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GENERALIZED VARIANCE AND EXPONENTIAL FAMILIES

By ABDELHAMID HASSAIRI

Sfax University

Let u be a positive measure on R? and let F( ) = {P(6, n); 6 € O} be
the natural exponential family generated by u. The aim of this paper is to
show that if w is infinitely divisible then the generalized variance of pu,
i.e., the determinant of the covariance operator of P(6, w), is the Laplace
transform of some positive measure p(u) on R?. We then investigate the
effect of the transformation u — p( ) and its implications for the skew-
ness vector and the conjugate prior distribution families of F( w).

1. Introduction. Consider a distribution u on R% Assume that u has a
Laplace transform,

L,(60)= fexp(@, xou(dx)

for 6 in a neighborhood of 0. In Kokonendji and Seshadri (1996), the following
result is proved. Let L) denote the (d, d) Hessian matrix of L,. Then det L,
is itself the Laplace transform of some positive measure on R¢ [a far-reaching
generalization of the result of Lindsay (1989)]. The aim of the present paper
is to give a parallel result to this. Let k, = Log L, be the cumulant generat-
ing function of w. Assume now that w is infinitely divisible. Under this
circumstance, we prove that there exists a positive measure p( u) on R¢ such
that

(1.1) det 1 (6) = L, ,,(0).

Let us recall a few facts from the literature about this function det £;(6).
Wilks (1932) calls det k(0) the generalized variance of u since &7,(0) is the

covariance matrix of u. Consider the natural exponential family (NEF) F( u)
generated by u, that is, the set of distributions

P(0, u)(dx) = exp[<0, x) — k,(0)] u(dx),

where 0 belongs to ®( u) defined as the interior of {6, LM(B) < + o}, Then, for
6 in ©(uw), det k,(6) is the generalized variance of P(6, w). Also,

d
(1.2) u(9) = %[logdet R, (0)]

is called the skewness vector of F(u) [see Gutiérrez-Pena (1995)].
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The third fact concerns the dimension 1. It is well known [see Letac (1992)
or Kokonendji and Seshadri (1994)] that a distribution w on R such that
O(w) # J is infinitely divisible if and only if k,(6) is the Laplace transform
of some positive measure p( w). Thus, our main result is the extension to R¢
of the second part of this statement. Furthermore, still for dimension 1, and
whether w is infinitely divisible or not, Kokonendji and Seshadri (1994) have
proved that k;fLLi is the Laplace transform of some positive measure T'( w). It
is therefore interesting to remark that if, furthermore, u is infinitely divisi-
ble, then T(w) = w+* w* p(w). One can also observe that if the variance
function Vj,, of the NEF F( ) is quadratic [see Morris (1982)], both Vi 7,
and Vg, are quadratic. If Vy,, is cubic [see Letac and Mora (1990)], then
both Vz(p(,y and Vg, are polynomials of degree 4 in Vm .

Our paper has the following plan. In Section 2 we state our main result,
whose long and technical proof is postponed to Section 3. In Section 2 we also
study properties of the map u — p( u), which is defined on the set of infinitely
divisible distributions in R¢. In particular, if F = F(u) and F = F(p( ),
Theorem 2.3 links the variance functions V; and Vj. This provides a way, in
certain cases, to obtain p(u) explicitly, or to discover new multivariate
simple structures. Another surprising result is the fact that the skewness
vector of P(0, w) is nothing but the mean vector of P(6, p( ). This leads
Corollary 2.5 to a new characterization, in terms of p(w), of the NEF such
that the conjugate families obtained with the canonical parameter 6 coincide
with the conjugate families obtained when the parameter is the mean. [See
Consonni and Veronese (1992) for results in the one-dimensional case and
Gutiérrez-Pena (1995) for the d-dimensional case.]

2. The generalized variance transform. Let .Z, be the set of positive
measures u on R¢ not concentrated on a hyperplane and such that O( ) =
interior{6; LM(O) < o} is nonempty. In this section, we first state the main
theorem related to the existence of p( ) for p in .#Z,; infinitely divisible. We
then introduce and study the generalized variance transform.

