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SYNCHRONIZING SAMPLE CURVES NONPARAMETRICALLY1

By Kongming Wang2 and Theo Gasser

SUNY Brooklyn and University of Zürich

More and more often, the outcome of a study is not a random variable
but a noisy function for each experimental unit, resulting in a sample of
curves. Typically, the individual curves vary not only in amplitude or in-
tensity, but also with respect to the time axis: different subjects experience
certain events sooner or later. Analyzing such data involves finding out the
time changes (or curve registration) among curves. Following our previous
work where modified dynamic time warping is applied to align two curves,
we formulate a global minimization problem to align all curves in a sam-
ple and to compute the aligned average curve. Algorithms for solving the
minimization problem are presented and tested with simulated and real
data. The test results are promising. The method, which involves kernel
smoothing of regression functions, estimates the time changes and the av-
erage of the aligned curves from noisy data. Large sample asymptotics is
derived.

1. Introduction. More and more often the outcome of a study is not a
random variable but a noisy function for each experimental unit, resulting
in a sample of curves. Examples are growth curves and brain potentials in
medicine, speech signals in engineering and expenditure curves for various
goods and countries in economics. The data yij are usually obtained at discrete
time points tij (or some other discrete grid) and can be modeled as follows:

yij = fi�tij� + εij� j = 1� � � � � ni� i = 1� � � � �m�(1)

Here, fi denotes the true individual regression function for subject i, and εij
denote independent zero mean random errors with variance V�εij� = σ2

i > 0.
We assume tij ∈ J ≡ �0�1	 without loss of generality. Typically, the individ-
ual fi vary not only in amplitude or intensity, but also with respect to the
time axis: different subjects experience certain events sooner or later. Classi-
cal methods like repeated measures ANOVA or principal component analysis
of curves [Rao (1958), Rice and Silverman (1991)] ignore the second type of
variability. This may severely distort the analysis and in particular the pattern
of an average curve (“interference bias”).

These problems led Kneip and Gasser (1992) to apply a strictly monotone
time transformation gi from a physical to a “biological” time scale (in a biolog-
ical application) in order to eliminate (nonlinear) shifts between curves (the
functions gi are also called warping or alignment or registration functions).
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Analyzing subsequently the fi�gi�t�� instead of the fi�t� leads to more mean-
ingful results, in particular to a more meaningful “structural” average curve,
reflecting the average dynamic and the average intensity. The determination
of the transformation gi is, in this approach, based on features common to the
sample of curves, followed by monotone interpolation.

Figure 1 illustrates the structural averaging procedure, computed by dy-
namic time warping. The subgraph (d) of Figure 1 shows that small details
of the sample curves are preserved in the average of the aligned curves. The
application of structural analysis to longitudinal growth curves led to a wealth
of new information on the many facets of growth and some underlying mech-
anisms [Gasser, Kneip, Binding, Prader and Molinari (1991), Gasser, Kneip,
Zieger, Molinari, Prader and Largo (1994)]. However, the definition of features
and their unequivocal identification in individual curves might pose problems
in some applications [Gasser and Kneip (1995) have a proposal for defining
common features]. As an alternative, we studied dynamic time warping (DTW)
for computing the time transformation between two curves in a nonparamet-
ric way [Wang and Gasser (1997)]. DTW has been developed in engineering,
in particular for speech analysis [Sakoe and Chiba (1978)].

Fig. 1. (a) 10 sample curves; (b) aligned sample curves; (c) the estimated time transformations
used for the alignment; (d) the average curves �solid: average of the aligned curves in (b); dashed:
average of the sample curves in (a)].
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One problem that arises in the application of DTW to a sample of curves
is that it applies only to a pair of curves, typically an individual curve and
some template or master curve. This problem will be the focus of this paper.
We define a global minimization problem for samples of curves rendering the
unknown warping functions as well as the average of the aligned curves. We
propose an iterative algorithm for estimation, and we will study convergence
and statistical properties of this procedure. The incorporation of shift func-
tions into a spline smoothing framework has been studied by Ramsay and Li
(1998). In a rather different approach to the problem, Silverman (1995) models
the shift functions parametrically and estimates the parameters iteratively.
A recent book by Ramsay and Silverman (1997) gives a good introduction to
functional data analysis. The advantage of the DTW is its generality in choos-
ing the time transformations which are assumed only to be strictly increasing.

The paper is organized as follows: Section 2 describes our way of perform-
ing DTW to make this paper self-contained. In Section 3 we form a global
variational problem whose solution gives the time transformations and the
average of the aligned curves. An iterated estimation procedure for solving
the variational problem is also described in Section 3. Computational details
are discussed in Section 4. Section 5 is devoted to simulations and applica-
tions. Statistical asymptotics is derived in Section 6.

