. Example 7.1, page 222,
of McCullagh (1987)], (3.2) (q < p) and (3.3) are equivalent to

�3�5� E exp
(
l�θ� − l�θ0�

) = n�θ− θ0�pkp
1
p!

+O(�θ− θ0�p+1)+ un�θ��
for fixed n, where un�θ� = O�1� as n → ∞. Similarly, (2.2) is, subject to
regularity conditions, the same as

�3�6� E exp
(
l�θ� − l�θ0�

) = O�1��
as n → ∞. Hence, n�θ − θ0�pkp�1/p!� + O��θ − θ0�p+1� is the measure of
deviation of a criterion function from approximate likelihoodness.

It should be emphasized that the cumulant approach outlined above only
works in the regular cases covered by our conditions. For an example of an
innocuous looking case which falls outside this framework, see Lazar and
Mykland (1999).

4. Dual criterion functions. By this we mean criterion functions which
are parametric (i.e., they only depend on finitely many parameters, even as
n→ ∞) and which give rise to the same R statistic as a corresponding non-
parametric likelihood. We shall look at two cases: empirical and nonparametric
point process likelihood (the latter as in survival analysis).

The dual criterion function arises as a profile Lagrangian, which becomes
a function of the Lagrange multiplier. This multiplier is then the “parameter”
in the dual criterion function. In the two cases under study, the dual crite-
rion functions are given by (4.1) and (4.8), respectively. Note that the concept
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of dual criterion function is left deliberately vague; it is not defined in any
rigorous generality. It is intended as a tool for analyzing various nonparamet-
ric problems, and it has to be adapted to each individual case. One could, for
example, use it to analyze a variety of survival analysis likelihood ratio statis-
tics, such as the one proposed by Thomas and Grunkemeier (1975) based on
the Kaplan and Meier (1958) nonparametric likelihood.

The two nonparametric likelihoods we shall study have in common that
they are not likelihoods in the sense of being dominated. A likelihood ratio
only exists with respect to other probabilities supported on the observations.
They can, obviously, be obtained by profiling dominated likelihoods, but that in
itself does not assure likelihood behavior in the sense of (2.2), (2.7) and (2.8).

Indeed, as we shall see, the accuracy behavior is not the same for these two
types of nonparametric likelihood.

4.1. Empirical likelihood. Suppose one observes i.i.d. vectors X1� � � � �Xn

drawn from a distribution F. One is particularly interested in the parameter
θ = θ�F�. The empirical likelihood ratio statistic [Owen (1988)] for testing
H0� θ = θ0 is is given by 2�n log n−1 − l̂E�, where l̂E is the maximum of
log

∏
pi, subject to +pi = 1 and θ�F̂p� = θ0. Here, F̂p is the distribution which

puts mass pi on Xi.
To introduce the dual criterion function, set

ω�µ�λ� = sup
pi

{ n∑
i=1

logpi − λ�+pi − 1� − µλ�θ�F̂p� − θ0�
}
�

where ω�µ�0� is the limit of ω�µ�λ� as λ→ 0. Supposing that the supremum
is attained, let p̂i = p̂i�µ�λ� be the maximizing arguments in the above, and
set λ̂ = λ̂�µ� to be such that +p̂i = 1. We now define the dual criterion function
to be

�4�1� lD�µ� = −ω�µ� λ̂�µ���
A standard optimization argument yields that the resulting R is the same

as the R for testing µ = 0 with the dual criterion function lD�µ�. The problem
can therefore be analyzed with the help of the finite parameter methods devel-
oped in the preceding sections. We emphasize that the statistic has the usual
form, R = sgn�µ̂�√2�lD�µ̂� − lD�0��, where µ̂ is the maximizer, the MLE, of
lD�µ�. The reason why we maximize with respect to µ is that the sign has
been changed in (4.1).

If θ�F̂p� is a mean, then lD�µ� is a log likelihood in the sense that
E�exp�lD�µ�� = 1 subject to integrability conditions; in fact, it is the dual
likelihood [Mykland (1995)]. In the nonlinear case, lD�µ� is typically not a log
likelihood. For functions of means, however, DiCiccio, Hall and Romano (1991)
show Bartlett correctability of R2, so property (2.4) holds, at least, for q = 3
and 4.

This does not remain the case, however, for higher values of q. To see this,
consider the simple case of i.i.d. bivariate data �Xi�Yi�, with a function-of-
means null hypothesis on the formH0�E�X�−f�E�Y�� = 0. One needs to look
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at bivariate data because in the scalar case, f�E�X�� = θ can be rewritten
E�X� = f−1�θ�� which is, indeed, linear in E�X�.

A straightforward calculation shows that

�4�2� k5 = −15f′′�E�Y�� cum�Z�Z�Y� + · · · �
where Z = X − f′�E�Y��Y and where the expansion is in f′′�E�Y��2,
f′′′�E�Y��, and so on. Using (3.4), it follows that cum5�R� = n−3/2κ5 +
O�n−5/2�, where

�4�3� κ5 = −3f′′�E�Y�� cum�Z�Z�Y�/Var�Z�5/2 + · · · �
Hence, already for q = 5, the R-statistic from empirical likelihood ceases,

in the general case, to behave as if it were derived from a true likelihood.

