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In this paper we study the problem of testing the functional form of
a given regression model. A consistent test is proposed which is based on
the difference of the least squares variance estimator in the assumed re-
gression model and a nonparametric variance estimator. The corresponding
test statistic can be shown to be asymptotically normal under the null hy-
pothesis and under fixed alternatives with different rates of convergence
corresponding to both cases. This provides a simple asymptotic test, where
the asymptotic results can also be used for the calculation of the type II
error of the procedure at any particular point of the alternative and for
the construction of tests for precise hypotheses. Finally, the finite sample
performance of the new test is investigated in a detailed simulation study,
which also contains a comparison with the commonly used tests.

1. Introduction. In the present paper we consider the nonparametric
regression model

y = y�t� =m�t� + ε�
where m is an (unknown) regression function, ε is a random error and t is
the predictor. Parametric regression models are attractive among practition-
ers because they describe in a concise way the relation between the response
y and the predictor t and allow extrapolation in many cases. However, mis-
specification of such a model may lead to serious errors in the subsequent
data analysis, and in practice it is always advisable to test the goodness-of-fit
of the postulated model. To be precise, consider the problem of testing for a
linear regression. Assume that

� = {
gT�t�θ � θ ∈ 	}

is a given family of functions, where 	 ⊂ �p is a proper parameter set and
g = �g1� � � � � gp�T is a vector of given linear independent regression functions.
The hypothesis of a linear model is

H0� m ∈ �(1.1)

and significant effort has been devoted to the problem of testing H0 during
the last two decades [see, e.g., Shillington (1979), Neil and Johnson (1985),
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Eubank and Hart (1992), Wooldridge (1992), Yatchew (1992), Azzalini and
Bowman (1993), Härdle and Mammen (1993), Brodeau (1993), Zheng (1996),
Stute, Gonzáles Manteiga and Presedo Quindimil (1998), Dette and Munk
(1998)]. Many authors compare a parametric and a nonparametric fit of the
regression curve which requires square root consistent estimation of the pa-
rameters [see, e.g., Härdle and Mammen (1993) or Weirather (1993)]. Eubank
and Hart (1992) and Kuchibhatla and Hart (1996) used a method based on or-
der selection criteria while Stute, Gonzáles Manteiga and Presedo Quindimil
(1998) investigated a marked empirical process based on the residuals.

In the present paper we propose a new goodness-of-fit test for a parametric
regression, which is based on a comparison of a nonparametric and a para-
metric estimator of the integrated variance function∫

σ2�t�f�t�dt

(here f denotes the design density and σ2�·� the variance function, that is,
Var�y�t�� = σ2�t��� Our approach to the problem of testing linearity is sim-
ilar to Yatchew (1992) but in contrast to this work, our procedure does not
require homoscedasticity and sample splitting in order to obtain independent
variance estimators. More precisely, the test statistic, say Tn� proposed in this
paper is simply the difference between the sums of squared residuals based
on a parametric and a nonparametric fit. Asymptotic normality of Tn is es-
tablished under the hypothesis (1.1) and under fixed alternativesH1:m 
∈ � �
but the rates of convergence are different in both cases. While under the hy-
pothesis of linearity the variance of Tn is of order �n2h�−1 (here h denotes the
bandwidth of a kernel estimator of the regression function) it turns out that
under the alternative m 
∈ � this variance is of order n−1� This provides a
simple asymptotic test for the hypothesis (1.1), where the asymptotic results
under fixed alternatives can also be used to estimate the type II error of such
a procedure at any particular point of the alternative.

The paper will be organized as follows. The test statistic and the main re-
sults can be found in Section 2, where the case of a fixed design and a linear
model is considered. Section 3 discusses several extensions of our approach.
Roughly speaking the results can be transferred to model checks for nonlinear
regression models, random design and multivariate predictors. Surprisingly
it turns out that there is a difference in the asymptotic variance under the
alternative between the random and fixed design assumption. In the same
section we also discuss two tests for the hypothesis (1.1) which were consid-
ered by Härdle and Mammen (1993) and Zheng (1996) and are most similar in
spirit with the method proposed in this paper. The statistic of the first-named
authors is based on an integrated L2-distance between a parametric and non-
parametric fit of the regression curve, while the last-named author considers
an appropriate estimator of the integrated distance between the regression
function m and its best approximation by elements of the model space � � In
both papers asymptotic normality of the corresponding statistic is established
under the null hypothesis (1.1) at a rate of order �n√h�−1� The present paper
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extends these results and establishes additionally asymptotic normality under
fixed alternatives at a rate n−1/2� Detailed numerical comparisons of the dif-
ferent procedures proposed in the literature are presented in Section 4 while
all proofs are deferred to Section 5.

2. Parametric versus nonparametric variance estimation. For the
sake of transparency, all results presented in this paper are formulated for
a univariate explanatory variable, but the proposed methods can be directly
transferred to regression models with multivariate predictors [see Remark
2.7]. Consider the common fixed design regression model

yj�n = y�tj�n� =m�tj�n� + εj�n� j = 1� � � � � n�

where t1� n� � � � � tn�n ∈ 
0�1� are distinct points and m is an (unknown) mean
function. The errors εj�n = ε�tj�n� are assumed to form a triangular array
of row-wise independent variables with mean zero and variances σ2�tj�n� =
E
ε2

j�n� �j = 1� � � � � n�� We further assume that the fourth moments of the
errors are uniformly bounded, that is,

E
[
ε4
j�n

] ≤ C <∞� j = 1� � � � � n� n ∈ ��(2.1)

The index n is omitted whenever this dependence will be clear from the con-
text. Under the assumption of a linear model and a homoscedastic error struc-
ture, the standard variance estimator is the sum of squared residuals

σ̂2
LSE = 1

n− p
n∑
j=1

e2j

where ej = yj − gT�tj�θ̂n is the residual at the point tj and θ̂n is the LSE
of θ� The following proposition gives the asymptotic expectation of this estima-
tor in a general regression which is not necessarily linear or homoscedastic.
Throughout this paper Lipγ
0�1� denotes the class of Lipschitz continuous
functions of order γ > 0�

Lemma 2.1. Assume that the design points t1� � � � � tn satisfy

i

n+ 1
=

∫ ti
0
f�t�dt� i = 1� � � � � n(2.2)

for a positive design density f ∈ Lipγ
0�1� [see Sacks and Ylvisaker (1970)]

and m� g1� � � � � gp� σ
2 ∈ Lipγ
0�1�� then

E
[
σ̂2

LSE

] = ∫ 1

0
σ2�t�f�t�dt+M2 +O�n−γ��

where

M2 = min
u∈�

∫ 1

0

(
m�t� − u�t�)2

f�t�dt(2.3)

denotes the minimal L2-distance between the unknown regression function and
the class � of parametric models.
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Note that the hypothesis of linearity is valid if and only ifM2 = 0 and as a
consequenceH0 could be rejected for large values of σ̂2

LSE�However, such a pro-
cedure requires explicit knowledge of the integrated variance

∫ 1
0 σ

2�t�f�t�dt�
which has to be estimated in practice. To this end we use a sum of squared
residuals based on a nonparametric fit of the regression function. Following
Hall and Marron (1990) we define the weights

wij =
K
(�ti − tj�/h)∑n

l=1K
(�ti − tl�/h) � i� j = 1� � � � � n�

whereK is a kernel function and h a bandwidth. Based on the nonparametric
residuals

ε̂i = yi −
n∑
j=1

wijyj� i = 1� � � � � n�

Hall and Marron (1990) proposed

σ̂2
HM = 1

v

n∑
j=1

ε̂2
j

as an estimator of the variance in a homoscedastic nonparametric regression,
where

v = n− 2
n∑
i=1

wii +
n∑

i� k=1

w2
ik

is a normalizing constant, motivated by the fact that E
σ̂2
HM� = σ2 when

m�t� ≡ 0� It is demonstrated in Dette, Munk and Wagner (1998) that σ̂2
HM has

a reasonable performance in many regression problems.
We assume throughout this paper that the kernel K has compact support,

is of order r ≥ 2� that is,

∫ ∞

−∞
K�u�uj du =

{
1� if j = 0�

0� if 1 ≤ j ≤ r− 1�
(2.4)

and define

κr =
�−1�r
r!

