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STEPWISE MULTIPLE TEST PROCEDURES AND
CONTROL OF DIRECTIONAL ERRORS

By H. Finner

Universität Trier

One of the most difficult problems occurring with stepwise multiple
test procedures for a set of two-sided hypotheses is the control of direc-
tional errors if rejection of a hypothesis is accomplished with a directional
decision. In this paper we generalize a result for so-called step-down proce-
dures derived by Shaffer to a large class of stepwise or closed multiple test
procedures. In a unifying way we obtain results for a large class of order
statistics procedures including step-down as well as step-up procedures
(Hochberg, Rom), but also a procedure of Hommel based on critical val-
ues derived by Simes. Our method of proof is also applicable in situations
where directional decisions are mainly based on conditionally independent
t-statistics. A closed F-test procedure applicable in regression models with
orthogonal design, the modified S-method of Scheffé applicable in the Anal-
ysis of Variance and Fisher’s LSD-test for the comparison of three means
will be considered in more detail.

1. Introduction. Directional errors or errors of the “III. kind” [cf. Mos-
teller (1948)] occur in testing situations with two-sided alternatives. Formally,
rejection of a hypothesis of the type H� ϑ1 = ϑ2 only allows for the conclusion
ϑ1 �= ϑ2, and the question is whether it is possible to make the additional de-
cision ϑ1 < ϑ2 or ϑ1 > ϑ2 (depending on the data) without additional costs. If,
for example, the true parameters satisfy ϑ1 < ϑ2 and we decide after rejection
of ϑ1 = ϑ2 for ϑ1 > ϑ2, this type of a wrong decision is called a directional er-
ror, error of the “III. kind,” or Type III error and has led to a considerable num-
ber of papers [cf., e.g., Kimball (1957), Kaiser (1960), Marasculio and Levin
(1970), Games (1973), Keselman and Murray (1974), Levin and Marasculio
(1972), also the collection of these papers in Liebermann (1971)]. However,
in case of a single hypothesis with two-sided alternatives directional errors
and errors of the “I. kind” are mostly simultaneously controlled within the
underlying level α [cf., e.g., Bahadur (1952) or Lehmann (1950, 1957a,b) who
considered the comparison of two treatment means as a three-decision prob-
lem]. A similar approach is due to Holm (1979a) in connection with multiple
test procedures.

In multiple testing situations, especially if stepwise multiple test proce-
dures are applied, things are more complex. It must be considered as one of
the major drawbacks of stepwise procedures that it is often not known whether
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additional directional decisions are possible without violation of the desired
multiple level α.

A first positive result for stepwise procedures has been obtained by Shaffer
(1980). She considered Bonferroni-type step-down multiple test procedures for
testing k hypotheses of the type Hi� ϑi = 0� i = 1� � � � � k, with corresponding
two-sided alternatives Ki� ϑi < 0 or ϑi > 0. Let Ti� i = 1� � � � � k, denote test
statistics for testing Hi which tend to small (large) values for small (large)
values of ϑi. Then the question is whether rejection of Hi and a small (large)
value of Ti allows the decision for ϑi < 0 (ϑi > 0) without additional costs,
that is, is the probability requirement Pϑ (any error of “I.” or “III. kind”) ≤ α
for all ϑ ∈ � satisfied? Shaffer (1980) proved that if the test statistics are
independently distributed and if the distributions of the Ti’s satisfy some
additional conditions (which will be specified in the next section), both Type
I and Type III errors are simultaneously controlled by the desired multiple
level α. She also constructed a counterexample where the distributions of the
test statistics are such that the stepwise procedure with additional directional
decisions fails to control both types of erroneous decisions.

The method of Shaffer (1980) was adopted by Finner (1994b) and indepen-
dently by Liu (1996) to prove directional error control for a step-up procedure
assuming the same distributional setting as Shaffer (1980).