4.2. Point process likelihoods. Superficially, the picture for nonparametric
point process likelihoods [see, e.g., Andersen, Borgan, Gill and Keiding (1993)]
is very similar. For problems that are linear in the cumulative hazard, the dual
criterion function is a likelihood [Mykland (1995)], but this is not so in more
complicated cases. Consider, by analogy to the above, the problem of comparing
two survival distributions at a specific point in time. Suppose the cumulative
hazards of two populations are given by 21�t� and 22�t�, that numbers at risk
are, respectively, Y1�t� and Y2�t�, and let failures be denoted by S1� S2� � � �
and T1�T2� � � � � It is easy to see [Andersen, Borgan, Gill and Keiding (1993,
Section II.7)] that the nonparametric log likelihood is given by

�4�4�
lN�21� 22� =

∑
Si≤t

log21�Si� +
∑
Ti≤t

log22�Ti�

−
∫ t

0
Y1�s�d21�s� −

∫ t
0
Y2�s�d22�s� +C�

where C is random but a function of the data only. Note that one arrives at
(4.4) by first setting up the likelihood assuming that the 2’s are continuous.
One then shows that the maximizing values of 21 and 22 must have their
mass concentrated on the failure times. This is a standard procedure; the
unrestricted maximum likelihood estimators are the Nelson–Aalen estimators
for the two populations.

The natural null hypothesis is 21�t� = f�22�t�� (where we are holding
t fixed). For example, suppose Fi�t� is the probability of surviving beyond
time t, and one wishes a confidence interval for the difference in this survival
probability. The null hypothesis would then be F1�t� = F2�t� + δ. Assum-
ing continuity of the cumulative hazards, Fi�t� = exp�−2i�t��, and so this
hypothesis is on the above form with f�2� = − log�exp�−2� + δ�.

The nonparametric likelihood ratio statistic is then given by

�4�5� 1
2R

2 = max lN�21� 22� − max
21�t�=f�22�t��

lN�21� 22��

To actually find R2, one would maximize

�4�6� lL�21� 22� µ� = lN�21� 22� − nµ�21�t� − f�22�t���
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in 21 and 22, and then let µ be such that the constraint 21�t� = f�22�t�� be
satisfied. In the spirit of dual likelihood, however, we maximize instead (4.6)
subject to any µ. This gives rise (by simple differentiation) to maximizers sat-
isfying 2̂1� µ�Si� = �Y1�Si�+nµ�−1 and 2̂2� µ�Ti� = �Y2�Ti�−nµf′�2̂2� µ�t��−1�
The value µ = 0 corresponds to unrestricted maximization.

Substituting 2̂1� µ and 2̂2� µ into (4.6) gives

�4�7� lL
(
2̂1�02̂2�0�0

)− lL(2̂1� µ� 2̂2� µ� µ
) = lD�µ��

where lD�µ� is the dual criterion function

�4�8�
lD�µ� =

∑
Si≤t

log
(

1 + nµ

Y1�Si�
)
+ ∑
Ti≤t

log
(

1 − nµf
′�2̂2� µ�t��
Y2�Ti�

)

− nµg(2̂2� µ�t�
)
�

with g�2� = f�2� − f′�2�2.
Obviously, lD�µ� is maximized when µ̂ is such that the constraint 2̂1� µ�t� =

f�2̂2� µ�t�� is satisfied, and hence the R2 from (4.5) is the same as 2�lD�µ̂� −
lD�0��.

An approximating log likelihood is given by

�4�9�
l̃D�µ� θ� =

∑
Si≤t

log
(

1 + nµ

Y1�Si�
)

+ ∑
Ti≤t

log
(

1 − nθ

Y2�Ti�
)
− nµ21�t� + nθ22�t��

Then

�4�10�

lD�µ� = l̃D
(
µ�µf′�2̂2� µ�t��

)
+ nµ{f�22�t�� − f

(
2̂2� µ�t�

)+ f′(2̂2� µ�t�
)(
2̂2� µ�t� − 22�t�

)}
= l̃D�µ�µf′�22�t��� +OQ�1�

by Taylor expansion, where log�dQ/dP� = l̃D�µ�µf′�22�t���, since

�4�11� 2̂2� µ�t� − 22�t� = −n−1(∂l̃D/∂θ)(µ�µf′�22�t��
)+OQ(n−3/2)

in asymptotically ergodic circumstances.
From (4.10) and the development in Section 3, it follows that the dual cri-

terion function lD satisfies (3.2) for all q, and hence the R statistic behaves,
to the order under study, like one from a parametric likelihood.
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APPENDIX

A.1. Proof of Theorem 1. (ii) implies (iii) by using Theorem 3.2.1, page
67, of Jensen (1995). Then (iii) implies (i) because, otherwise, there is a q,
3 ≤ q < p, so that κq �= 0. This gives two different expansions on the form
(2.6) (for p and q), and both cannot hold.