∫ ∞

−∞
urK�u�du�

For the asymptotic inference, the bandwidth h is supposed to satisfy

h = O(
n−2/�4r+1��� nh2 → ∞(2.5)

if n→ ∞� Finally, the design density f� the regression function m� the vari-
ance function σ2 and the basis functions g1� � � � � gp are assumed to be suffi-
ciently smooth, that is,

m�f ∈ C�r�(
0�1�)� σ2� g1� � � � � gp ∈ C�1�(
0�1�)�(2.6)
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For a homoscedastic error structure, it was shown by Hall and Marron (1990)
that under suitable modification of the estimator at the boundary we have

E
[
σ̂2

HM

] = σ2 +C2h
2r + o�h2r��(2.7)

where

C2 = κ2
r

∫ 1

0

{�mf��r��u� −mf�r��u�}2 du

f�u� �(2.8)

The following lemma shows that a slightly modified version of (2.7) holds in
the heteroscedastic setup. The proof is similar to Hall and Marron (1990) and
therefore omitted.

Lemma 2.2. If (2.2), (2.4), (2.5) and (2.6) are satisfied and n→ ∞� then

E
[
σ̂2

HM

] = ∫ 1

0
σ2�t�f�t�dt+C2h

2r + C3

nh
+ o�h2r� +O

(
1
n

)
�(2.9)

where

C3 =
(

2K�0� −
∫ ∞

−∞
K2�t�dt

)(∫ 1

0
σ2�t�f�t�dt−

∫ 1

0
σ2�t�dt

)
�(2.10)

Observing Lemmas 2.1 and 2.2 it is reasonable to base a test for a paramet-
ric regression model on the difference of the parametric and nonparametric
variance estimator, and therefore we define

Tn = σ̂2
LSE − σ̂2

HM�(2.11)

which is an asymptotically unbiased estimator of M2� The following two re-
sults give the asymptotic distribution of Tn under the hypothesis of linearity
�M2 = 0� and the alternative �M2 > 0�� The proofs are cumbersome and
therefore deferred to Section 5.

Theorem 2.3. If (2.1), (2.2), (2.4), (2.5) and (2.6) are satisfied,M2 = 0 and
n→ ∞� then

n
√
h

(
Tn +C2h

2r + C3

nh

)
→� � �0� µ2

0��(2.12)

where � �0� µ2
0� denotes a centered normal distribution with variance given by

µ2
0 = 2

∫ ∞

−∞

(
2K�u� −K ∗K�u�)2

du
∫ 1

0
σ4�u�du(2.13)

and K1 ∗K2 denotes the convolution of K1 with K2�

Theorem 2.4. If (2.1), (2.2), (2.4), (2.5) and (2.6) are satisfied,M2 > 0 and
n→ ∞� then

√
n
(
Tn −M2)→� � �0� µ2

1��(2.14)
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where the asymptotic variance is given by

µ2
1 = 4

∫ 1

0
σ2�u�(2�u�f�u�du�(2.15)

( =m−P�g1�����gp�m and P�g1�����gp�m is the projection of m onto span�g1� � � � �

gp� with respect to the inner product �p�q� = ∫ 1
0 p�u�q�u�f�u�du�

It is remarkable that the normalizing factor is of different order in Theo-
rems 2.3 and 2.4. Under the null hypothesis H0: m ∈ � � the variance of Tn
is of order �n2h�−1 while under the alternative m 
∈ � � this is of order n−1�
In principle, Theorem 2.3 can be used to construct an asymptotic level α test
for the hypothesis of linearity and Theorem 2.4 establishes the consistency of
such a test. It will also provide useful information about the type II error of
such a test at any particular point of the alternative (see Section 4). This is
particularly important for the application of a goodness-of-fit test, because the
acceptance of the null will lead to a subsequent data analysis adapted to the
model � � and it is desirable to control the corresponding error of this proce-
dure. Moreover, the result of Theorem 2.4 allows the construction of tests for
the problem of precise hypotheses

H�M2 > (� K�M2 ≤ ((2.16)

[see Berger and Delampady (1987)] whereM2 is defined in (2.3) and measures
the deviation of the regression function m from the linear model � � The hy-
pothesis (2.16) is rejected if

√
n�Tn − (� ≤ µ̂1uα where µ̂2

1 is an appropriate
estimator of µ2

1 and uα denotes the α-quantile of the standard normal distri-
bution. Note that in this case rejection of H in (2.16) allows us to assess the
validity of the model � within an L2-neighborhood at a controlled error rate.
Finally, it is also notable that Theorem 2.4 allows the construction of confi-
dence intervals for the parameterM2� which measures the deviation from the
linear model � �

In all cases the choice of the bandwidth h becomes an important and non-
trivial problem, which will be illustrated for the problem of testing the clas-
sical hypothesis M2 = 0� It follows from Hall and Marron (1990) that in a
homoscedastic regression the asymptotic optimal (with respect to the MSE
criterion) bandwidth is of order n−2/�4r+1�� and a straightforward calculation
shows that this result carries over to the heteroscedastic case, where the op-
timal bandwidth is given by

hopt =
{
µ2

0n
−2

4rC2
2

}1/�4r+1�
�

Note that under the null hypothesis (1.1), this choice produces a nonvanishing
bias in Theorem 2.3, that is,

n
√
hopt

µ0
Tn +

1
2
√
r
+ C3√

hoptµ0

→� � �0�1�(2.17)
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but under the alternative we have
√
n

µ1
�Tn −M2�→� � �0�1��

In principle (2.17) provides an asymptotic test for the hypothesis H0: m ∈ �
where µ2

0 is estimated by

µ̂2
0 = 2

∫ ∞

−∞

(
2K�u� −K ∗K�u�)2

du
n−1∑
i=1

(
ti+1 − ti

)[
yi − θ̂Tng�ti�

]2

× [
yi+1 − θ̂Tng�ti+1�

]2

(2.18)

(for consistency of µ̂2
0 see Lemma 2.5 below) and hopt is obtained by some (con-

sistent) cross validation procedure. However, for moderate sample sizes the
bias in (2.17) has a serious impact on the quality of the normal approxima-
tion. Our numerical studies show that in the problem of testing the hypothesis
H0:m ∈ � � the bias of Tn is more important than the variance and a balance
between bias and variance seems only appropriate for very large sample sizes.
Based on an extensive simulation study, we recommend the bandwidth

�s2/n�2/�2r+1�

for the testing problem (1.1); here r is the order of the corresponding kernel
and s2 = ∫ 1

0 σ
2�t�f�t�dt the integrated variance of the error. This specific order

can also be motivated by the requirement that the “bias” nC2h
2r+1/2 converges

to 0 at a reasonable rate which is n−2r/�2r+1� for the proposed choice. For this
choice, the hypothesis of linearity is rejected if

n
√
h

(
Tn +

C3

nh

)
> u1−αµ̂0� h = o(n−2/�4r+1�)�(2.19)

where u1−α is the 1 − α quantile of the standard normal distribution and the
estimator of the variance µ̂2

0 is defined by (2.18). Note that C3 = 0 under
the assumption of a uniform design or a heteroscedastic error. The following
lemma establishes the consistency of the variance estimator µ̂2

0� the proof can
be found in Section 5.

Lemma 2.5. Under the assumptions of Theorem 2.3 we have for the estima-
tor in (2.18),

µ̂2
0 →P µ2

0�

where µ2
0 is defined in (2.13).