THEOREM 2.1. Let u be in #,;. If u is infinitely divisible then there exists
a positive measure p(u) on R? such that

det £, (0) = L, (0) forall 6in O(u).

p( 1)

CoMMENTS. (i) The measure p(pu) is not always in .#,. This can be seen
by taking the measure generating the Poisson family on R,

1
p(dx) = L 58(dv),
keNd V"

where k!= klk,! - k,l. Here O(p) = RY, k,(6) = L{_je% and L, ,(0) =
det £/(0) = exp(X?_,0,). Thus the measure p( u) is concentrated on the point
1=(,1,...,1) of R%

(i1) As mentioned above, if d is one, the infinite divisibility of w is a
necessary condition for the existence of a measure p( u) satisfying (1.1). This
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need not be the case when d > 1. Consider, in fact, the Wishart family of
distributions on the space S, of symmetric real (d, d) matrices generated by
the measure p such that —O(w) = S, the cone of positive definite elements
of S;, and

L,(6) = (det(—0)) .

It is known that the measure w is not infinitely divisible [see Letac (1992)].
However,

det kj,(60) = (det(—0)) "V =L,  (0),

d+1
where g, = p* ),

(iii) Let (e,, ey, ..., e,) be the canonical basis of R?. The measure u = §, +
8, + - +9,, generating the multinomial family on R? provides an example
of a measure u which is not infinitely divisible and such that det k;’L(O) is not
a Laplace transform. Actually

k,(0) = Log

d
1+ Zeei),

i=1
and a simple calculation gives

d —(d+1)
det £/, (6) = |1+ Ze"i) exp(0; + 0y + - +6,).
i=1

It is easy to show that this is not the Laplace transform of a positive measure.

DEeFINITION 2.1. If & is the set of measures p in .#,; such that p(uw)
exists, then the transform u — p(w), defined on Z, will be called the general-
ized variance transform.

We now examine the effect of the generalized variance transform u — p( )
when the transformed measure p( ) is also in .Z,. Our aim is to obtain some
information on the NEF generated by p( u). We say that two NEFs, F( u) and
F(v), on R are in the same Gy-orbit if the first can be obtained from the
other by an affine transformation and a power of convolution. Given that a
NEF is usually defined by one element of its basis and that the classifications
of NEF are done up to G-orbits [see Morris (1982), Letac and Mora (1990)
and Hassairi (1992)], we first prove the following result.

PROPOSITION 2.2. Let p in & be such that p( ) is in 4.

(1) If W is a basis of F( ) then F(p( ) = F(p(w)).
(i) If W is such that F(W') is in the Gy-orbit of F(w), then F(p(n)) and
F(p(w)) are also in the same G ,-orbit.

Proor. (i) If i is a basis of the NEF F( w), then there exist a in R? and b
in R such that

ky(0) =k, (0+a) +b for0in®(u).
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Hence
det &,(6) = det(k), (0 + a)).
Thus, we obtain

L,,(0)=L,,(0+a) VoeO(p(u)),

which implies that F(p( ') = F(p(w)).
(i1) Suppose that F(u') and F(pu) are in the same G,-orbits. Then there
exist an affine transformation of R, ¢(x) = 8(x) + v and « > 0 such that

k (A) = ak,(8*(N) +{A,y) VAed* (O(n)).
Hence
L, (A = ad(det §)°L,,,(5%(A)),

which implies that F( p( w)) is the image of F( p( &')) under the linear map §.
O

Recall now that My = k,(©(p)) is called the domain of the means of the
NEF F = F(p). Since u is in .#,, k, is strictly convex and 6 — k(6) is a
bijection between ©(u) and M. The map m — ,(m) will denote its inverse
function from M to ®(w). The map from M, to Ly(R?), defined by m —
Ve(m) = k,(,(m)), is called the variance function of the NEF. It is easily
proved that Vy(m) =[¢,(m)]"" and an important feature of Vj is that it
characterizes F' in the following sense: if F; and F, are two NEFs whose
variance function coincide on a nonempty open set of My N My, then
F, =F,.

The following theorem gives the link between the variance function of the
NEF generated by the measure u and the variance function of the trans-
formed NEF generated by p(w). If Vi, (m) belongs to a certain class, then
the generalized variance transform produces a new class of variance func-
tions. For example, if F( ) is in the Mora class of NEF in R? with strictly
cubic variance function [Hassairi (1993)], then F( p( w)) will be in the exten-
sion to R? of the class of NEF’s in R with polynomial variance function of
degree 4 in Vm . Note also that Vir(o(uy TePresents an important tool in the
determination of F( p( w)); it permits, in certain cases, explicit determination
of p( ).