2. Dynamic time warping (DTW). Suppose that two sequences 
f�l��
l = 1� � � � �M� and 
h�j�� j = 1� � � � �N� characterize two signals f and h. The
best match between f and h by some alignment w is achieved by minimizing
some cost function, classically

inf
w

∑
�l� j�∈w

�f�l� − h�j��2�

The warping pathw=
�l� j�� connects �1�1� and �M�N� in a two-dimensional
square lattice, has to be monotone and has in addition to satisfy some side
conditions penalizing a too irregular path [Parsons (1986); Qi (1992)]. The
method of choice for estimatingw = ��l�1�� j�1��� � � � � �l�K�� j�K��� is dynamic
programming, and this is also true for general cost functions C of the form

C�f�h�w� ≡
K∑
k=1

d�f�l�k��� h�j�k����

where d�·� ·� is a distance measure and thus symmetric in f and h. The length
K of the warping path is determined as well while minimizing the cost func-
tion C. In the framework of Wang and Gasser (1997) we are moving from
discrete signals to functions f and h and from a warping path to a monotone
warping function g. The cost function introduced in Wang and Gasser (1997) is
motivated by the Sobolev norm and by the goal of aligning important common
features such as extrema and inflection points,

C�f�f′� h� h′� g� α� ≡
∫ 1

0
�F�f�f′� h� h′� g� α��t� + 2φ�g′�t��	dt�(2)
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where

F�f�f′� h� h′� g� α��t� ≡ α2
(
f�t�
�f� − h�g�t��

�h�
)2

+ �1 − α�2
(
f′�t�
�f′� − h′�g�t��

�h′�
)2

with �f� being the sup-norm of f.
The variational problem

inf
α

inf
g
C�f�f′� h� h′� g� α�(3)

can be solved by dynamic programming for fixed α and by grid search for
α ∈ �0�1	.

Remark 2.1. For α = 1, the alignment is completely determined by the
amplitudes of the two curves, and for α = 0 by the amplitudes of their deriva-
tives. In general, the alignment depends on both the amplitudes of the curves
and the amplitudes of their derivatives, and the parameter α tunes the com-
promise. The sum of the weights, α2 + �1 − α�2, has a minimum at α = 0�5.
This means that we would weight the alignment of the amplitudes of the two
curves and the alignment of the amplitudes of their derivatives equally im-
portantly unless the data clearly suggest otherwise. In all computations, we
solve the variational problem (3) for three values α = 0�3 ,0.5, 0.7 and then
choose the best alignment which yields smallest cost C�f�f′� h� h′� g� α�.

Remark 2.2. Standardizing the functional F using division by the respec-
tive sup-norm makes the asymptotic analysis much more complicated but of-
fers definite advantages: it helps to avoid explaining differences in amplitude
wrongly by warping functions. Ramsay and Li (1998), who do not use such a
normalization, also pointed out this problem.

Remark 2.3. The function φ penalizes too irregular warping functions al-
luded to before, in particular too steep warping functions. A simple choice is
φ�x� = a�x− 1�2 for some a > 0. A general φ can be defined by the following
assumption.

Assumption 0. The function φ satisfies the following conditions: φ is con-
vex; φ�x� = 0 for x ∈ �δ + r� − r	 with some given constants  > δ > 0
and � − δ�/2 ≥ r > 0; φ�δ+� = φ� −� = ∞; φ�x� = ∞ for x ∈ �δ� �c and
φ ∈ C4�δ� 	.

Remark 2.4. In our formalization we have gone from a (discrete) warping
path w, as suggested in the engineering literature, to a smooth warping func-
tion g (at least g ∈ C1). This offers substantial advantages in formal terms.
Frequently, a common starting point is known which leads to g�0� = 0.

Remark 2.5. An important advantage of the new cost function compared to
established ones is the following: in quite general classes of regression models,
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dynamic time warping is able to identify the correct warping function [Wang
and Gasser (1997)], which is not true for other cost functions. It should also be
pointed out that important parametric models such as the logistic or Gompertz
model have linear warping functions as an inherent property to characterize
individual differences.

Remark 2.6. It makes sense to add terms involving derivatives of higher
orders to the cost function C. However, these higher order derivatives have
to be estimated from noisy data. While many methods, for example, the ker-
nel method [Gasser and Müller (1984)] and local polynomial procedures [Fan
(1992)] have been proposed for derivative estimation, the estimation error
always increases sharply as the order of the derivative increases. The cost
function used in this paper involves only first-order derivatives, which are es-
timated by the kernel method (see Section 4.1). In our experience this is feasi-
ble even for small to moderate sample size despite the unattractive asymptotic
performance for derivatives.

3. Estimating warping functions and a structural average curve.

3.1. Formalization of the problem. Dynamic time warping produces a rel-
ative warping function between two curves. With a set of functions 
fi�, we
want to estimate a set of warping functions 
gi� in order to align all the
sample curves to an average dynamic. To this end, we define a cost functional,

� �g1� � � � � gm� f1� � � � � fm��t�

=
m∑
i=1

[
α2

(
fi�gi�t��

�fi�
− 1
m

m∑
j=1

fj�gj�t��
�fj�

)2

+ �1 − α�2
(
f′
i�gi�t��
�f′

i�
− 1
m

m∑
j=1

f′
j�gj�t��
�f′

j�
)2

+ 2φ�g′
i�t��

]
�

(4)