Note that in the case of a homoscedastic error structure we can use a mod-
ified estimator for the asymptotic variance, that is,

µ̃2
0 = 2

∫ ∞

−∞

(
2K�u� −K ∗K�u�)2

du · σ̂4
LSE�(2.20)
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The consistency of this estimator under the null hypothesis in a homoscedastic
setup is obvious by Lemma 2.1 and

Var
(
σ̂2

LSE

) = O�n−1��(2.21)

Remark 2.6. As pointed out by a referee, similar results to those stated
in Theorem 2.3 and 2.4 can be obtained by using different smoothing proce-
dures for the calculation of the residuals ε̂i = yi−

∑n
j=1wijyj corresponding to

the nonparametric variance estimator. Roughly speaking, the results of Theo-
rems 2.3 and 2.4 remain valid, where the bias term C2h

2r and the asymptotic
variance µ2

0 in (2.13) depend on the specific smoothing procedure under con-
sideration, while the asymptotic variance µ2

1 in (2.15) is not changed. We will
illustrate this statement by considering two specific examples. The first exam-
ple is the estimator of Gasser and Müller (1979) which uses the weights

wij =
1
h

∫ sj
sj−1

K

(
t− ti
h

)
dt�

where s0 = 0� sn = 1� sj = �tj + tj+1�/2 �j = 1� � � � � n− 1�� For this smoothing
procedure a careful inspection of the proofs in Section 5 shows that Theo-
rems 2.3 and 2.4 remain valid, where the constant C2 in (2.10) is replaced by
κ2
r

∫ 1
0 �m�r��t��2 dt�

A similar argument applies to our second example, the local polynomial
estimator [see, e.g., Fan (1992) or Fan and Gijbels (1996)]. Here the residuals
ε̂i in the estimator of Hall and Marron (1990) are replaced by

ε̃i = yi − β̂i0
and �β̂i0� � � � � β̂ip� is the minimizer of

n∑
k=1

{
yk −

p∑
j=0

βij�tk − ti�j
}2

K

(
tk − ti
h

)

and the case p = 0 corresponds to the Nadaraya–Watson estimator. It is
pointed out by Wand and Jones (1995) that the estimator β̂i0 ofm�ti� is asymp-
totically equivalent to

m̃�ti� =
1

nhf�ti�
n∑
j=1

K�p�

(
tj − ti
h

)
yj�

where the kernel K�p� is a higher order kernel [see Gasser, Müller and Mam-
mitzsch (1985)] defined by

K�p��u� =
�Mp�u��
�Np�

K�u��

Np is the �p+1�×�p+1� matrix having �i� j� entry equal to
∫∞
−∞ u

i+j−2K�u�du
and the matrix Mp�u� is obtained from Np by replacing the first column by
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the vector �1� u� � � � � up�� In this case (under appropriate smoothness assump-
tions) Theorem 2.3 and 2.4 remain valid, where the bias in (2.10) has to be
replaced by

ρ2
p+1

∫ 1

0
�m�p+1��t��2f�t�dt

or

ρ2
p+2

∫ 1

0

[�p+ 2�m�p+1��t�f′�t�/f�t� +m�p+2��t�]2
f�t�dt

corresponding to the case of an odd or even order p and

ρk =
hk

k!

∫ ∞

−∞
ukK�p��u�du�

Moreover, the kernel K�p� appears in (2.13) instead of K�

Remark 2.7. Theorem 2.3 and 2.4 can be extended without any difficulties
to the case of a multivariate predictor. If a product kernel

K�x1� � � � � xd� =
d∏
j=1

Kj�xj�

is used, the normalizing factor under the null hypothesis is n
√
h1 � � � hd where

hj is the bandwidth used for the jth marginal kernel �j = 1� � � � � d�� Because
of the curse of dimensionality, the choice of hj is even more critical in this
case. Based on a first numerical experience in the two-dimensional case, we
recommend for a kernel of order 2 the bandwidth

hj =
(

1
n

∫ 1

0
σ2�t�f�t�dt

)2/�d+4�
� j = 1�2� � � � � d�

Remark 2.8. For local alternatives of the form mn�t� = θT0 g�t� + δnl�t�
�θ0 ∈ 	�δn = �n√h�−1/2� a careful inspection of the proof of Theorem 2.3
shows that

n
√
h

(
Tn +C2h

2r + C3

nh

)
→� � �µ�µ2

0��

where Tn� µ
2
0 are defined in (2.11), (2.13), respectively, and µ = ∫ 1

0 l
2�t�f�t�dt�

Remark 2.9. The idea of comparing a parametric and nonparametric vari-
ance estimator has been exploited previously by Yatchew (1992). Yatchew’s test
can detect local alternatives at a rate 1/

√
n and is in this asymptotic sense

more efficient (see the previous remark). However, this theoretical advantage
is compensated by several practical drawbacks, because Yatchew’s approach is
based on the knowledge of several parameters and assumptions which makes
its application difficult. It requires (uniform) bounds for the regression func-
tion and its first and second derivative which basically gives three “smoothing
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parameters.” The specification of these bounds is usually difficult in practice.
Secondly it uses a sample splitting which usually results in a loss of power
for moderate sample sizes. Finally Yatchew’s test is only applicable for a ho-
moscedastic error.

3. Further discussion. In this section we present several extensions of
the test based on the difference of variance estimators and discuss its relation
to other lack-of-fit tests proposed in the literature.

3.1. Testing the validity of nonlinear models. The results presented in Sec-
tion 2 remain true if � is a class of nonlinear models,

� = {
m�t� θ� � θ ∈ 	}�(3.1)

where 	 ⊂ �p� and the minimum of

M2
	 = min

θ∈	

∫ 1

0

[
m�t� −m�t� θ�]2

f�t�dt(3.2)

is unique and attained at an interior point θ0 ∈ 	� Then under regularity
assumptions [see, e.g., Seber and Wild (1989), pages 572–574 or Gallant (1987),
Chapter 4], Theorems 2.3 and 2.4 remain valid, where M2 in (2.14) has to be
replaced byM2

	� The proof uses a Taylor expansion and the fact that the sum
of squared residuals in the nonlinear model can be approximated by

σ̂2
LSE = min

θ∈	
1
n

n∑
i=1

(
yi −m�ti� θ�

)2 = 1
n
ηT

(
I−G�GTG�−1GT

)
η+Op

(
1
n

)
�

where GT = ��∂m/∂θ��ti� θ0��ni=1 ∈ �p×n and η = �yi −m�ti� θ0��ni=1� Roughly
speaking, this means that the nonlinear model can be treated as the linear
model with the p regression functions

g1�t� =
∂

∂θ1
m
(
t� θ0�� � � � � gp�t� =

∂

∂θp
m�t� θ0��

where the regression m�t� has to be replaced by m�t� −m�t� θ0�� The asymp-
totic normality now follows along the lines of Section 2 observing that w.l.o.g.
the regression functions g1� � � � � gp can be assumed as orthonormal with re-
spect to the design density f� This implies for the projection of a function q
onto span �g1� � � � � gp��

P�g1�����gp�q =
p∑
l=1

�q�gl�gl�

Consequently, the quantity M2 in Theorem 2.4 is given by

M2 =
∫ 1

0

[
m�t� −m�t� θ0� −

p∑
l=1

�m−mθ0
� gl�gl�t�

]2
f�t�dt

=
∫ 1

0

(
m�t� −m�t� θ0�

)2
f�t�dt�
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where mθ0
= m�·� θ0� and the last equality is a consequence of (3.2) which

implies

0 = ∂

∂θl

∫ 1

0

[
m�t� −m�t� θ�]2

f�t�dt∣∣
θ=θ0

= −2�m−mθ0
� gl�� l = 1� � � � � p�

3.2. Random design. The approach of using the difference of two vari-
ance estimators as a goodness-of-fit statistic can be transferred to the case of
a random design where t1� � � � � tn are realizations of i.i.d. random variables
U1� � � � �Un with positive density f on the interval 
0�1��

Theorem 3.1. Assume that (2.1), (2.4), (2.5) and (2.6) are satisfied, n→ ∞�
and letTn be the statistic in (2.11) where t1� � � � � tn are replaced by i.i.d. random
variables U1� � � � �Un with positive design density f on the interval 
0�1��

(a) If M2 = 0� then n
√
h�Tn + C2h

2r + C3/nh� →� � �0� µ2
0�� where µ2

0 is
defined in (2.13).

(b) If M2 > 0� then
√
n�Tn −M2� →� � �0� µ̃2

1�� where

µ̃2
1 = 4E

[
(2�U1�σ2�U1�

]+ Var
[
(2�U1�

] = µ2
1 + (2

1(3.3)

and ( = m − P�g1�����gp�m denotes the difference between m and its projection

onto span �g1� � � � � gp��

The proof of Theorem 3.1 can be obtained by similar arguments to those
given for the fixed design in Section 5 and is therefore omitted. Comparing
this result with Theorems 2.3 and 2.4, we observe no difference between the
random and fixed design assumption under the null hypothesis M2 = 0� Sur-
prisingly, there appears an additional term in the asymptotic variance under
the alternative M2 > 0 which results in a loss of power of the corresponding
test caused by the randomness of the predictor. This term can be explained by
the well-known formula

Var�Z� = Var
[
E
Z � U�]+E[Var
Z � U�]�

where the first and second term on the right-hand side correspond to (2
1 and

µ2
1 in (3.3).