THEOREM 2.3. Let u in & be such that p(u) is in #,. If we define
F=F(w), F=F(p(w) and m = k), (§,(m)) for m in My, then:

p(p

@ m = (Ve(m)(Vip(m)*(Ve(m) ™.

(i) If (e;); -, 4 is an orthonormal basis of R?, then

d
(2.1) m = '—21 (Ve(m)e;)e;.

(ii) V m € My,

dm
(2.2) Vr(m) = ——Vp(m).
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To illustrate the last result concerning the variance function of F( p(u)),
consider the inverse Gaussian NEF generated by the measure defined on a
point (x,, x') of ]0, + [ X R~ by

1

(27T)d/2 x(1d+2)/2 e

1
p(dxy, dx') = Xp[— z—xl(l + IIx’IIZ)}l]o,w[(xl) dx, dx'.

The variance function of F( ) is
Viw(m) =<e;,m)[m®m +1,—e ®e]

[see Hassairi (1992)]. A direct calculation, using (2.1) and (2.2), shows that
F = F(p(w)) has the simple quadratic variance function

2
VF(H_’L) = mn_l ®m + (el,n_7,>(1d —e; ® el).

Therefore F is one of the quadratic NEF’s described by Casalis (1996).
Now consider the skewness vector u(0) of a NEF F = F(u) defined by
(1.2). It may be expressed in terms of the mean parameter m as
a(m) = u(y(m)) = |
Theorem 2.3 provides two alternative expressions for #(m).

Log det Vz(m)]Vz(m).

COROLLARY 2.4. Let u be in #,;. Then
d
a(m) = Vp o (m)(Vi(m)) (Ve(m)) ' = ¥ (Vi(m)e,)e;,
i=1

where (e,) is any orthonormal basis of R-.

Furthermore, if uisin Z, in particular if w is infinitely divisible, then the
skewness vector of the distribution P(0, w) is equal to the mean vector of the
distribution P(6, p( w)).

Another corollary of Theorem 2.3 is related to Bayesian theory and con-
cerns the equality of two conjugate prior distribution families of a NEF
F = F(uw). Let II be the family of prior distributions on ®( u) introduced by
Diaconis and Ylvisaker (1979),

T m(d0) = C, . exp t[(0, my) — k,(0)]1g,,(0) db,
where m, € My, t > 0 and C, ,, is a normalizing constant. The image of Il
by k,, is a family of prior distributions on the domain of the means M of the
NEF F. Besides k(II), Consonni and Veronese (1992) consider another
family IT* of prior distributions on My,

7} (dm) = CF . exp t[{y(m), my) =k, (#,(m))| 14, (m) dm.

Casalis (1996) states that k/(II) = IT* if and only if there exists B in R
and a in R such that, for any basis (e;)?_; of R,

d
Y (Vi(m)e)e,=am + B, m <M.
i=1
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Provided that the generalized variance transform of p exists, we have the
following criteria for the equality of &,(I1) and IT*.

COROLLARY 2.5. Let p in % be such that p(u) is also in #,. Then
k,(I1) = I1* if and only if F(u) leads to F( p( ) by a translation and a power
of convolution.

ProOOF OF THEOREM 2.3. (i) For 6 € O(u) = O( p(w)), we have L

(6) =
det k;’L( 0). Hence

p(p

k,(0) = Logdet k().

If Lg(R?) is equipped with the inner product {a, b)7 re) = trace(a, b), then
by differentation, one gets

(Byo(0), ) o = ((B(0)) S BL(OIC) ),

=<(km(0))*(k//(0)) ’->R4’
which implies %/ ,,(8) = (k,/(6))*(k/(6))"". Let § = ;,(m). Then
(2.4) 7 = Ey((m)) = (k2 ((m)" (R ((m)))
Since Vip(m) =k (y(m)) = (,(m)"', we have Vi(m) =k (,(m)y,(m).
Inserting this in (2.4) yields
M = Vp(m)(Vi(m)) (Vp(m)) "'
(i1) From (2.3) and (2.4), we have
(m, a) = trace((V(m)) 'V'(m)V(m)a).

(2.3)

Therefore,
d

(7,00 = ¥ (((V(m) V' (m)V(m)a)e, e,).

i=1
We now use the following property of symmetry of a variance function:
(Vi(m)V(m)a)B=(V'(m)V(m)B)a) forall a and B.
Thus

T {((Vm) 'V (m)V(m)e;)a.e;)

(m, a)

~.

(V' (m)V(m)e)a,(V(m)) e,

T((V(m)V(m)e)(V(m)) e, o)

~.