Clearly, the assumption of independent test statistics is very restrictive. On
the other hand, both the positive result and the counterexample may indicate
which kind of result can be true in more complex situations. Holm (1979b,
1981) extended Shaffer’s (1980) result to a normal distributional setting where
the Ti’s are of the type Xi/S with Xi ∼ N�ϑi� σ

2�, i = 1� � � � � k, νS2/σ2 ∼ χ2
ν

being independently distributed.
However, not much is known in more complex settings. Even in case of

stepwise procedures for multiple comparisons with a control with two-sided
alternatives, no corresponding proof is available, although the structure of
such procedures seems to be similar to the procedures considered by Shaffer
(1980) and Holm (1979b, 1981). It is superfluous to say that nearly no re-
sults are available concerning directional errors for stepwise procedures for
all pairwise comparisons as described, for example, by Tukey (1953); cf. Tukey
(1994), Welsch (1977), Lehmann and Shaffer (1979), Begun and Gabriel (1981),
Finner (1988a) and many others. Exceptions are situations in a normal dis-
tributional setting where two-step procedures are available, for example, in
the case of two comparisons with a control or pairwise comparisons between
three means. In these cases, the method derived in Finner (1988b, 1990) for
the modified S-method [proposed by Scheffé (1970); cf. also the discussion in
Scheffé (1977)] can be used to prove the desired results. This method is based
on some geometrical considerations.

Another method to tackle the problem of directional errors has been consid-
ered in Bauer, Hackl, Hommel and Sonnemann (1986); that is, a reformulation
of the multiple testing problem. Instead of considering k hypotheses of the
type Hi� ϑi = 0, they followed a suggestion of Holm (1979a) and studied step-
wise procedures for k pairs of hypotheses given by Hi≤� ϑi ≤ 0, Hi≥� ϑi ≥ 0,
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i = 1� � � � � k. They found that without additional distributional assumptions
only a slight improvement of Holm’s (1979a) step-down procedure for these 2k
hypotheses is possible and showed by a counterexample that in their general
distributional setting a further improvement of their procedure is impossible.
However, their procedure is not very powerful compared with Shaffer’s (1980)
method when the corresponding conditions concerning the distribution of the
test statistics are satisfied.

The problem of directional errors also plays an important role in the deriva-
tion of confidence sets associated with stepwise procedures. If the control of
directional errors remains an open question in the specific situation, one can-
not expect any useful confidence sets for the parameters under consideration.
Partial solutions to the problem of confidence sets with stepwise test proce-
dures were first developed by Stefansson, Kim and Hsu (1988) and later by
Hayter and Hsu (1994). The construction of one-sided confidence intervals
(bounds) associated with a two-sided testing problem is discussed in detail in
Finner (1994a) and also in Hayter and Hsu (1994).

The paper is organized as follows. In Section 2 we derive some general re-
sults concerning directional error control. For the independent case we first
generalize the result of Shaffer (1980) under her specific distributional set-
ting without assuming very much concerning the specific structure of the di-
rectional multiple test procedure. Moreover, we consider an alternative distri-
butional setting and use a simple result developed in the theory of variation
diminishing transformations, which then yields the desired results without
a big effort. Finally, Holm’s result for the normal distribution with unknown
variance will be generalized. In Section 3, it will be discussed that a vari-
ety of stepwise multiple test procedures satisfy the assumptions of the main
theorems.

2. Control of directional errors: general results. Let � = �1×· · ·×�k

with �i = �ϑi�ϑi ⊆ R, i ∈ Ik = �1� � � � � k�, where � · � ·  denotes an interval
which may be closed or open at the boundaries. For ϑi < ai ≤ bi < ϑi, i ∈ Ik,
we consider the set of hypotheses � = �Hi� i ∈ Ik� with Hi� ϑi ∈ �ai� bi�
versus Ki� ϑi �∈ �ai� bi�, where ai� bi are fixed. Let Ti� � → R, i = 1� � � � � k,
be independently distributed real-valued test statistics with corresponding
cdf ’s Fi� · � ϑi�, ϑi ∈ �i, i = 1� � � � � k. The corresponding probability mea-
sures are denoted by P

Ti

ϑi
, respectively, PT

ϑ, where T = �T1� � � � �Tk� and

ϑ = �ϑ1� � � � � ϑk�, the closed convex hull of the support of PTi

ϑi
by �t i� ti�. Note

that the Fi’s may belong to different families of distributions as for example
Poisson- and Normal-distributions.

A closed multiple test procedure is based on the closure of � , that is,

� = �HJ� � �= J ⊆ Ik�

with HJ = ⋂
j∈JHj. Let ϕJ = ϕJ�Tj � j ∈ J� denote a level-α test for HJ.