3.3. Alternative goodness-of-fit tests. The methods which are most similar
in spirit to the procedures presented in this paper were proposed by Härdle
and Mammen (1993) and Zheng (1996), who obtained the same rate of conver-
gence under the null hypothesis. They discussed the random design and also
considered alternatives converging to the null with a rate δn = �n√h�−1/2�
These results can be directly transferred to the case of a fixed design sat-
isfying assumption (2.2). We now investigate the asymptotic behavior of the
procedures proposed by Härdle and Mammen (1993) and Zheng (1996) under
fixed alternatives.
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Härdle and Mammen (1993) based their criterion on a (weighted) L2-dist-
ance between a parametric and a nonparametric fit of the regression function,
that is,

THM
n =

∫ 1

0

{
m̂n�t� −�h�n�θ̂Tng�t��

}2
π�t�dt�(3.4)

where m̂n denotes the Nadaraya–Watson estimator of the regression curve [see
Nadaraya (1964), Watson (1964)] and �h�n is a smoothing operator defined by

�h�n�m�t�� =
∑n
i=1K��ti − t�/h�m�ti�∑n
i=1K��ti − t�/h�

�(3.5)

Under alternatives converging with a rate δn = �n√h�−1/2 to the null, they
obtained results similar to Theorem 2.3. We now extend their result to the
case of fixed alternatives and present an analogue of Theorems 2.4 and 3.1,
for the statistic (3.4).

Theorem 3.2. Let (2.1), (2.4), (2.5) and (2.6) be satisfied,M2 > 0� n→ ∞�
and define (�t� =m�t� −P�g1�����gp�m�t�.

(a) In the fixed design case with assumption (2.2) we have for the statistic
THM
n of Härdle and Mammen (1993) defined by (3.4),

√
n
(
THM
n − bh

)→� � �0� µ2
2��(3.6)

where the bias is given by

bh =
1
nh2

∫ 1

0

∫ 1

0
K2

(
x− v
h

)
f�v�σ2�v� π�x�

f2�x� dvdx

+
∫ 1

0

{∫ 1

0

1
h
K

(
y− x
h

)
�(f��y�dy

}2 π�x�
f2�x� dx

(3.7)

and the asymptotic variance is

µ2
2 = 4

∫ 1

0
σ2�y�

{(
π
(

f

)
�y� −P�g1�����gp�

(
π
(

f

)
�y�

}2

f�y�dy�

which reduces for f ≡ π to

µ2
2 = 4

∫ 1

0
σ2�y�(2�y�f�y�dy�

(b) In the random design case the assertion (3.6) is still valid where the
asymptotic variance µ2

2 has to be replaced by

µ̃2
2 = 4E

[
σ2�U1�

{(
π
(

f

)
�U1� −P�g1�����gp�

(
π
(

f

)
�U1�

}2]

+ 4 Var
[(
(

f

)2

�U1��πf��U1�
]
�
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which reduces for f ≡ π to

µ̃2
2 = 4E

[
σ2�U1�(2�U1�

]+ 4 Var
(2�U1���

Note that the bias in Theorem 3.2 can be rewritten as

bh =
1
nh

∫ ∞

−∞
K2�u�du

∫ 1

0

σ2�u�
f�u� π�u�du+

∫ 1

0
(2�u�π�u�du+O�hr��

where the terms depending on n are asymptotically negligible in (3.6) if nh2 →
∞� nh2r → 0 and the variance function is assumed to be r times continuously
differentiable.

Roughly speaking, the test proposed in this paper and the test of Härdle
and Mammen (1993) are based on an estimator of the integrated deviation
(2�t� = �m�t� −P�g1�����gp��m�t���2� A minor difference is that the last-named
authors consider a weight function π which corresponds in our approach to
the use of weighted sums of squared residuals in (2.11).

An important difference between both methods is the different order of
the bias in the normalized statistic in the case of a uniform design or a ho-
moscedastic error. Under the null hypothesis, there appears an additional term
of order h−1/2 in the statistic n

√
h THM

n which cannot be diminished by chosing
an appropriate order of convergence for the bandwidth (as we did at the end
of Section 2). The bias C2h

2r in Theorem 2.3 does not appear in Theorem 3.2
because of the additional smoothing of the parametric regression function in
(3.4). A similar procedure could be used to reduce the bias in Theorems 2.3
and 3.1 as well.

An alternative approach was discussed in Zheng (1996) who considered a
test based on an estimate of

E
[{
y1 −P�g1�����gp�m�U1�

}
E
(
y1 −P�g1�����gp�m�U1� � U1

)
f�U1�

]
�

that is,

Vn =
1

hn�n− 1�
n∑
i=1

∑
j 
=i
eiejK

(
ti − tj
h

)
�(3.8)

where ei is the residual at the point ti from the parametric fit. Under alterna-
tives converging to the null with a rate δn = �n√h�−1/2� Zheng (1996) obtained
an analogue of Theorems 2.3 and 3.1 using degenerateU-statistics theory. The
following result extends his findings and gives the asymptotic distribution of
Vn under fixed alternatives.

Theorem 3.3. Assume that (2.1), (2.4), (2.5) and (2.6) are satisfied, M2 >
0� n→ ∞� and define (�t� =m�t� −P�g1�����gp�m�t��

(a) In the fixed design case with assumption (2.2), we have for the statistic
of Zheng (1996) defined by (3.8),

√
n

{
Vn −

∫ 1

0
K�u��(f��x��(f��x− uh�dudx

}
→� � �0� µ2

3��(3.9)
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where the asymptotic variance is given by

µ2
3 = 4

∫ 1

0
σ2�u�{�(f��u� −P�g1�����gp��(f��u�

}2
f�u�du�(3.10)

(b) Under the random design assumption, the assertion (3.9) is still valid
where the asymptotic variance in (3.10) has to be replaced by

µ̃2
3 = 4E

[
σ2�U1�

{�(f��U1� −P�g1�����gp��(f��U1�
}2]+ 4 Var

[
(2�U1�f�U1�

]
�

Note that for a kernel of order r the bias in (3.9) can be rewritten as∫ 1

0
(2�u�f2�u�du+ κrhr

∫ 1

0
�(f��u��(f��r��u�du+ o�hr��(3.11)

and as a consequence Zheng’s (1996) procedure is comparable with Härdle and
Mammen’s (1993) method and with the test (2.19) based on weighted sums of
squared residuals, where the weight function is chosen as π = f2� The proof
of Theorem 3.3 can be found in Section 5. The proof of Theorem 3.2 is similar
and therefore omitted.

4. Finite sample performance. In this section we study the finite sam-
ple behavior of the test (2.19) introduced in Section 2 and compare it with
other procedures proposed in the literature. Unless stated otherwise, we con-
sider a random and a fixed uniform design on the interval 
0�1� (i.e., f ≡ 1�
and the sample size is chosen as n = 50� 100, 200 and 400. We use the ker-
nel K�x� = 3

4�1 − x2�I
−1�1��x� of order 2 and the corresponding bandwidth

h = �s2/n�2/5 with s2 = ∫ 1
0 σ

2�t�f�t�dt� which corresponds to the situation
considered in (2.19). In practice s2 can be estimated by a preliminary vari-
ance estimator [see, e.g., Rice (1984) or Gasser, Skroka and Jennen-Steinmetz
(1986)] and our simulation results show that this estimation has a negligable
impact on the distributional behavior of the test statistic (these results are
not displayed). The asymptotic variance µ2

0 in Theorems 2.3 and 3.1 was esti-
mated by µ̃2

0 in (2.20) for the case of a homoscedastic error (see Examples 4.1,
4.2 and 4.4) and by µ̂2

0 in (2.18) for the case of a heteroscedastic error (see
the first part of Example 4.3). We also performed simulations with higher or-
der kernels [see Gasser, Müller and Mammitzsch (1985)] and local polynomial
estimators [see Remark 2.6]. These results did not yield a substantial differ-
ence with respect to power and approximation of the level and for the sake of
brevity are not displayed.