T M& l[\ﬁ& 1[\1& lM&

A(V(m)e)es, a).
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Hence

M=

m =

(V'(m)e;)e;.
1
(iii) Since m = &/, (¢,(m)), then ¢, ,(m) = ¢ (m). Differentiating with

. p(p
respect to m yields

~.
Il

! e dn_/L !
lllp(y,)(m)% = ¢ﬂ(m)‘
This is equivalent to the desired result. O

3. Proof of Theorem 2.1. This section is entirely devoted to the proof of
Theorem 2.1. In order to do so, we need to introduce some other notations and
to establish several results on determinant calculations. If A = (q; j)lgjé 4 18

a (d, d)-matrix and T is a subset of {1,2, ..., d}, we denote by A, the matrix
(a;))i jerxr and by det Ay the determinant of A, with det A, = 1.

The following proposition is classical and stated without proof.

ProPOSITION 3.1. Let A and B be two (d, d)-matrices. If A is diagonal,
then

det(A + B) = Y. det Ay det By,
Tc(1,2,...,d)

where T' =1{1,2,...,dN\T.
We now prove a theorem concerning the expectation of a determinant. This

theorem is stated without proof in the paper of Kokonendji and Seshadri
(1996) and appears as a problem due to Pélya and Szego (1972).

THEOREM 3.2. Let E be an oriented Euclidean space and m a positive
measure on E X E such that

[ XY ln(dX, dY) < +e.
EXE
If dim E = d,then
det[[ X ® Yn(dX, dY)}
EXE

(3.1)

d!ﬁEXEW
X n(dX(l), dY(l)) n(dX(d), dY(d)).

det[ XV, ..., XD]det[ YD, ..., Y]

Recall that, in an oriented Euclidean space E, det[ XV, ..., X(@] is defined
as the determinant of the matrix ((X®]©,... [ X@D]©) where (e) is any
direct orthonormal basis of E; this number is independent of the choice of (e).
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We need now the following lemma.
LEMMA 3.3. Let F=F, X Fy X ,...,F,; be the product of d finite-dimen-
sional linear spaces and let B: F — R be a multilinear form on F. If v is a

positive measure on F and f = (f1, f5,---, [4) is a mapping from F to F such
that [pfv(df) exists, then

B(/Ffv(df)) =B(fFflv(df),---,fFfdv(df))

=/ B(f, ..., fiP)u(df D) - v(df D).
o

PrOOF. We use induction on d. It is obvious for d = 1. Suppose the result
true for d — 1 and denote m; = [ f;»(df). Then

B(m,,my,...,my) =B(m1,...,mdl,fFfdv(df)).

Using the linearity of B,

- fFv(df)[f B(fO, 50, £, Fa) v (df @) - V(df(dl))]

Fr-
= [ B(F®O, 89, oo, 90 v (dFP) - w(df = D)u(df). O
FVL
ProoF oF THEOREM 3.2. Let (e) = (ey, ey,..., e ) be an orthonormal basis

in E. If the elements of R? are written as column matrices, then the space E
is identified with R? by means of the map X, X,e; > X =(X;, X,,..., X,).
Hence, in the basis (e), the equality (3.1) becomes

det X ® Yn(dX,dY)

REx R?

(3.2) _1
d! (RIxRD)E

Xn(dXD, dY D), ..., n(dXD, dY D).

det[ XD,..., XD]det[ YD, ..., Y]

We apply Lemma 3.3 to F; = R?, F being the space of the (d, d)-matrices
and B(f) = det f. We have

det X®Yn(dX,dY)| = det| XVYD, ... XDy D
('/Rded gl )) ‘/;Rded)d [ ! ¢ ]

X n(dX(l), dY(l)) n(dX(d), dY(d))
because the ith column of the matrix X ® Y is X®Y). Hence the

left-hand side of (3.2) is equal to [piypeY (VY - YD det[ XD, ..,
XDn(dX D, dY D) -+ n(dX D, dy D),
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Let us now examine the right-hand side of (3.2). If we denote it by S, we
have

1

S J—
d‘ (RdX Rd)d

det[( X(i),Y(i)>is;igd]n(dX @y, dy(l)) n(dX(d), dy(d))

d
— det|| Y X}gi)yk(j) n(dX(l),dY(l)) n(dX(d’,dY(d)).
d! Jgaxrd)d b—1
Using the multilinearity of det and denoting by X|” the vector ‘(X" X,
..., X{D), we obtain
d

d
j 2 d
o 1Y a0t X0, 3, 300]
= j=

X n(dX(l), dY(l)) ’r)(dX(d), dY(d)).