Then application of the closure principle [cf. Marcus, Peritz and Gabriel (1976)]
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yields that ψ� = �ψJ� � �= J ⊆ Ik� with

ψJ = min
J⊆M⊆Ik

ϕM

constitutes a multiple level-α test for � . Moreover, the components ψi = ψ�i�
constitute a multiple level-α test for the original family of hypotheses � .

In the following we do not assume much about the special structure of ψ� .
The only explicit structure concerns the level-α tests ϕi = ϕ�i�, which will be
assumed to be of the type

ϕi�ti� =
{

0� ci�α� < ti ≤ c′i�α��
1� otherwise,

i ∈ Ik�

where ti = Ti�x� and ci�α�� c′i�α� are critical values depending on the pre-
specified level α ∈ �0�1�. For technical reasons which will be clear later, ϕi is
chosen to be left-continuous. Now, if Hi is rejected by ψi, we wish to decide for
ϑi < ai if Ti ≤ ci�α� or for ϑi > bi if Ti > c′i�α�. Therefore we have to require
at least that for all i ∈ Ik�

inf
ϑi≥ai

Pϑ�Ti > ci�α�� ≥ 1 − α�

inf
ϑi≤bi

Pϑ�Ti ≤ c′i�α�� ≥ 1 − α�

Formally, the directional decision procedure can be defined as follows. Let
Hi≤� ϑi ≤ bi and Hi≥� ϑi ≥ ai, i ∈ Ik, and let �d = �Hi≤� i ∈ Ik� ∪ �Hi≥� i ∈
Ik�. Then the corresponding directional tests can be defined by

ψi≤ = 1 iff ψi = 1 and Ti > c′i�α��
ψi≥ = 1 iff ψi = 1 and Ti ≤ ci�α��

Now the question is, whether ψ�d
= �ψ1≤� ψ1≥� � � � � ψk≤� ψk≥� constitutes a

multiple level-α test for �d. As shown by counterexamples in Shaffer (1980)
and Bauer, Hackl, Hommel and Sonnemann (1986) for step-down procedures,
additional assumptions concerning the distributions of the underlying test
statistics are unavoidable. A second type of assumption will concern the gen-
eral structure of the acceptance–rejection regions of the closed test procedure.
We first fix the second type of assumption. It will be seen that this assumption
is not very restrictive for the models considered here, and finally allows a very
general result concerning directional error control.

For this purpose, we define for ϑ ∈ � the event E�ϑ� of no false rejection
by ψ�d

[denoted by CJD (correct joint decision) in Shaffer (1980)]. This event
is formally given by

E�ϑ� = ⋂
i� ϑi≤bi

�ψi≤ = 0� ∩ ⋂
i� ϑi≥ai

�ψi≥ = 0��

Note that E�ϑ� remains unchanged if the ith component of ϑ takes different
values in �ϑi� ai�, resp. �ai� bi�, resp. �bi�ϑi.
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For i ∈ Ik and ti ∈ R� we now define the (conditional) sets

E�ϑ � ti� = ��t1� � � � � ti−1� ti+1� � � � � tk�� �t1� � � � ti−1� ti� ti+1� � � � tk� ∈ E�ϑ���
We require that E�ϑ � ti� is unimodal in ti, that is,

∃ ti0 ∈ �t i� ti� such that E�ϑ � ti� is increasing in ti < ti0 and
decreasing in ti > ti0�

Loosely speaking, this means that in case of ti0 ∈ �ci�α�� c′i�α�� all components
of ψ�d

are nondecreasing if the observed value ti of the test statistic Ti moves
away from the acceptance region �ci�α�� c′i�α��. This property implies that for
fixed ϑ ∈ � [i.e., E�ϑ� is fixed] the conditional probability of E�ϑ� given
Ti = ti, that is

gi�ti� = Pϑ�T ∈ E�ϑ� � Ti = ti�� i ∈ Ik�(2.1)

is P
Ti

ϑi
-a.s. unimodal in ti ∈ R. Moreover, the construction of E�ϑ� implies

that gi is independent of the ith component ϑi ∈ �bi�ϑi� respectively, ϑi ∈
�ϑi� ai�. In addition, it will be required that the acceptance–rejection regions
are chosen in such a way that the functions gi are left-continuous for all
i ∈ Ik. In most practical cases, this can be achieved without any problems by
changing the test procedure on a null set. Therefore, left-continuity of the gi’s
will be no loss of generality.