As in the last section, the parameter α weights the alignment of curves and
the alignment of their derivatives, and φ is a penalty function to regularize
the warping functions. The best warping functions are given as the solution
of the variational problem

inf

gi�

∫ 1

0
� �g1� � � � � gm� f1� � � � � fm��t�dt�(5)

where gi ∈ C1�0�1	, gi�0� = 0 and gi�1� = 1.
Once the warping functions have been obtained, the structural average µ

is then computed as a smooth fitting to the aligned sample curves,

inf
µ

∫ 1

0

[
1
m

m∑
i=1

�fi�gi�t�� − µ�t��2 + λ�µ′′�t��2
]
dt�(6)
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with µ ∈ C2�0�1	 and smoothing parameter λ ≥ 0. Note that the average
warping function, or the average development of individuals, is given by

ḡ�t� = 1
m

m∑
i=1

gi�t��

Therefore, the average µ�t� is the amplitude of the structural average at time
ḡ�t�. That is, 
�ḡ�t�� µ�t��� t ∈ �0�1	� defines the structural average.

Remark 3.1. From the cost function (4) and (5), it is clear that the best
warping functions will align the sample curves to the average of the aligned
curves. There always exists a solution to (5) because the objective function to
be minimized is bounded below and because the minimization is performed in
a compact set of functions. When φ is strictly convex, the solution is unique.

Remark 3.2. The conditions gi�0� = 0 and gi�1� = 1 correspond to known
start and end points of the underlying process. An example is the growth from
birth to an adult age (say 20 years old). The case of unknown start and end
points can be easily dealt with. Details are given in Section 4.

Remark 3.3. Rice and Silverman (1991) proposed a penalized smoothing
estimation of a representative curve for a set of curves, using unaligned
data. We have replaced their term

∑m
i=1�1/ni�

∑ni
j=1�fi�tij� − µ�tij��2 by∫ 1

0
∑m

i=1�fi�gi�t�� − µ�t��2 dt so that the penalized smoothing estimation is
based on aligned data.

Any solution of (5) has to satisfy the Euler equations

∂�

∂gi
− d

dt

∂�

∂g′
i

= 0� i = 1� � � � �m�(7)

These equations lead to a system of nonlinear equations,

0 = α2
(
fi�gi�t��

�fi�
− 1
m

m∑
j=1

fj�gj�t��
�fj�

)
f′
i�gi�t��
�fi�

+ �1 − α�2
(
f′
i�gi�t��
�f′

i�
− 1
m

m∑
j=1

f′
j�gj�t��
�f′

j�
)
f′′
i �gi�t��
�f′

i�
−φ′′�g′

i�t��g′′
i �t��

(8)

While these equations are useful for the theoretical analysis (Section 6), they
are not an attractive way, computationally, to estimate the warping func-
tions gi.

Similarly, a solution of (6) has to satisfy the Euler equation

∂�

∂µ
+ d

dt2
∂�

∂µ′′ = 0�(9)
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This leads to the spline smoothing of the average of the aligned curves,

λµ�4��t� + µ�t� = 1
m

m∑
i=1

fi�gi�t���(10)

3.2. An iterative algorithm. Since spline smoothing is well understood, we
will focus on (5) and propose an iterative algorithm, based on dynamic time
warping (as described in Section 2), for solving (5). A discussion of (10) will be
given in Section 4. For given k ≥ 1, let

ηki �t� =
1
m

m∑
j=1

fj�gk−1
j �t��

�fj�
� τki �t� =

1
m

m∑
j=1

f′
j�gk−1

j �t��
�f′

j�
�

The iterative algorithm works as follows: first, set the initial warping func-
tions g0

i �t� = t (no alignment). Then update the warping functions as follows:
for k ≥ 1, find gki �t� as the solution of the minimization problem

inf
gi

∫ 1

0

[
α2

(
fi�gi�t��

�fi�
− ηki �t�

)

+ �1 − α�2
(
f′
i�gi�t��
�f′

i�
− τki �t�

)2

+ 2φ�g′
i�t��

]
dt

(11)

for i = 1� � � � �m. Note that (11) is of the form (3) and can be solved by dynamic
time warping. Further computation details such as the number of iterations
and the choice of the weight parameter α will be discussed in Section 4.

Now we discuss convergence of the above algorithm. To simplify the anal-
ysis, we will assume that φ�x� = a�x− 1�2/2 for some a > 0. This guarantees
that the solution to (5) is unique. For a general φ defined by Assumption
0 of Section 2, the discussion becomes more complicated because of possible
nonuniqueness of the solution. Write (8) in a compact form

ag′′
i �t� =Hi�F1�g1�t��� � � � �Fm�gm�t���

for some functionals Hi (i = 1� � � � �m), where

Fi�t� ≡ �fi�t�� �fi�� f′
i�t�� �f′

i�� f′′
i �t��T�

In matrix form it is

ag′′�t� =H�F1�g1�t��� � � � �Fm�gm�t���

with g = �g1� � � � � gm�T and H = �H1� � � � �Hm�T. The solution of this equation
can be written in integral form as

g�t� = 1
a

∫ t

0
du

∫ u

0
H�F1�g1�s��� � � � �Fm�gm�s���ds+ �C1t� � � � � Cmt�T�
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where C1� � � � � Cm are constants determined by the boundary condition g�1� =
�1� � � � �1�T. It follows that

g�t� =



t

���

t


− 1

a

∫ 1

0
min�t� s��1 − max�t� s�	

×H�F1�g1�s��� � � � �Fm�gm�s���ds�

(12)

This represents the warping functions as the identity function plus fluctua-
tions (or deformation functions). With a relatively large constant a, the right-
hand side of (12) is a contraction mapping because H has bounded second-
order partial derivatives. The contraction mapping has a fixed point. The
sequence 
gk� produced by the iterative algorithm converges to the fixed point.
This proves the convergence of the above iterated algorithm.