Example 4.1 (Testing procedures with optimal rates). It is demonstrated
in Section 2 that the test (2.19) detects local alternatives converging to the
null at a rate n−1/2h−1/4� which reduces to n−r/�2r+1� for the proposed band-
width h = �s2/n�2/�2r+1�� There are several procedures proposed in the liter-
ature which are able to detect local alternatives that converge to the null at
the optimal rate 1/

√
n and are in this (asymptotic) sense more efficient [see,
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e.g., Eubank and Hart (1992), Yatchew (1992), Stute (1997), Stute, Gonzalés
Manteiga and Presedo Quindimil (1998)].

Eubank and Hart (1992) used a Fourier-series approach based on an ex-
tended model and a test if the coefficients in this extension vanish. Stute
(1997) introduced a marked empirical process and analyzed the principal com-
ponents of the covariance kernel of a nonstandard Gaussian process. Because
this procedure is rather difficult to implement, Stute, Gonzalés Manteiga and
Presedo Quindimil (1998) proposed a bootstrap version of the test. Yatchew’s
(1992) test is also based on a difference of two variance estimators but uses
a sample splitting which is unrealistic in any application. Additionally, it re-
quires a restriction to a class of regression functions with uniform bounds on
the first two derivatives and, as a consequence, a constrained least squares
estimation which makes its implementation in a detailed simulation study
difficult. For these reasons and for space considerations, we include in our
comparison only the procedures proposed by Eubank and Hart (1992) and
Stute, Gonzalés Manteiga and Presido Quindimil (1998). Because the test of
the last-named authors requires the bootstrap we take their setup as a refer-
ence example (see Tables 1 and 2 of their paper). More precisely, we consider
the model

m�t� = 5t+ at2(4.1)

for various values of a where the case a = 0 corresponds to the null hypothesis
of a linear regression through the origin. The results are listed in Table 1 for
a homoscedastic error and show the relative proportion of rejection calculated
by 1000 simulations on the basis of a 5% level.

The asymptotics provided by Theorem 2.3 yields a very accurate approxi-
mation of the nominal level, even for n = 50� Comparing the power of both
tests we observe a slightly higher power for the test of Stute, Gonzáles Man-
teiga and Presedo Quindimil (1998) in most (but not all) cases. On the other

Table 1

Simulated rejection probabilities of the test (2.19) in the model (4.1) for various values of a�σ2� n
and a fixed and random uniform design on the interval 
0�1�

n = 50 n = 100 n = 200 n = 400

�2 a Fixed Random Fixed Random Fixed Random Fixed Random

0 0.053 0.042 0.054 0.052 0.053 0.053 0.051 0.051
1 1 0.095 0.071 0.116 0.111 0.167 0.146 0.297 0.283

2 0.181 0.149 0.343 0.297 0.597 0.536 0.892 0.872

0 0.060 0.049 0.056 0.052 0.055 0.057 0.048 0.054
2 1 0.089 0.065 0.084 0.100 0.130 0.125 0.184 0.178

2 0.120 0.108 0.194 0.188 0.335 0.295 0.594 0.589

0 0.059 0.051 0.054 0.050 0.054 0.058 0.058 0.054
3 1 0.081 0.083 0.092 0.101 0.103 0.110 0.144 0.143

2 0.089 0.086 0.147 0.146 0.221 0.215 0.427 0.415
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Table 2

Simulated rejection probabilities of the test of Eubank and Hart (1992) in the model (4.1) for
various values of a�σ2� n and a fixed uniform design

�2 a n = 50 n = 100 n = 200 n = 400

0 0.076 0.053 0.056 0.058
1 1 0.103 0.124 0.170 0.283

2 0.166 0.290 0.491 0.804

0 0.067 0.070 0.045 0.053
2 1 0.087 0.091 0.115 0.182

2 0.122 0.181 0.290 0.478

0 0.072 0.052 0.055 0.058
3 1 0.082 0.073 0.083 0.146

2 0.098 0.127 0.207 0.358

hand, the test discussed in this paper does not require any bootstrap estima-
tion and as a consequence it is easier to apply. Moreover, Theorems 2.4 and 3.1
even provide the asymptotic distribution of the test statistic in (2.19) under
the alternative, which allows a calculation of the probability for the type II
error at any particular pointm� if the test accepts the hypothesisH0:m ∈ � �
From a practical point of view, this is particularly important, because the
acceptance of the null will lead to a subsequent data analysis adapted to the
specific model � � and it is desirable to estimate the corresponding probability
of an error in this procedure at any particular point in the alternative. Note
that by Theorems 2.3 and 2.4 the power of test (2.19) at a particular m 
∈ �
depends asymptotically only through the L2-distanceM2 on m and we obtain
approximately

p = P�“rejection”� ≈ <
(√
n

µ1

{
M2 − u1−αµ0

n
√
h

})
(4.2)

for the probability of a type II error of the test (2.19). As a numerical example
we estimated the probability of rejection in the case of a fixed design, a = 2�
n = 100� σ2 = 1 and obtained p ≈ 0�334� while the corresponding simulated
probability is 0�343 (see Table 1). It is also worthwhile to mention that The-
orems 2.4 and 3.1 can be used for the construction of confidence intervals for
M2 and for testing precise hypotheses of the form (2.16) (see the discussion in
Section 2).

Table 2 shows the simulated power for the test proposed by Eubank and
Hart (1992) for the regression function (4.1). Note that this test requires the
specification of �n− 1� additional regression functions which we chose as

ujn�x� = cos
(
πj�2x− 1�)� j = 1� � � � � n− 1�

We observe a less accurate approximation of the nominal level for moderate
sample sizes �n = 50� and a lower power of the test of Eubank and Hart
(1992) compared to that of the test (2.19) and the procedure of Stute, Gonzalés
Manteiga and Presedo Quindimil (1998). It is also worthwhile to mention that
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these results depend sensitively on the choice of the additional regression
functions �ujn�x� � j = 1� � � � � n − 1� and the corresponding ordering. For
an illustration of this phenomenon, see Dette and Munk (1998). Finally, we
note that in contrast to our work, Eubank and Hart’s (1992) procedure cannot
be used in a random design, while the test of Stute, Gonzalés Manteiga and
Presedo Quindimil (1998) is not directly applicable under the fixed design
assumption.

Example 4.2 (Testing procedures based on smoothing methods). Our sec-
ond example compares our procedure with the methods which use kernel es-
timation for the calculation of the residuals. As pointed out in Section 3.3, the
procedures of Härdle and Mammen (1993) and Zheng (1996) are most similar
in spirit to the test proposed in this paper. A further natural competitor is a
test introduced by Azzalini and Bowman (1993). Roughly speaking, this is ob-
tained as a pseudolikelihood ratio test by replacing the original observations
in the difference of the variance estimators under a parametric and nonpara-
metric fit by the residuals under the parametric fit. Under the assumption of
a normally distributed error and a fixed design, these authors demonstrated
that the distribution of the corresponding test statistic is given by a linear
combination of independent χ2-distributions. For practical purposes, Azzalini
and Bowman (1993) recommended an approximation by a a+bχ2

c distribution
by fitting the first three cumulants, which could also be used for nonnormal
errors. A principal drawback of this test is that it cannot be applied under the
random design assumption.

Because the test of Härdle and Mammen (1993) requires an application of
the bootstrap, we choose their setup as a reference example, that is,

m�t� = 2t− t2 + c(t− 1
4

)(
t− 1

2

)(
t− 3

4

)
(4.3)

and � = �a0 + a1t + a2t
2 � a0� a1� a2 ∈ ��� The variance is assumed to be

constant and given by σ2 = 0�01� Some results for selected cases are given in
Table 4 for Zheng’s (1996) test [where the asymptotic variance is estimated
by formula (3.9) of his paper] and in Table 3 for the test (2.19) of the present
paper. Finally, the corresponding results for the test of Azzalini and Bowman
(1993) are shown in Table 5 in the case of a fixed design. The bandwidth
was chosen as h = �σ2/n�2/5 in all cases according to the proposed choice in
Section 2. The case n = 100 corresponds to the situation considered by Härdle
and Mammen (1993).