Conditioning on Ti = ti yields by independence of the Ti�

Pϑ�T ∈ E�ϑ�� =
∫
Pϑ�T ∈ E�ϑ� � Ti = ti�dFi�ti � ϑi��(2.2)

or, considered as a function of the ith component ϑi of ϑ� we write for (2.2),

hi�ϑi� =
∫
gi�ti�dFi�ti � ϑi�� i ∈ Ik�

We now fix some assumptions concerning the distribution of the T′
is. As in

Shaffer (1980) we assume that

∀i∈Ik� ∀ti ∈ �t i� ti�� lim
ϑi →ϑi

Fi�ti � ϑi� = 1 and lim
ϑi→ϑi

Fi�ti � ϑi�=0�(2.3)

This assumption finally ensures that hi�ϑi� approaches limits greater than or
equal to 1−α for ϑi → ϑi and ϑi → ϑi as well as for ϑi → ai− and ϑi → bi+,
where (2.3) is not needed for the latter two cases [cf. the arguments given in
Shaffer (1980)].

Hence, unimodality of hi on �ϑi� ai�� respectively, �bi�ϑi for all i ∈ Ik
would imply that ψ�d

controls the multiple level α. Therefore, we seek for
conditions which ensure the desired unimodality of hi for all i ∈ Ik. This can
be viewed as the key step to obtain a positive result.

First, we assume as in Shaffer (1980) that the derivative F′
i�ti � ϑi� with

respect to ϑi of Fi�ti � ϑi� exists for all ti ∈ �t i� ti�, i ∈ Ik and that −F′
i�ti � ϑi�
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is totally positive of order 2 (TP2 for short) in �ti�ϑi� for all i ∈ Ik; that is,
F′
i�ti � ϑi� ≤ 0 and

∀ t1
i � t

2
i with t i < t1

i < t2
i < ti� ∀ϑ1

i � ϑ
2
i with ϑi < ϑ1

i < ϑ2
i < ϑi�

F′
i�t1

i � ϑ2
i �F′

i�t2
i � ϑ1

i � ≤ F′
i�t1

i � ϑ1
i �F′

i�t2
i � ϑ2

i ��
Noting that the g′

is defined in (2.1) are assumed to be left-continuous, we
obtain with Lemma A.1 that

hi�ϑi� = gi�−∞� +Fi�ti0 � ϑi��gi�ti0� − gi�ti0+��

−
∫
�−∞� ti0�

Fi�ti � ϑi�dG1
i �ti� +

∫
�ti0�∞�

Fi�ti � ϑi�dG2
i �ti�

with G1
i �ti� = gi�ti� − gi�−∞�, G2

i �ti� = g�ti0+� − gi�ti�.
Differentiating with respect to ϑi and dividing and multiplying with F′

i�ti0 �
ϑi� now yields

h′
i�ϑi� = F′

i�ti0 � ϑ�
[
gi�ti0� − gi�ti0+� −

∫
�−∞� ti0�

F′
i�ti � ϑi�

F′
i�ti0 � ϑi�

dG1
i �ti�

+
∫
�ti0�∞�

F′
i�ti � ϑi�

F′
i�ti0 � ϑi�

dG2
i �ti�

]
�

The TP2-property of −F′
i�ti � ϑi� yields that the expression in the square

brackets is nondecreasing in ϑi > bi (resp. ϑi < ai� and F′
i�ti0 � ϑi� ≤ 0,

hence, once h′
i is negative at ϑ∗

i > bi (resp. ϑ∗
i < ai�� it remains nonpositive

for all ϑi > ϑ∗
i (resp. for all ϑi < ϑ∗

i ). Therefore, hi�ϑi� is unimodal (or
monotonic in one direction) on �bi�ϑi� [resp. on �ϑi� ai��. Together with the
inductive arguments in Shaffer (1980) it is now clear that ψ�d

controls the
multiple level α. Hence we have proved the following theorem.

Theorem 2.1. The directional test procedure ψ�d
for �d defined above

keeps the multiple level α, if the following conditions are fulfilled:

(a) ∀ ϑ ∈ �� gi defined in (2.1) is left-continuous and P
Ti

ϑi
-a.s. unimodal for all

i ∈ Ik;
(b) the underlying distributions satisfy (2.3);
(c) −F′�ti�ϑi� is TP2 for all i ∈ Ik.