Now det[ XV, X?,..., X{¥]is equal to det[ XV, X@ ..., X D]if (k,,..., k)
is a permutation of ¢ and is equal to zero otherwise. Hence
1 d
S=— Y det| XV, X®, ..., XD
(3.3) d! %'/;Rded)djl:[l oy det] ]

X n(dX(l), dY(l)) n(dX(d), dY“”).
Introducing the permutation 7 = ¢!, we have
d d
]‘IIY;(J‘;) det[ X, X®,..., X D] = ]_[lY}T(f) det| X7V, X;®, ..., X5@].
J= j=

To complete the proof, we observe that the measure n(dX®, dY®)--
n(dXD, dY D) is invariant by the permutation 7 defined on (R¢ x R%)¢ by

’T[(X(l), YD), (XP,Y?),... (XD, Y(””)]
= [(Xr(l), YD), (X7®, Y @), (XD, Yr(d))]'
Therefore, the measure

d
j]:[l Y7 det[ X7 ... X3D]

X n(dXD, dY V)q(dXP,dY®), ... n(dXD, dY D)

does not depend on 7, and using (3.3), we obtain

S = (YD - Y D)det[ XD, X, ..., X D]
RIXRY)

X n(dX(l), dY(l)) n(dX(d), dY(d)). O

We are now in position to prove Theorem 2.1. Since u is infinitely divisible,
there exist a positive 3 in Lg(R?) and a positive measure v such that

Ri(6) =3 + fRdX® X exp(0, X)v(dX).
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[For a proof, see Gikhman and Skorohod (1973), page 342.] Since X is
symmetric and positive, there exists in R? an orthonormal basis (e) =
(es,...,e,) in which ¥ is represented by a diagonal matrix A. Also,

det k2 (0) = det[A + [ X ®Xexp(0, X)v(dX)|.
Rd

We next apply Proposition 3.1 with B = [« X ® X exp(8, X)v(dX). Let T =
(i, i9,...,1;), with 1 <i; <iy, < =+ <i, <d, a nonempty subset of
{1,2,...,d} and 7,: R? > R* the map defined by

(X, Xyyoo, Xg) = (X, X0 X, ).
Then, for X and Y in R?, one has

(3.4) (X®Y)p=(mp(X)) ® (7(Y)).
Now, if we consider the measure defined on R¢ x R? by
(3.5) n(dX,dY) = exp{0, X)v(dX)éx(dY),
then

B=[ X®Xexp(0,X)v(dX) = [ X ®Yy(dX,dY).
R RIx R4
Using (3.4), we have
Br=[ — m(X)® 7 (Y)n(dX,dY).
RXR

In order to use Theorem 3.2, we introduce the measure 7 as the image
of 7 under the function from R? X R? into R* X R* given by (X,Y) —
(7p(X), 77(Y)). Then

By = kakaX ® Y7(dX,dY),
and Theorem 3.2 implies that

1
det BT = E (RkXRk)k
X ﬁ(dX(I), dy(l)) ﬁ(dX(k), dy(k)).

By a similar argument, this becomes

det[ XD, X®, ... X®]det[ YD, Y, ..., Y®]

1
det By = - - det[r7(XD), ..., 7p(X®)]det[rp (YD), ..., 7, (Y®)]

X n(dX(l), dy(l)) n(dX(k), dy(k)).
Using (3.5) again, we obtain

1
det BT = E ([Rd)k

Xexp(#, XD + X 4 - 4 XB)p(dXD) - p(dXD).

(det[TT(X(l)), s TT(X(k))])z
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Denoting by T'(v) the image of the measure
1 2
E(det[TT(X(l)),...,TT(X(k))] Jo(dX®) - p(dX®)

under the mapping from (R9)* to R¢ defined by (X, X® . . X®) - xX®
+X® 4+ .. + X% we have

det By = [ exp(0, X)T(v)(dX).
Rd

Finally,

det ), (0) = det A + [ exp(0, X) Y det A, T(v)]|(dX).
R

Tc{1,2,...,d}
T+

Thus the measure

p(p) = (det A)§, + Y. det ApT(v)
Tc{l,...,d}
T+J

is such that det &,(6) = L, ,,(6) and the proof of Theorem 2.1 is complete. O
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