We observe that all tests are comparable with respect to the power behavior.
The test proposed in this paper yields a slightly better power than its competi-
tors. Compared with Azzalini and Bowman’s (1993) and Zheng’s (1996) test,
the improvement with respect to power is even more substantial, especially
for relatively small sample sizes (e.g., n = 50�� Note also that the test of Zheng
(1996) is conservative in most cases, and all tests are not too sensitive with
respect to the choice of the bandwidth. These results are not displayed and
confirm recent findings of Azzalini and Bowman (1993) and Zheng (1996). The
approximation of the level of Azzalini and Bowman’s test (1993) is extremely
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Table 3

Simulated rejection probabilities of the test (2.19) in the model (4.3) for various values of c and
a fixed and random uniform design on the interval 
0�1�� The variance is constant and given

by σ2 = 0�01

n = 50 n = 100 n = 200 n = 400

c Fixed Random Fixed Random Fixed Random Fixed Random

0.0 0.065 0.055 0.062 0.058 0.061 0.057 0.057 0.048
0.5 0.112 0.084 0.134 0.106 0.163 0.135 0.234 0.235
1.0 0.215 0.144 0.328 0.287 0.571 0.478 0.851 0.822
1.5 0.432 0.308 0.673 0.608 0.929 0.884 1.000 0.994
2.0 0.698 0.531 0.922 0.844 1.000 0.993 1.000 1.000

accurate, which can be explained by the application of the χ2-approximation.
It is worthwhile to mention that the test of Azzalini and Bowman (1993) is
not extendable to the case of a random design. Moreover, a χ2-approximation
will also improve the approximation of the nominal level of the tests of Zheng
(1996), Härdle and Mammen (1993) and the test (2.19). This is demonstrated
in Example 4.4 for the last-named test.

We finally remark that [in contrast to Härdle and Mammen (1993)], Azzalini
and Bowman’s (1993), Zheng’s (1996) test and the test (2.19) proposed in this
paper do not require any bootstrap estimates.

Example 4.3 (Heteroscedasticity and nonuniformity). In this example we
investigate the impact of deviations from homoscedasticity and nonuniformity
(of the design) on power and level of the test (2.19). Our first example considers
a heteroscedastic situation for the model (4.1) where the variance function is
given by σ2�t� = 3�1+ ct2�/�3+ c�� The results are given in Table 6 under the
same setup as considered in Example 4.1. Note that the function σ2 has been
normalized such that

∫ 1
0 σ

2�t�f�t�dt = 1� Compared to the homoscedastic case
�c = 0� we observe no significant loss in the accuracy of the approximation of
the nominal level and a loss of power with increasing values of c�

Table 4

Simulated rejection probabilities of Zheng’s (1996) test in the model (4.3) for various values of c
and a fixed and random uniform design on the interval 
0�1�� The variance is constant and given

by σ2 = 0�01

n = 50 n = 100 n = 200 n = 400

c Fixed Random Fixed Random Fixed Random Fixed Random

0.0 0.044 0.043 0.043 0.044 0.053 0.048 0.052 0.054
0.5 0.059 0.067 0.087 0.078 0.130 0.123 0.229 0.229
1.0 0.136 0.311 0.271 0.256 0.543 0.423 0.843 0.843
1.5 0.311 0.277 0.609 0.556 0.913 0.868 0.998 0.999
2.0 0.550 0.487 0.889 0.799 0.998 0.985 1.000 1.000
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Table 5

Simulated rejection probabilities of the test of Azzalini and Bowman �1993� in the model �4�3� for
various values of c and a fixed uniform design on the interval 
0�1�� The variance is constant and

given by σ2 = 0�01

c n = 50 n = 100 n = 200 n = 400

0.0 0.047 0.049 0.053 0.050
0.5 0.080 0.109 0.131 0.262
1.0 0.194 0.297 0.523 0.832
1.5 0.349 0.606 0.886 0.998
2.0 0.604 0.881 0.991 1.000

Our second example investigates the impact of a nonuniform design on
power and level of the test (2.19). To this end we consider the model (4.1) with
a homoscedastic error. In this case the argument in (4.2) shows that the power
of the test is increasing with

µ2
1 = µ2

1�f� = 4σ2
∫ 1

0
f�t�[m�t� −P�g1�����gp�m�t�]2

dt�

If m�t� = 5t + at2� g1�t� = t� this yields for the uniform distribution µ2
1 ≈

0�05σ2a2� We considered two nonuniform densities,

f1�t� = 1
2 + t� f2�t� = 2�1 − t��

for which the corresponding values are µ2
1 ≈ 0�053σ2a2 and µ2

1 ≈ 0�027σ2a2�
Consequently, we expect similar results for the uniform and the density f1�
The results of the simulation of this scenario are shown in Table 7 and ba-
sically reflect our asymptotic findings. In most cases we do not observe any
substantial difference with respect to the approximation of the level and power

Table 6

Simulated power of the test (2.19) in the model (4.1) for various scenarios of hetereoscedasticity
and alternatives. The design is a uniform distribution, the variance function is given by σ2�t� =

3�1 + ct2�/�3 + c� and normalized by
∫ 1

0 σ
2�t�f�t�dt = 1

n = 50 n = 100 n = 200 n = 400

c a Fixed Random Fixed Random Fixed Random Fixed Random

0 0.048 0.050 0.050 0.057 0.054 0.050 0.053 0.049
0 1 0.093 0.071 0.094 0.092 0.168 0.163 0.296 0.285

2 0.168 0.132 0.328 0.254 0.616 0.537 0.886 0.886

0 0.047 0.051 0.043 0.047 0.058 0.045 0.055 0.045
1 1 0.079 0.060 0.088 0.085 0.152 0.156 0.301 0.260

2 0.158 0.142 0.323 0.254 0.578 0.522 0.896 0.875

0 0.046 0.043 0.045 0.050 0.052 0.048 0.048 0.048
2 1 0.074 0.059 0.097 0.092 0.153 0.151 0.261 0.255

2 0.149 0.129 0.306 0.243 0.431 0.546 0.882 0.850
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Table 7

Simulated rejection probabilities of the test (2.19) in the model (4.1) for various values of a� σ2� n

and a fixed and random design with density f1�t� = 1
2 + t

n = 50 n = 100 n = 200 n = 400

�2 a Fixed Random Fixed Random Fixed Random Fixed Random

0 0.051 0.047 0.056 0.052 0.054 0.052 0.053 0.052
1 1 0.070 0.067 0.104 0.103 0.165 0.182 0.281 0.285

2 0.147 0.133 0.328 0.275 0.623 0.571 0.911 0.867

0 0.055 0.055 0.054 0.055 0.057 0.047 0.057 0.053
2 1 0.063 0.061 0.078 0.079 0.109 0.121 0.177 0.169

2 0.106 0.088 0.190 0.155 0.334 0.323 0.577 0.597

0 0.056 0.058 0.052 0.059 0.054 0.047 0.050 0.056
3 1 0.061 0.059 0.069 0.065 0.074 0.094 0.139 0.139

2 0.076 0.072 0.129 0.124 0.224 0.225 0.449 0.422

for the density f1� A few cases show a (slight) loss of power if the design is
not uniform.

Similarly, the use of the density f2 should yield a more substantial loss with
respect to the power of the test (2.19). This is reflected in Table 8 where (com-
pared to the uniform design in Table 1) we observe a larger difference in power
for most cases but still a sufficiently accurate approximation of the nominal
level. We finally remark that it follows from Elfving’s theorem [Elfving (1952)]
that

sup
f

µ2
1�f� ≈ 0�1178c2σ2�

where the sup on the left-hand side is taken with respect to all positive den-
sities on the interval 
0�1�� Moreover, the sup is not attained in this class but
can be approximated arbitrarily close by approximating the discrete measure
with mass 1/

√
2 and 1 − 1/

√
2 at the points

√
2 − 1 and 1, respectively.