3.3. Relations to models. To end this section, we discuss another impor-
tant problem: if we have a set of curves generated by some model, what does
the algorithm retrieve as aligned average curve µ? We look at two classes of
models which are important in applications. We will assume that φ′′�g′

i�t�� = 0
holds for all i = 1� � � � �m. This is equivalent to assuming ”regularity” for the
alignments defined by Assumption 0.

Our first example is the shape invariant model [Lawton, Sylvestre and
Maggo (1972), Stützle, Gasser, Molinari, Largo, Prader and Huber (1980)].
Here the individual curves are generated from a common shape function ψ by
linear time transformations and linear amplitude variation,

fi�t� = aiψ

(
t− bi
ci

)
+ di� i = 1� � � � �m�(13)

Note that this class of models includes the logistic and the Gompertz models
as important special cases. A relatively demanding estimation procedure for
estimating the individual parameters 
ai� bi� ci� di� i = 1� � � � �m� together
with the model ψ has been described and studied by Kneip and Gasser (1988).
Note that identifiability conditions on parameters such as ai > 0, ci > 0,
a1 + · · · + am = 1 and d1 + · · · + dm = 0 have to be imposed.

When we take α = 0 and when ignoring the boundary condition gi�0� =
0 and gi�1� = 1, the solution of (5) is given by gi�t� = bi + cit. Different
boundary conditions can be incorporated into the algorithm (Section 4). With
these warping functions, we get

µ�t� = 1
m

m∑
i=1

fi�gi�t�� = ψ�t��

Thus, the true shape function can be recovered and we have a possibility of
estimating a model nonparametrically [see also Kneip and Engel (1995)].
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The second, rather general, example is the nonlinear shift model where we
have

fi�t� = aiψ�hi�t��
for some strictly increasing functions hi. It is easy to see that a solution of (5) is
given by gi�t� = h−1

i �t� when setting α = 1. If we define �a1 +· · ·+am�/m = 1,
then we get

µ�t� = 1
m

m∑
i=1

fi�gi�t�� = ψ�t��

Again, the true shape function could be recovered, which is quite remarkable
for a model as general as this. Note that this model is not uniquely defined un-
less some restrictions are imposed on the time transformations hi. For strictly
increasing one-to-one maps γ� �0�1	 �→ �0�1	, we can rewrite the model as
fi�t� = aiν�ξi�t�� with ξi�t� = γ�hi�t�� and ν�t� = ψ�γ−1�t��. This would result
in the nonuniqueness of the solution of (5) if φ is not strictly convex. This
means that the basic shape of ψ will be recovered, but the positions of the
peaks of ψ cannot be uniquely determined.

For more general cases, where recovering the model may not be possible
in full generality, the algorithm still provides good approximations (see Sec-
tion 5).

4. Some computational considerations. This section discusses com-
putational details of the iterative algorithm of the last section.

4.1. Estimating derivatives. The most frequently used methods for esti-
mating regression functions and their derivatives are kernel smoothing, spline
smoothing and local polynomial fitting. These three methods are asymptoti-
cally equivalent for fixed design as dealt with here. We will apply the kernel
method of Gasser and Müller (1984) to the data of the form (1),

f̂
�k�
i �t� = f̂

�k�
i �t� b� = 1

bk+1

ni∑
j=1

∫ sij

sij−1

yijKk

(
t− u

b

)
du�(14)

Here k is the order of derivatives, Kk is a kernel of order k + 2 and b is a
global bandwidth which is independent of t but depends on k. The s-sequence
is defined by sij = �tij + tij+1�/2, j = 1� � � � � ni − 1, si0 = 0 and sini = 1.

The selection of the bandwidth b is very important for the quality of the es-
timate. Here the bandwidth is chosen by the plug-in method: estimate the op-
timal bandwidth which minimizes the estimated asymptotically optimal mean
(integrated) squared error [Gasser, Kneip and Kohler (1991)]. The subroutine
used in our computation is glkern.f, which was written by Eva Herrmann and
can be obtained from the Web site www.unizh.ch/biostat/.

The optimal bandwidth increases as the order k of the derivative increases,
and a larger bandwidth produces smoother estimates. To reduce the amount
of irregular alignments due to larger errors when estimating derivatives, the
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derivatives of the sample curves are estimated with oversmoothing. First, the
optimal bandwidth b2 for estimating f′′

i (k = 2) is estimated. Then we use this
bandwidth b2 in (14) with k = 1 to estimate the first derivatives of fi. This
oversmoothing reduces the peak amplitudes of f′

i but it preserves the shape
of f′

i. For the alignment, the shapes of fi and f′
i are more important than the

peak amplitudes because of the normalization by the supremum norm.