Remark 2.1. Obviously, the main assumptions in Theorem 2.1 are the uni-
modality of the functions gi and the TP2-property of −F′

i�ti � ϑi�. It has been
pointed out in Shaffer (1980), Theorem 2, that the latter property is satis-
fied for (1) location-parameter families with monotone likelihood ratio [i.e.,
the underlying pdf ’s fϑi

�xi� = f�xi −ϑi� are log-concave], (2) positive-valued
scale parameter families with monotone likelihood ratio, and (3) exponential
families with natural parameter space �i. While the proof of (1) and (2) is
straightforward, the hints given in Shaffer (1980) concerning a proof of (3)
fall rather short. For the sake of completeness, a complete proof of (3) is given
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in the Appendix in Lemma A.2. Instead of requiring the somewhat unconven-
tional TP2-property on −F′

i�ti � ϑi�, another type of assumption concerning
the underlying pdf ’s (if they exist) ensures the desired result. The following
theorem can be viewed as a nice application of the theory of variation dimin-
ishing transformations.

Theorem 2.2. The assertion of Theorem 2.1 remains valid, if condition (c)
is replaced by the following condition:

(d) For all i ∈ Ik� the distribution of Ti has a νi-density fi�ti � ϑi� which is
TP3 (totally positive of order 3).

Proof. The variation diminishing properties of TP3-functions [cf. Brown,
Johnstone and MacGibbon (1981) or Karlin (1968)] imply that

hi�ϑi� =
∫
gi�ti�fi�ti � ϑi�dνi�ti�(2.4)

is unimodal (or monotonic) if gi is νi-a.s. unimodal and fi is TP3. ✷

Remark 2.2. Since pdf ’s with respect to an exponential family are TP∞,
Theorem 2.2 as well as Theorem 2.1 applies for this case. Moreover, in case
of location families with log-concave densities fi�t � ϑi� = f�t−ϑi�, it is well
known that hi in (2.4) is unimodal (or monotonic) if gi is λ-a.s. unimodal,
where λ denotes Lebesgue measure.

Finally, we consider a normal distributional setting with unknown variance
σ2, where directional decisions are based on t-statistics. Our goal is a gener-
alization of the result of Holm (1979b, 1981), who proved that the step-down
test in a specific regression model controls directional errors. Moreover, the di-
rectional modified S-method considered in Finner (1988b) will also be covered
by the new result, as well as a variety of other procedures for this situation,
for example, a step-up test procedure and a closed χ2- or F-test procedure.
The proof of the corresponding result is simply a combination of Holm’s idea
and integration by parts.

Let Xi, i = 1� � � � � k and S be independent random variables, Xi having a
normal distribution with mean ϑi and standard deviation Kiσ and νS2/σ2

having a χ2-distribution with ν degrees of freedom. For the sake of simplicity
we consider hypotheses Hi with ai = bi = 0, that is, Hi� ϑi = 0, and the
corresponding family �d of one-sided hypotheses Hi≤� ϑi ≤ 0, Hi≥� ϑi ≥ 0,
i ∈ Ik.

We assume that all tests are based on T = �T1� � � � �Tk�, where

Ti = Xi/�KiS�� i ∈ Ik�

Each Ti has a central t-distribution with ν degrees of freedom if ϑi = 0. We
assume that the underlying directional closed multiple test procedure (e.g.,
a step-up or step-down procedure) has the same general structure as in the
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case of independent test statistics. Then we consider the probability of no false
rejection by conditioning not only on Ti = ti but also on S = s. Let

gi�ti � s� = Pϑ�T ∈ E�ϑ� � Ti = ti� S = s�� i ∈ Ik�

Theorem 2.3. In the normal distributional setting stated before, a direc-
tional multiple test procedure having the aforementioned general structure is
a multiple level-α test for �d, if gi�· � s� is unimodal in ti, i ∈ Ik.