Example 4.4 (Small sample sizes and χ2-approximation). It is demon-
strated in the previous examples that the normal approximation based on
Theorems 2.3 and 2.4 is sufficiently accurate for a sample size n ≥ 50� For
smaller sample sizes we observe a loss of accuracy in the approximation of
the nominal level. In this case we propose an approximation for the distri-
bution of the statistic which is similar to Azzalini and Bowman (1993). More
precisely, we used an approximation by an aχ2

b+c distribution for the statistic
Tn� where a� b� c are determined by fitting the first three moments. Table 9
shows some results of the simulated level in the model (4.1). We observe a
sufficiently accurate approximation in all cases and a substantial improve-
ment compared to the normal approximation. Of course the accuracy of the
approximation of the level could be further improved by fitting more moments
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Table 8

Simulated rejection probabilities of the test (2.19) in the model (4.1) for various values of n� a� σ2

and a fixed and random design with density f2�t� = 2�1 − t�

n = 50 n = 100 n = 200 n = 400

�2 a Fixed Random Fixed Random Fixed Random Fixed Random

0 0.047 0.055 0.052 0.052 0.052 0.057 0.052 0.054
1 1 0.061 0.060 0.076 0.063 0.110 0.106 0.173 0.158

2 0.115 0.111 0.219 0.165 0.349 0.312 0.604 0.551

0 0.055 0.050 0.047 0.054 0.055 0.044 0.051 0.051
2 1 0.060 0.053 0.070 0.070 0.085 0.087 0.114 0.101

2 0.094 0.067 0.132 0.129 0.199 0.191 0.322 0.267

0 0.052 0.044 0.046 0.043 0.054 0.047 0.050 0.045
3 1 0.059 0.047 0.066 0.061 0.072 0.079 0.093 0.100

2 0.065 0.064 0.109 0.102 0.140 0.123 0.255 0.235

to a distribution with more parameters (e.g., Pearson or Johnson curves) as
proposed by Azzalini and Bowman (1993).

5. Proofs. Throughout this section we assume without loss of general-
ity that the regression functions are orthonormal with respect to the design
density f� that is,

�gj�gi� �=
∫ 1

0
gj�t�gi�t�f�t�dt = δij� i� j = 1� � � � � p�(5.1)

where δij denotes Kronecker’s symbol.

Proof of Lemma 2.1. From the Lipschitz continuity we obtain by a straight-
forward calculation,

∫ 1

0
u�t�f�t�dt− 1

n

n∑
i=1

u�ti� = O�n−γ��(5.2)

Table 9

Simulated 5% level of the test (2.19) in the model (4.1) using a aχ2
b + c approximation for various

sample sizes. The design is uniform and the error homoscedastic

n = 10 n = 20 n = 30

�2 Fixed Random Fixed Random Fixed Random

1 0.051 0.053 0.048 0.049 0.048 0.045
2 0.051 0.058 0.049 0.050 0.049 0.052
3 0.048 0.060 0.055 0.057 0.051 0.051
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whenever u� f ∈ Lipγ
0�1�� Therefore it follows from the orthonormality of
the regression functions g1� � � � � gp that

E
[
σ̂2

LSE

] = 1
n

n∑
i=1

(
m2�ti� + σ2�ti�

)− p∑
l=1

(
1
n

n∑
i=1

m�ti�gl�ti�
)2

+O�n−γ�

=
∫ 1

0
σ2�t�f�t�dt+

∫ 1

0
m2�t�f�t�dt−

p∑
l=1

(∫ 1

0
m�t�gl�t�f�t�dt

)2

+O�n−γ�

=
∫ 1

0
σ2�t�f�t�dt+M2 +O�n−γ��

whereM2 is defined in Section 2 and the last equality is obtained from a basic
fact in Fourier analysis. ✷

Proof of Theorems 2.3 and 2.4. The proof can be divided into three parts.
At first we derive an asymptotically equivalent statistic. In the second part of
the proof we calculate the corresponding asymptotic variance and finally we
prove the asymptotic normality.

(a) Recalling the definition of Tn in (2.11) we obtain

Tn = σ̂2
LSE − σ̂2

HM

= 1
n

n∑
i=1

y2
i −

p∑
l=1

(
1
n

n∑
i=1

gl�ti�yi
)2

− 1
v

n∑
i=1

(
yi −

n∑
j=1

wijyj

)2

+Op
(

1
n

)

=
n∑
i=1

n∑
j=1

b̃ijyiyj +Op
(

1
n

)
�

(5.3)

where the second equality follows from the orthonormality of the regression
functions [see (5.1)] and the third equality by the definition

b̃ij =
{

1
n

(
1 − n
v

)
δij +

1
v

(
2wij −

n∑
k=1

wkiwkj

)
− 1
n2

p∑
l=1

gl�ti�gl�tj�
}

(5.4)

�i� j = 1� � � � � n�� Define B̃ = �b̃ij�nij=1� then it is easy to see that

E
[
yTB̃y

] = E
Tn� +O
(

1
n

)
=M2 −C2h

2r − C3

nh
+ o�h2r� +O

(
1
n

)
�(5.5)

where C2 and C3 are defined in (2.8) and (2.10), respectively, and the second
equality is a consequence of Lemmas 2.1 and 2.2. Consequently, it is suffi-



1034 H. DETTE

cient to prove the assertions of Theorems 2.3 and 2.4 for the random variable
yTB̃y−E
yTB̃y�� For a further simplification we note that

yTB̃y−E
yTB̃y� = ∑
i
=j
b̃ij

(
yiyj −m�ti�m�tj�

)+ n∑
i=1

b̃ii
(
y2
i − σ2�ti� −m2�ti�

)

= T�1�
n +T�2�

n

and observe that E
T�2�
n � = 0� Var�T�2�

n � = O�1/n3h2�� which implies T�2�
n =

op��n
√
h�−1�� DefineB = �bij�nij=1 as the matrix corresponding to the quadratic

form T�1�
n � that is, bij = b̃ij�1 − δij� �i� j = 1� � � � � n�� then we obtain by (5.3)

and (5.5),

Tn −M2 +C2h
2r + C3

nh

= T�1�
n + op

((
n
√
h�−1)+ o�h2r)+O(

1
n

)
�

(5.6)

where

T
�1�
n = yTBy− m̃TBm̃ = ỹTBỹ+ ỹTBm̃+ m̃TBỹ�(5.7)

m̃ = �m�t1�� � � � �m�tn��T and ỹ is the centered vector of observations, that is,
ỹ = y− m̃�

(b) The variances and covariances of the random variables on the right-
hand side of (5.7) can now be calculated by straightforward but tedious alge-
bra. More precisely, we obtain from Whittle (1964) for the variance of the first
term,

n2hVar
(
ỹTBỹ

) = 2n2h
n∑

i� j=1

b2
ijσ

2�ti�σ2�tj�

= 2h
n∑
i=1

n∑
j=1

σ2�ti�σ2�tj�
{

2wij −
n∑
k=1

wkiwkj

}2

+ o�1�(5.8)

= 2
∫ 1

0
σ4�v�dv

∫ ∞

−∞

[
2K�u� −K ∗K�u�]2

du+ o�1��

For the variance of the second term it follows that

Rn = nVar
(
ỹTBm̃+ m̃TBỹ)

= n

v2

n∑
i=1

( n∑
j=1

[
2wij −

n∑
k=1

wkiwkj −
v

n2

p∑
l=1

gl�ti�gl�tj�
]
m�tj�

+
n∑
j=1

[
2wji −

n∑
k=1

wkiwkj −
v

n2

p∑
l=1

gl�ti�gl�tj�
]
m�tj�

)2

σ2�ti��
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which gives by a straightforward but tedious computation,

Rn = o
( 1
nh

)
(5.9)

if M2 = 0 and

Rn = 4
∫ 1

0
f�t�σ2�t�

{
m�t� −

p∑
l=1

�m�gl�gl�t�
}2

dt+ o�1�(5.10)

if M2 > 0� Finally, we have

Cov
(
ỹTBỹ� ỹTBm̃+ m̃TBỹ) = 0

and are now in the position to prove Theorems 2.3 and 2.4.