4.2. The parameter α. The parameter α determines whether the alignment
should rely more on the function itself or on its derivative. The best α can be
obtained by a grid search. For a finite number of α ∈ �0�1	, solve the variational
problem (5) and compute the cost �α (the minimum value of � given α) . Then
the best weight parameter α∗ is given by the solution of

min
α

�α�

To speed up computation, we have chosen the best weight parameter α∗

from three values 
0�3�0�5�0�7� (see also the Remark 2.1). The simulations of
Section 5 show that this choice works well.

4.3. The case of unknown starting and ending times. The start and end
points of the underlying process may be unknown. An example is the recording
of evoked potentials of the human brain. The effect of a stimulus on the human
brain (e.g., subjects push a button with a finger as soon as possible after they
see a specified graph on a computer screen) lasts for different periods for
different subjects, and the length of the period is unknown. This means that
the end points of the potentials are unknown.

It is easy to deal with unknown start and end points in programming. In
each iteration of the algorithm of Section 3, every curve is aligned to the
average of the aligned curves from previous iterations. If gki �t� = 0 for 0 <
t ≤ t0 < 1, then the starting time of the ith curve is later than the average
starting time, and one can omit the ith curve when computing the average
of the aligned curves for the time interval [0� t0] as if there were only m − 1
curves. On the other hand, if gki �0� > 0, then the starting time of the ith
curve is earlier than the average starting time, and that part of the ith curve,

fi�t�� 0 ≤ t ≤ gki �0��, can be omitted. End times can be treated in the same
way.

4.4. The penalty function φ. On one hand, the penalty function φ should
be strictly convex such that the solution of the minimization problem (5) is
unique. On the other hand, φ should be flat so that it does not produce artificial
warping functions by pushing toward the identity function g�t� = t. To avoid
estimating derivatives of the warping functions, we have replaced the single
penalty term φ�g′

i�t�� with three conditions in programming.

(A) The warping functions gi�t� are nondecreasing. This is automatically ob-
tained by dynamic time warping.
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(B) The warping functions gi�t� do not jump steeply: �gi�t� − t� ≤ θ for some
θ > 0. We have used θ = 1/3 and θ = 1/2 in the simulations and ap-
plication of Section 5. Small θ means a narrow search by dynamic time
warping speeding up the computation. If one has no information about the
time transformations between sample curves, a relatively large θ should
be specified, say θ = 1/2.

(C) Within the boundary of (B), a strictly convex penalty function on the warp-
ing functions is defined by

φ�gi�t�� = δp
�gi�t� − t�2

1 + �gi�t� − t�2
�

We choose δp = 0�001, resulting in a flat penalty function.

While these conditions are easy to handle in programming, the penalty term
φ�g′

i�t�� of (5) is easier for a theoretical analysis.

4.5. Number of iterations. We are unable to perform a theoretical analysis
on the convergence rate of the iterative algorithm of the last section. Our
simulations show that a few iterations (less than or equal to five iterations)
produce nice results. In all computations in this paper, we use three itera-
tions.

4.6. The initial warping functions. The initial warping functions, g0
i �t� = t

of the iterative algorithm of Section 3, work well in most cases. However,
in some extreme cases where large time transformations occur, these initial
warping functions could slow down the convergence of the iterative algorithm
and even lead to misalignment of some components with relatively small am-
plitudes. If we had a template curve, then we could obtain initial warping
functions by warping each sample curve to the template (Section 2). The tem-
plate can be obtained as follows. Choose a few sample curves (say 2q curves,
q = 2 or 3) such that these curves have the smallest distance from the aver-
age of the sample curves. Divide these curves into 2q−1 pairs. Warp one curve
to another for each pair and compute an aligned average of each pair. Then
divide the 2q−1 averages into 2q−2 pairs. Repeat this procedure until there is
only one average curve left, which is the template.

4.7. The parameter λ. There are well-known methods such as GCV for
choosing the smoothing parameter λ. If one uses the smoothed curves in the
computation of the right-hand side of (10), then one can take λ = 0. This
produces a visually smooth average of the aligned curves in most cases, and
this is what we do in the simulations and applications.

5. Simulations and applications. This section presents simulation re-
sults of the algorithm of Section 3 and an application to growth curves. An
application to the well–known gait data (for the knee) has also led to very
satisfactory results. Fortran subroutines used for these computations can be
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obtained by sending a request via E-mail to Wang (kmw@mendel.neurodyn.
hscbklyn.edu).

5.1. Simulations. The shape function is defined by

s�t� = 15
(
exp�−20�t− 0�7�2� − 0�5 exp�−50�t− 0�45�2�
+ 0�6 exp�−100�t− 0�3�2� − 0�6 exp�−150�t− 0�2�2�

+ 0�5 exp�−200�t− 0�15�2�)�
This function has several positive and negative components, simulating the
basic pattern of visually evoked brain potentials. Figure 2 plots the function
s�t�. The simulated data are generated from the model

fi�t� = ais�hi�t�� + εi�t��
Here ai is an individual constant and εi�t� is white noise. We will assume an
equally spaced design with ni = 100 observations per curve. The number of
curves is set to m = 30. We consider two forms of the time transformations hi.