Proof. Let ti0 ∈ R such that gi�· � s� is nondecreasing (nonincreasing)
in ti < ti0 �ti > ti0� and assume for the sake of simplicity that gi�· � s� is
continuous in ti0 = 0 for all s > 0. Conditioning yields

Pϑ�T ∈ E�ϑ�� =
∫ ∫

gi�ti � s�dPTi�S=s
ϑi

�ti�dPS�s��

The conditional distribution of Ti given S = s is a normal distribution with
mean ϑi/�Kis� and standard deviation σ/s. Setting ξi = 1/�Kiσ�, integration
by parts yields

∫
gi�ti � s�dPTi�S=s

ϑi
�ti� = gi�−∞ � s� −

∫ 0

−∞
*�Kiξisti − ξiϑi�dG1

i �ti�

+
∫ ∞

0
*�Kiξisti − ξiϑi�dG2

i �ti��

where G1
i and G2

i are similarly defined as in the independent case. Differenti-
ating with respect to ϑi and dividing and multiplying with ϕ�ξiϑi� results in

d

dϑi

∫
gi�ti � s�dPTi�S=s

ϑi
�ti� = ξiϕ�ξiϑi�B�ϑi � s��

where

B�ϑi � s� =
∫ 0

−∞
ϕ�Kiξisti − ξiϑi�/ϕ�ξiϑi�dG1

i �ti�

−
∫ ∞

0
ϕ�Kiξisti − ξiϑi�/ϕ�ξiϑi�dG2

i �ti�

is nonincreasing (nondecreasing) in ϑi > 0 (ϑi < 0�. Therefore, integration
with respect to PS yields the assertion of directional error control similarly
as in the independent case. ✷

Remark 2.3. A corresponding result for the normal case with unknown
variance concerning directional error control can be obtained, if interest is
focussed on testing for relevant differences in terms of σ-units, that is, for a
set of hypotheses like Hi� ϑ/σ ∈ �ai� bi�, i ∈ Ik.
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3. Specific procedures with directional error control. We first con-
sider a large class of multiple test procedures which can be defined in terms
of ordered p-values. This class then contains a series of well-known stepwise
multiple test procedures. The easiest way to describe these procedures for
multiple two-sided hypotheses testing problems is in terms of p-values de-
fined with respect to test statistics Ti, i ∈ Ik, and corresponding acceptance
regions of two-sided level-γ tests, γ ∈ �0�1�. As in Section 2 we first assume
that the Ti’s are independently distributed. Now let the intervals

Ai�γ� = �ci�γ�� c′i�γ��� γ ∈ �0�1��
be level-γ acceptance regions for testing Hi, i ∈ Ik, that is,

∀ γ ∈ �0�1�� ∀ i ∈ Ik� inf
ϑi∈Hi

Pϑ�Ti ∈ Ai�γ�� ≥ 1 − γ�

In addition, we require that the acceptance regions are decreasing in γ ∈ �0�1�,
that is, Ai�γ1� ⊇ Ai�γ2� for all γ1 < γ2, γ1, γ2 ∈ �0�1�. The choice of open (in-
stead of half-open) intervals as acceptance regions simplifies the definition of
p-values below. As a result, the functions gi defined in Section 2 may fail to
be left-continuous. As pointed out there, the main results concerning direc-
tional error control remain valid. Therefore, we avoid further discussions of
this technical problem.

If Ti = ti is observed, a p-value for testing Hi is defined by

pi = pi�ti� = inf�γ ∈ �0�1�� ti ∈ Ac
i�γ���

The order statistics of the p-values with respect to a nonempty subset J of
Ik are denoted by p1� J ≤ · · · ≤ p�J�� J. For the definition of a multiple test
procedure at multiple level-α we choose sets of (nondecreasing) critical values
0 < α1� J ≤ · · ·α�J�� J < 1 for all J ⊆ Ik, J �= � such that

∀J ⊆ Ik�J �= �� inf
ϑ∈HJ

Pϑ�p1� J > α1� J� � � � � p�J�� J > α�J�� J� ≥ 1 − α�

Then

ϕJ =
{

0� if pi� J > αi� J for all i = 1� � � � � �J��
1� otherwise

is a level-α test for HJ, hence, a closed test procedure ψ� for � at multiple
level α can be defined as in Section 2. We call this a general order statis-
tics multiple test procedure (GOS-MTP). The corresponding components of the
directional multiple test procedure (DGOS-MTP) for the family of one-sided
hypotheses �d are then given by