(c) Proof of Theorem 2.3. Under the hypothesis of linearity we have
M2 = 0 and from (5.6) Tn + C2h

2r + C3/nh = T�1�
n + op��n

√
h�−1�� There-

fore it is sufficient to show the assertion for T�1�
n � To this end we note that

n
√
hT

�1�
n = n

√
h�ỹTBỹ+ ỹTBm̃+ m̃TBỹ� = n

√
hỹTBỹ+ op�1��(5.11)

where the first equality in (5.11) follows from (5.7). The second equality is
obtained from E
yTBm̃+ m̃TBỹ� = 0 and (5.9) which implies

nhRn = n2hVar
(
ỹTBm̃+ m̃TBỹ) = o�1��

For the first term on the right-hand side of (5.11) we have from (5.8),

σ2�n� = Var
(
n
√
hỹTBỹ

)
= 2

∫ 1

0
σ4�u�du

∫ 1

0

(
2K�u� −K ∗K�u�)2

du+ o�1� = µ2
0 + o�1��

(5.12)

In order to establish the asymptotic normality of n
√
hỹTBỹ we now apply

Theorem 5.2 in de Jong (1987) to the quadatic form XTAX where A is the
n × n matrix with elements aij = n

√
hbijσ�ti�σ�tj� and Xi = ỹi/σ�ti��i� j =

1� � � � � n�� A straightforward calculation shows

n
max
i=1

n∑
j=1

a2
ij = n2h

n∑
j=1

σ2�ti�σ2�tj�b2
ij = O

(
1
n

)
�

which implies assumptions (1) and (2) in de Jong’s theorem withK�n� = log n�
For the remaining assumption regarding the eigenvalues µ1� � � � � µn of the
matrix A� we apply Gerschgorin’s theorem and obtain

n
max
i=1

�µi� ≤
n

max
i=1

n∑
j=1

�aij� = n
√
h

n
max
i=1

n∑
j=1

σ�ti�σ�tj��bij� = O�
√
h��

The assertion of Theorem 2.3 is now an immediate consequence of (5.11), (5.12)
and de Jong’s Theorem 5.2. ✷
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Proof of Theorem 2.4. If M2 > 0� it follows from (5.8) and (5.10) that
the dominating term in the variance of (5.7) is of order n−1� that is,

σ2�n� �= Var
(√
nT

�1�
n

) = nVar
(
m̃TBỹ+ ỹTBm̃)+ o�1� = Rn + o�1�

= 4
∫ 1

0
f�t�σ2�t�

{
m�t� −

p∑
l=1

�m�gl�gl�t�
}2

dt+ o�1� = µ2
1 + o�1��

Because B has vanishing diagonal elements, we have E
ỹTBỹ� = 0 and as a
consequence from (5.8),

√
nT

�1�
n = √

n�ỹTBm̃+ m̃TBỹ� + op�1��

The term on the right-hand side is asymptotically normal with variance µ2
1

defined in (2.15) by the central limit theorem. This proves the assertion of
Theorem 2.4. ✷

Proof of Lemma 2.6. In order to keep the notation simple we consider
the case p = 1� the general case follows exactly the same lines. Let θ̂n =
�∑nj=1 g

2
1�tj��−1 ∑n

j=1 g1�tj�yj denote the least squares estimator for θ� then
the random part in the estimator (2.18) can be rewritten as

R̂2 =
n−1∑
i=1

�ti+1 − ti�
s8

[∑
j 
=i
g1�tj��εig1�tj� − g1�ti�εj�

]2

×
[ ∑
j 
=i+1

g1�tj��εi+1g1�tj� − g1�ti+1�εj�
]2

�

where s2 = ∑n
j=1 g

2
1�tj� = n+o�n�� by the orthonormality assumption (5.1). A

straightforward calculation yields for the expectation

E
R̂2� =
n−1∑
i=1

�ti+1 − ti�
s8

∑
j� j′ 
=i

∑
k� k′ 
=i+1

(
g1�tj�g1�tj′ �g1�tk�g1�tk′ �

)2
σ2�ti�σ2�ti+1�

+O
(

1
n

)
�

=
n−1∑
i=1

(
ti+1 − ti

)
σ2�ti�σ2�ti+1� +O

(
1
n

)

=
∫ 1

0
σ4�u�du+O

(
1
n

)
�

A similar calculation shows that Var�R̂2� = O�1/n� and we obtain R̂2 →P∫ 1
0 σ

4�u�du� The assertion of Lemma 2.6 now follows from the definition of µ̂2
0

in (2.18). ✷
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Proofs of Theorems 3.2 and 3.3. We will only present a proof of Theo-
rem 3.3; the result of Theorem 3.2 follows by similar arguments.

In the fixed design case, define εi = yi −m�ti��i = 1� � � � � n�� (�t� = �m −
P�g1�����gp�m��t� = m�t� − θT0 g�t� and let θ̂n denote the LSE of θ� Following
Zheng (1996) we rewrite Vn as

Vn = V1n − 2
{
V

�1�
2n −V�2�

2n

}+ {
V

�1�
3n − 2V�2�

3n +V�3�
3n

}
�(5.13)

where

V1n =
1

n�n− 1�
n∑
i=1

∑
j 
=i

1
h
K

(
ti − tj
h

)
εiεj�

V
�1�
2n = 1

n�n− 1�
n∑
i=1

∑
j 
=i

1
h
K

(
ti − tj
h

)
εi
(
θ̂Tn − θT0

)
g�tj��

V
�2�
2n = 1

n�n− 1�
n∑
i=1

∑
j 
=i

1
h
K

(
ti − tj
h

)
εi(�tj��

V
�1�
3n = 1

n�n− 1�
n∑
i=1

∑
j 
=i

1
h
K

(
ti − tj
h

)(
θ̂n − θ0

)T
g�ti�

(
θ̂n − θ0

)T
g�tj��

V
�2�
3n = 1

n�n− 1�
n∑
i=1

∑
j 
=i

1
h
K

(
ti − tj
h

)
(�ti�

(
θ̂n − θ0

)T
g�tj��

V
�3�
3n = 1

n�n− 1�
n∑
i=1

∑
j 
=i

1
h
K

(
ti − tj
h

)
(�ti�(�tj��

From Zheng (1996) we have

V1n = Op��n
√
h�−1�� V

�1�
2n = op

(�n√h�−1)�
V

�1�
3n = op

(�n√h�−1)(5.14)

and for the term V�3�
3n it follows

V
�3�
3n =

∫ 1

0

∫ 1

0
K�u��(f��v��(f��v− uh�dudv

− K�0�
nh

∫ 1

0
(2�u�f�u�du+O

(
1
n

)
�

(5.15)

The remaining terms can be treated by the central limit theorem; from the
orthonormality of the regression function we have

θ̂n − θ =
(

1
n

n∑
i=1

gl�ti�εi
)p
l=1

+Op
(

1
n

)
�
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which implies
√
n
(
V

�2�
3n −V�2�

2n

)
= 1√

n

n∑
i=1

εi

{ p∑
l=1

gl�ti�
�n− 1�n

∑
j

∑
k 
=j

1
h
K

(
tk − tj
h

)
(�tk�gl�tj�

− 1
n− 1

∑
j 
=i

1
h
K

(
ti − tj
h

)
(�tj�

}
+ op�1�

→� � �0� µ2
3��

(5.16)

where

µ2
3 = lim

n→∞
h→0

1
n

n∑
i=1

σ2�ti�
{ p∑
l=1

gl�ti�
�n− 1�n

∑
j

∑
k 
=j

1
h
K

(
tk − tj
h

)
(�tk�gl�tj�

− 1
n− 1

∑
j 
=i

1
h
K

(
ti − tj
h

)
(�tj�

}2

=
∫ 1

0
σ2�u�f�u�

{
�(f��u� −

p∑
l=1

�(f�gl�gl�u�
}2

du

=
∫ 1

0
σ2�u�f�u�

{
�(f��u� −P�g1�����gp��(f��u�

}2

du�

The assertion for the fixed design case now follows, combining (5.13)–(5.16).
The remaining part for the random design is obtained by the same argu-

ments, observing that in this case the contributing terms in the asymptotic
variance are the uncorrelated random variables V�2�

2n −V�3�
3n and V�3�

3n � Under
the random design assumption the asymptotic variance of

√
n�V�2�

2n −V�2�
3n � is

also given by µ2
3 defined in (5.16) while the random variable V�3�

3n yields

nVar
(
V

�3�
3n

) = 1
n�n− 1�2

E

[ ∑
i
=j
i′ 
=j′

1
h2
K

(
Ui −Uj
h

)
K

(
Ui′ −Uj′
h

)

×(�Ui�(�Uj�(�Ui′ �(�Uj′ �
]

−
(
E

[
1
h
K

(
U1 −U2

h

)
(�U1�(�U2�

])2

= 4�n− 2�
n− 1

E

[
1
h2
K

(
U1 −U2

h

)
K

(
U1 −U3

h

)
(2�U1�(�U2�(�U3�

]

− 4
(
E

[
1
h
K

(
U1 −U2

h

)
(�U1�(�U2�

])2

+ o�1�

= 4 Var
[
(2�U1�f�U1�

]+ o�1��
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where U1� � � � �Un are i.i.d. random variables with density f� This proves the
assertion in the case of a random design. ✷
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