(F1) Quadratic transformations hi�t� = t+bit�1−t� for constants bi. To insure
that hi is strictly increasing, the condition �bi� < 1 has to be satisfied. It
is obvious that hi�0� = 0 and hi�1� = 1.

(F2) More complicated transformations hi�t� = t + bi sin�2πcit� for integers
ci ∈ 
0�1�2�3�. To insure that hi is strictly increasing, the condition
�2πcibi� < 1 has to be satisfied. Again we have hi�0� = 0, hi�1� = 1 and
in addition hi�1/2� = 1/2.

For comparisons between the estimated average of the aligned curves and
the shape function, we will require that

1
m

m∑
i=1

ai = 1�
1
m

m∑
i=1

hi�t� = t�

Fig. 2. The shape function used in the simulations of Section 5.
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It follows that the shape function becomes the average of the aligned curves.
For (F1), the latter condition implies that

∑m
i=1 bi = 0. It is a bit more compli-

cated for the model (F2), but a sufficient condition is∑

i� ci=j�

bi = 0 for j = 0�1�2�3�(15)

The parameters are generated as follows. For ai, first generate m normal
random variables Ni, i = 1� � � � �m. Then normalize them as Ai = 0�5Ni/N
where N = maxi �Ni�. Set

ai = 1 +Ai −
1
m

m∑
j=1

Aj�

The generation of ci is simple:

ci = round�3U�0�1���
where U�0�1� is a uniform random variable on (0,1) and the function round(x)
rounds up a number x to its nearest integer. The generation of the parameters
bi depends on the model for time transformations. For (F1), again generate m
normal random variables Mi, i = 1� � � � �m and center them as in

Bi =Mi −
1
m

m∑
j=1

Mj�

Then let

bi =
0�5Bi

maxj �Bj�
�

For (F2), we start from m normal random variables and repeat the following
two steps:

(i) Center the variables according to (15).
(ii) If �2πcibi� ≥ 1 for some i, replace bi by 0�95sign�b�i��/�2πci�.
These two steps are repeated alternatively until �2πcibi� < 1 is satisfied

and the parameters bi are centered according to (15).
For model (F1), it is easy to see that �hi�t� − t� = �bit�1 − t�� ≤ 1/2 but

it may be �hi�t� − t� = 1/2 for some i. So the search band parameter θ of
the condition (B) of Section 4.4 should be at least θ = 1/2; otherwise the
optimal warping functions could not be found for some sample curves. We
will run the simulation with both θ = 1/2 and θ = 1/3 to show possible
wrong alignment with a too small band parameter θ. For model (F2), we have
�hi�t� − t� = �bi sin�2πcit�� ≤ 1/�2π� < 1/3. So θ = 1/3 is appropriate for the
model (F2).

Two error measurements are computed for each replication. First, the mean
squared error of the estimated structural average is given by

MSEA =
∫ 1

0
�s�t� − µ�ḡ�t��	2 dt�
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Second, the error of estimating the warping functions 
gi� (the inverse of the
time transformations hi) is given by

MSEW = 1
m

m∑
i=1

∫ 1

0
�hi�gi�t�� − t	2 dt�

The simulation results with 500 runs are plotted in Figures 3 and 4.
The average MSEA of 500 runs is 0.5906 (standard deviation 0.3051),

6.0194 (standard deviation 3.1141) and 0.1428 (standard deviation 0.0377)
for the time transformation models (F2), (F1) with the search band parameter
θ = 1/3 and (F1) with θ = 1/2, respectively. The average MSEW of esti-
mating warping functions in 500 runs is 0.0002 (standard deviation 0.0005),
0.0101 (standard deviation 0.0041) and 2.2667e−06 (standard deviation
4.4808e−05) for the models (F2), (F1) with θ = 1/3 and (F1) with θ = 1/2,
respectively.

For the simple time transformations (F1), the estimation of the warping
functions is quite accurate with a large enough θ. When θ is too small, the es-
timation error could be large. For the more complicated time transformations
(F2), it is more difficult to estimate the warping functions even though the

Fig. 3. The errors MSEA of 500 runs. Top: model (F2); middle: model (F1) with δ = 1/3� bottom:
model (F1) with δ = 1/2.
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Fig. 4. The errors MSEW of 500 runs. Top: model (F2); middle: model (F1) with δ = 1/3� bottom:
model (F1) with δ = 1/2.

amount of time transformations (supt �hi�t� − t�) is relatively small. Figure 5
plots a typical run with the time transformations (F2).

5.2. Application to growth data. The Zürich growth data is analyzed here.
The data are the measurements of the growth (height, shoulder width, etc.)
of children from birth to adulthood. There are 120 boys and 112 girls. For
each person, the measurements are taken quarterly from birth to one year old,
semiannually from one to two years old, annually from two to ten years old and
then semiannually from ten until pubertal growth has stopped. This results
in at most 36 measurements per person. The actual number of measurements
per person ranges from 27 to 35, with an average of 32 measurements per
person.