ψi≤ = 1 iff ψi = 1 and Ti ≥ c′i�α��
ψi≥ = 1 iff ψi = 1 and Ti ≤ ci�α��

Again the question is whether these components constitute a multiple level-α
test for �d. Obviously, by construction the sets E�ϑ � ti� are unimodal in ti
with mode ti0 ∈ ⋂

γ∈�0�1�Ai�γ�� i ∈ Ik. This is because the ith p-value pi�ti�
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is nonincreasing in ti > ti0 and nondecreasing in ti < ti0. As a result, if ti
moves away from ti0, the components of the directional test procedure ψ�d

are nondecreasing; that is, the set of rejected hypotheses is nondecreasing
if ti moves away from ti0. Hence, under the corresponding assumptions of
Theorem 2.1 or 2.2, it is then clear that the DGOS-MTP controls type I as
well as type III errors. The class of GOS-MTP’s contains various procedures
considered in the literature up to now. All these procedures have the property
that the critical values depend only on the size of a subset �J�, that is,

∀J ⊆ Ik�J �= �� ∀j = 1� � � � � �J�� αj� J = αj� �J��

In the following we give some examples of choices of such values, which lead
to shortcut versions of the GOS-MTP; that is, only the decisions of primary
interest for the hypotheses Hi are given.

Example 3.1. Let p�i� = pi� Ik denote the ordered p-values with respect
to the entire index set Ik, and let their corresponding hypotheses be denoted
by H�1�� � � � �H�k�. Then we have the following well-known test procedures for
independent p-values:

(A) αi� j = 1 − �1 − α�1/j leads to the Bonferroni–Holm (step-down) proce-
dure: reject H�1�� � � � �H�m�� where m = max�i� p�j� ≤ 1 − �1 − α�1/�k−j+1� for
all j = 1� � � � � i�.

(B) αi� j = α/�j− i+ 1� leads to the step-up procedure of Hochberg (1988):
reject H�1�� � � � �H�m�, where m = max�i� p�i� ≤ α/�k− i+ 1��.

(C) αi� j = αj−i+1, where the αi’s are recursively defined by α1 = α and

αi =
[i−1∑
r=1

αr −
i−2∑
r=1

(
i

r

)
αi−rr

]/
i� i = 2� � � � � k�

leads to a step-up procedure based on Rom’s (1990) exact critical values [which
is an improvement of Hochberg (1988) for k ≥ 3]: Reject H�1�� � � � �H�m�, where
m = max�i� p�i� ≤ αk−i+1�.

(D) αi� j = iα/j leads to a procedure of Hommel (1988) based on the critical
values of Simes (1986): Let J = �i� p�k−i+s� > sα/i for all s = 1� � � � � i�� If J is
nonempty, set r = max�i� i ∈ J�, otherwise r = 1. Then, reject H�1�� � � � �H�m�,
where m = max�i� p�i� ≤ α/r�.

We note that the original (step-down) Bonferroni–Holm procedure for de-
pendent test statistics is defined with critical values αi� j = α/j, which corre-
spond to the step-up critical values in (B). The result of Simes (1986) implies
that the procedure defined in (D) and as a consequence the procedure defined
in (B) both control the multiple level α. Moreover, the critical values of the step-
up procedure (C) are monotonic. This has been proved in Dalal and Mallows
(1992). Together with the definition of these values in Rom (1990), it follows
that the step-up procedure (C) controls the multiple level α. We mention that
step-down as well as step-up procedures can also be defined for conditionally
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independent t-statistics. Directional error control then follows with the corre-
sponding result of Section 2. Finally, we consider certain normal distributional
settings. We begin with a closed F-test procedure.

Example 3.2 (Closed F-test procedure). Consider the normal distribu-
tional setting as described in Section 2, that is, let X1� � � � �Xk and S be
independent random variables, Xi having a normal distribution with mean
ϑi and standard deviation Kiσ and νS2/σ2 having a χ2-distribution with
ν degrees of freedom. Again we consider the set of two-sided hypotheses
Hi� ϑi = 0 versus Ki� ϑi �= 0, i = 1� � � � � k. As level-α tests for the inter-
section hypotheses HJ� ϑj = 0∀j ∈ J� we use F-tests, that is, a hypothesis
Hi� ϑi = 0 is finally rejected by the closed testing procedure if all HJ with
J � i are rejected by the corresponding F-test, that is, reject Hi if