Now (i) implies (ii) because of the following. Suppose r is of orderO�n1/2−1/p�
or smaller. Let s = r/√n, so s = O�n−1/p� or smaller. Also let τn = τ̂n/

√
n. By

definition,

�A1�1� s =
p∑
q=1

1
�q− 1�!

(
cumq�Tn�n�q−2�/2)τq−1

n + 1
p!
ψ

�p+1�
n �τ∗n�τpn �

where τ∗nε int�0� τn�. It follows that s = τn+κpτp−1
n /�p−1�!+O�τpn �+O�n−1�,

and so τn = s−κpsp−1/�p−1�!+O�n−1�, τ2
n = s2 −2κpsp/�p−1�!+O�n−1s�+

O�n−2�, and τpn = sp +O�n−1s�. Hence

�A1�2� K′′
n�τ̂n� = 1 +O�sp−1�

and

�A1�3�
Kn�τ̂n� − τ̂nK′

n�τ̂n� = −1
2
τ2
nn− p− 1

p!
κpτ

p
nn+O�τ2

n� +O�τp+1
n n�

= −1
2
s2n+ 1

p!
κps

pn+O�s� +O�n−1�

from which the result follows.

A.2. Derivation of the likelihood results in Section 3. Consider first why
(3.2) (q < p) implies (2.4). Set l�θ� = l̃�θ� + d�θ�, where

�A2�1� exp
(
d�θ�) = Eθ0

exp
(
l�θ� − l�θ0�

)
�

Hence, Eθ0
exp�̃l�θ� − l̃�θ0�� = 1, and so l̃�θ� satisfies the Bartlett identities

exactly at the value θ0 [cf. Chapter 7.2 of McCullagh (1987)].
Consider now the stochastic expansions for R and R̃. Let Z�q� = �̃l�q� −

E�̃l�q���/sd�̃l�q��, evaluated at θ = θ0, and suppose that these standardized
sums are asymptotically normal for q ≤ p. By the same development as on
page 214 of McCullagh (1987), but to suitable order, R̃ has the expansion

�A2�2� R̃ = Q̃�0� + n−1/2Q̃�1� + · · · �
Here,

�A2�3� Q̃�k� = const × Z1 · · ·Zk+1

+ a linear combination of products Z1 · · ·Zj�
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where 1 ≤ j ≤ k and the Zi are chosen from Z�1�� � � � �Z�k+1�. Similarly, R has
a stochastic expansion

�A2�4� R = Q�0� + n−1/2Q�1� + · · · �

By (3.2), however, the leading term in Q̃�k�, that is, const × Z1 · · ·Zk+1, is
the same as for Q�k�. Hence, the expressions for cumq�R� and for cumq�R̃�
only differ through terms of the form (const ×)

�A2�5�

cum
(
n−k1/2Z

�1�
1 · · ·Z�1�

r1 � � � � � n
−kq/2Z�q�

1 � � � � �Z
�q�
rq

)
= n−1/2

∑
ki cum

(
Z

�1�
1 · · ·Z�1�

r1 � � � � �Z
�q�
1 · · ·Z�q�

rq

)
= O(

n−1/2
∑
ki+1/2

∑
ri−q+1)

= O(
n−�q−1�/2)�

since 1 ≤ ri ≤ ki + 1 and since there is at least one i for which 1 ≤ ri ≤ ki.
Hence cumq�R� = O�n−�q−1�/2�. Then cumq�R� = O�n−q/2� follows if (2.1) is
valid.

To see why (3.3) must now lead to (3.4), write

l�θ� = l̃�θ� + 1
p!
nkp�θ− θ0�p +Op

(
n�θ− θ0�p+1)�

where l̃�θ� satisfies (3.2) at θ0 for q ≤ p. If θ̂ and θ̃ are the maximum likelihood
estimators for l�θ� and l̃�θ�, respectively, then it is easy to see that θ̂ − θ̃ =
Op�n−�p−1�/2�. It follows that, since p ≥ 3,

1
2
R2 = 1

2
R̃2 + 1

p!
nkp�θ̂− θ0�p +Op

(
n−�p−1�/2)

= 1
2
R̃2 + 1

p!
kpσ

−pn−�p−2�/2R̃p +Op
(
n−�p−1�/2)�

Hence,

R = R̃+ 1
p!
kpσ

−pn−�p−2�/2R̃p−1 +Op
(
n−�p−1�/2)�

and so

cump�R� = cump�R̃� + 1
p!
kpσ

−pn−�p−2�/2 cum
(
R̃p−1� R̃� � � � � R̃

)+Op(n−p/2)
= 1
p
kpσ

−pn−�p−2�/2 +Op
(
n−p/2)�

Hence the result follows.
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