Here we discuss growth velocity of the shoulder widths of the children. The
growth velocity is more informative since growth curves are simply increasing
functions of age. From birth to two years old, the growth speed is high but
it is simply decreasing. Therefore, we will analyze the growth speed of the
children’s shoulder widths from 2 to 20 years old. The measurement unit is in
centimeters. Figures 6 and 7 plot the results for boys and girls, respectively.
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Fig. 5. A typical run of the simulations with model (F2): (1) the 30 sample curves; (2) the smoothed
curves; (3) the estimated warping functions gi�t�� (4) the aligned curves; (5) the shape function
�dash-dot�� the average of the aligned curves (solid), and the average of the sample curves (dash);
(6) the true time transformations hi�t�� (7) the plot of the functions hi�gi�t��� which should be
hi�gi�t�� = t for all i.
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Fig. 6. Growth velocity of shoulder widths of 120 boys. (a) measurements of shoulder widths from
10 boys. (b) estimated growth speed of the 10 sample curves in (a). (c) the 10 warping functions to
aligh the 10 curves of (b) to the average development pace of boys. (d) the average growth speed of
boys: average of aligned speeds �solid� and average of unaligned speeds �dash�.

From subgraph (b) of Figures 6 and 7, we see that the growth speed of a
child’s shoulder width changes quite a bit between individuals. The simple
average of the growth speed of more than 100 children does catch the growth
spurt at about age 14, but the amplitude of this peak is reduced. Furthermore,
it misses the early spurt at about age 7 [see subgraph (d) of Figures 6 and
7]. For boys, there is a small peak at about age 10. This phenomenon has
been seen before but its biological relevance is unclear. The midgrowth spurt
occurs at about the same age for boys and girls, but the major spurt occurs at
about age 13 for girls and at about age 15 for boys. These results agree with
the findings of Gasser, Kneip, Binding, Prader and Molinari (1991), Gasser,
Kneip, Zieger, Molinari, Prader and Largo (1994).

These and further simulations and applications illustrate that the algo-
rithm of Section 3 works well indeed.

6. Statistical analysis. In many applications data are of the form (1),
and the functions fi and their derivatives can, for example, be estimated by
the kernel method described in Section 4. Then the solution 
g∗

i� of (5) is
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Fig. 7. Growth speed of shoulder widths of 112 girls. (a) measurements of shoulder widths from
10 girls. (b) estimated growth speed of the 10 sample curves in (a). (c) the 10 warping functions to
align the 10 curves of (b) to the average development pace of girls. (d) the average growth speed of
girls: average of aligned speeds �solid� and average of unaligned speeds �dash�.

estimated by 
ĝi�, which solve the minimization problem

inf

gi�

∫ 1

0
� �g1� � � � � gm� f̂1� � � � � f̂m��t�dt�(16)

Similarly, the solution µ∗ of (6) is estimated by µ̂, which solves the minimiza-
tion problem (6) in which fi is replaced by f̂i and gi by ĝi. We will derive
the order of the bias and variance of these estimators based on the following
assumptions.

Assumption 1. There exists a constant ρ > 0 such that

δ+ r+ ρ ≤ inf
i

inf
t
g′
i�t� ≤ sup

i

sup
t
g′
i�t� ≤ � − r� − ρ�

As to parameters δ, r and  , see Assumption 0.

Assumption 2. For all i, fi ∈ : ≡ 
f ∈ C4�0�1	� �f�k�� ≥ δ0 > 0, k = 0�1�
for a positive number δ0.
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Assumption 3. For a bounded continuous functional Z� : �→ R, there ex-
ists a continuous function Z∞ ∈ C�0�1	 such that

1
m

m∑
i=1

Z�fi��gi�t�� −Z∞�t� = Op�m−1/2��(17)

Assumption 4. The gradient matrix

A�t� = �H�F1�g1�t��� � � � �Fm�gm�t���




�gF1�g1�t��
���

�gFm�gm�t��




has an inverse A−1�t� in a neighborhood of t.

Remark 6.1. Assumption 1 imposes a regularity condition on 
gi�. Since
the parameters δ,  −1, r, and ρ can be small and since we expect regular
warping functions gi in applications, Assumption 1 does not restrict the ap-
plicability. It simplifies, however, the statistical analysis because (8) is reduced
to a system of algebraic equations. In principle, the differential equations can
be treated in a similar way and we will make a remark on it [Remark 6.3(ii)].
Assumption 2 is the usual smoothness condition and avoids also linear curves
which are degenerate cases in kernel fitting. Assumption 3 is satisfied if the
sample 
fi� follows some probabilistic model. It simply says that for bounded
continuous functionals on a proper Banach space, the central limit theorem
holds. Finally, Assumption 4 makes the solution of (8) unique in a neighbor-
hood of t and hence makes it possible to derive asymptotics of µ̂ and 
ĝi�
at t.

Theorem 6.1. Under Assumptions 0–4, the following conclusions hold.

(i) The order of bias is given by

E�ĝi�t�� − gi�t� = O

(
b2 +

(
log�n�
nb3

)1/2)
= E�µ̂�t�� − µ�t��

(ii) The stochastic terms �nb5�1/2�ĝi�t� − E�ĝi�t��	 �i = 1�2� � � � �m� and
�mnb5�1/2�µ̂�t� −E�µ̂�t��	 of the estimators are asymptotically normal.

(iii) The estimators 
ĝi� for the warping functions are asymptotically inde-
pendent.

Remark 6.2. (i) The true shift functions gi depend on the sample functions
fi and the pattern of the underlying process, which is estimated by the average
of the aligned sample curves. The asymptotic independence of the 
ĝi� simply
says that the individuals are developing at their own pace, respectively, and
the development of one individual is not influenced by others.

(ii) It would be possible to write down an explicit formula for the leading
bias term of µ̂ and ĝi, if we knew a formula for the leading bias term of �f̂�k�

i �
as an estimator of �f�k�

i �, k = 0�1.
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Proof of the Theorem. The proof goes as follows. The differential equa-
tions (8) are reduced to algebraic equations because of Assumption 1. Then
use a Taylor expansion to express ĝi�t� − gi�t� as a linear function of the
statistics 
f̂i�gi�t�� − fi�gi�t���� � � � � 
f̂′′

i �gi�t�� − f′′
i �gi�t��� and higher order

error terms. The theorem follows from known results for kernel estimation of
regression functions. Therefore, we will keep the proof short and present only
the ideas of the proof.

From (8) and Assumption 1, we get

0 =Hi�F1�g1�t��� � � � �Fm�gm�t���
for a functional Hi. In matrix form it is

0 =H�F1�g1�t��� � � � �Fm�gm�t��� and H = �H1� � � � �Hm�T�
Recall that Fi�t� ≡ �fi�t�� �fi�� f′

i�t�� �f′
i�� f′′

i �t��T. As sample size per subject
increases to infinity, F̂i�t� converges to Fi�t� almost surely. Again, Assump-
tion 1 implies that the estimated shift functions 
ĝi� satisfy the same equation

0 =H�F̂1�ĝ1�t��� � � � � F̂m�ĝm�t����
Combining the last two equations and applying the Taylor expansion, we

derive that

0 =H�F̂1�ĝ1�t��� � � � � F̂m�ĝm�t��� −H�F1�g1�t��� � � � �Fm�gm�t���

= A�t�



ĝ1�t� − g1�t�

���

ĝm�t� − gm�t�


+B�t� + higher order error term�

(18)

The matrix A�t� is defined in Assumption 4 and the term B�t� is defined by

B�t� =



B1�t�
���

Bm�t�




= �H�F1�g1�t��� � � � �Fm�gm�t���




F̂1�g1�t�� −F1�g1�t��
���

F̂m�gm�t�� −Fm�gm�t��


�

The matrices A�t� and B�t� can be calculated and they are given by compli-
cated yet explicit formulas.

From well known results for kernel smoothing [Gasser and Müller (1984)],
one can derive that

E�Bi�t�� = O

(
b2 +

(
log�n�
nb3

)1/2)
�

and that the functions 
Bi� i = 1� � � � �m� are asymptotically independent.
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Based on Assumptions 3 and 4, the inverse of the matrix A�t� exists. Denote
this inverse by A−1�t�. Then


ĝ1�t� − g1�t�

���

ĝm�t� − gm�t�


 = A−1�t�



B1�t�
���

Bm�t�


+ higher order error terms.(19)

This leads to the bias estimation

E�ĝi�t�� − gi�t� = O

(
b2 +

(
log�n�
nb3

)1/2)
�

The leading stochastic term of ĝi�t� is obtained similarly. First, the results
for kernel smoothing [Gasser and Müller (1984)] lead to �Bi�t� −E�Bi�t�	� =
Op��nb5�−1/2� for all i. Second, the asymptotic independence and normality of

Bi�t�� i = 1� � � � �m� leads to the asymptotic independence and normality of
the warping functions ĝi�t�.

The statistical analysis of the estimator µ̂ follows from the asymptotics of
ĝi�t� and (10). This completes the proof of the theorem. ✷

Remark 6.3. (i) In Theorem 6.1 and its proof, we assume that the weight
parameter α is fixed. The best choice of the parameter α (see Section 4.2)
can be estimated from the data. For the case of two curves, this is treated in
Wang and Gasser (1997). We will not deal with the statistical properties of
the estimator of α in this paper.

(ii) The convergence rates of the estimators are still valid without Assump-
tion 1, but the proof is more complicated. As an example we take the special
penalty function φ�x� = a�x−1�2/2 for a constant a > 0. Apply the derivation
of (12) again to get

ĝ�t�=



t

���

t


− 1

a

∫ 1

0
min�t� s��1− max�t� s�	H�F̂1�ĝ1�s��� � � � � F̂m�ĝm�s���ds�

This shows that

ĝ�t� − g�t� = −1
a

∫ 1

0
min�t� s��1 − max�t� s�	

× [
H�F̂1�ĝ1�s��� � � � � F̂m�ĝm�s���
−H�F1�g1�s��� � � � �Fm�gm�s���

]
ds�

By expanding the difference

H�F̂1�ĝ1�s��� � � � � F̂m�ĝm�s��� −H�F1�g1�s��� � � � �Fm�gm�s���
as we do in the proof of Theorem 6.1 and by approximating the nonlinear
integral equations with linear equations, we can derive the same convergence
rates in this case.
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