∀J ⊆ Ik with J � i� TJ = 1
�J�

∑
j∈J

X2
j

K2
jS

2
> F�J�� ν� α�

where Fm�ν� α denotes the �1 − α�-quantile of the F-distribution with m and
ν degrees of freedom. Now let Ti = Xi/�KiS� denote the t-statistic for test-
ing Hi. Note that F- and two-sided t-test for testing Hi are equivalent. Then
we complement the closed multiple F-test procedure ψ (say) with directional
decisions as follows. If Hi is rejected by ψ, we decide for ϑi < 0� respectively,
ϑi > 0 if Ti < −F1/2

m�ν� α = −tν� α/2� respectively, Ti > F
1/2
m�ν� α = tν� α/2, where

tν� α/2 denotes the �1 − α/2�-quantile of the t-distribution with ν degrees of
freedom. All we have to check for directional error control (cf. Section 2) is
that

gi�ti � s� = Pϑ�T ∈ E�ϑ� � Ti = ti� S = s�

is unimodel in ti, i ∈ Ik. But this is obvious since the test statistics TJ with
J � i are nonincreasing in ti ∈ �−∞�0� and nondecreasing in ti ∈ �0�∞�.

We conclude this section with two two-stage procedures in normal distri-
butional settings: the modified S-method of Scheffé (1977) for testing all con-
trasts in the analysis of variance and Fisher’s least significant difference test
(LSD-test) for the comparisons of three means.

Example 3.3 (The modified S-method). We consider the linear model

X = Aϑ+ ε

with A ∈ R
n×k, ϑ ∈ R

k, rank�A� = a ≤ n − 1 and ε ∼ N�0� σ2In� with σ > 0
unknown. Let Vp be a p-dimensional linear subspace of the imagine of A′

with 0 < p ≤ a and let W = �w ∈ Vp \ �0�� w′w = 1�. Then we are interested
in testing all contrast hypotheses of the type

Hw� w′ϑ = 0 versus Kw� w′ϑ �= 0� w ∈ W�
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The modified S-method of Scheffé (1977) for this multiple testing problem is
a two-step procedure and works as follows. First the global hypothesis

H = ⋂
w∈W

Hw

is tested with the corresponding level-α F-test. Note that the global hypothesis
is equal to

H� Lϑ = 0�

where L = �l′1� � � � � l′p�′ and l1� � � � � lp ∈ W are linearly independent. Letting
ϑ̂ = ϑ̂�X� = �A′A�−A′X, SL = �Lϑ̂�′�L�A′A�−L′�−1Lϑ̂ and S2 = X′�In −
A�A′A�−A′�X/�n− a�, H is rejected iff

SL > pS2Fp�n−a� α�

If H is accepted, then all Hw, w ∈ W, are accepted. If H is rejected, then a
hypothesis Hw, w ∈ W, is rejected iff Sw′ > �p − 1�S2Fp−1� n−a� α� or, equiva-
lently, iff

�w′ϑ̂� > S��p− 1��w′�A′A�−w�−1Fp−1� n−a� α�1/2�
This two-step method controls the multiple level α and saves one degree of
freedom in the second step. In addition, we now decide without additional
costs for w′ϑ < 0, iff

w′ϑ̂ < −S��p− 1��w′�A′A�−w�−1Fp−1� n−a� α�1/2�
and for w′ϑ > 0, iff

w′ϑ̂ > S��p− 1��w′�A′A�−w�−1Fp−1� n−a� α�1/2�
This is the modified S-method with additional directional decisions which
controls type I as well as type III errors as shown in Finner (1990). However,
this can also be proved with the method derived in this paper by looking for
an unimodal structure in the acceptance region. Therefore, let ϑ0 ∈ R

k be
fixed for the moment with ϑ0 �∈ H (for ϑ0 ∈ H there is nothing to show) and
let B = �w ∈ W� w′ϑ0 = 0�. Then there exist p − 1 linearly independent
v1� � � � � vp−1 ∈ W such that with V = �v′1� � � � � vp−1′ �′�⋂

w∈B
Hw = �ϑ ∈ R

k� Vϑ = 0��

As a consequence, all the hypotheses Hw, w ∈ B� are accepted iff the global
hypothesis is accepted or if SV ≤ �p− 1�S2Fp−1� n−a� α. Moreover, there exists
a unique w0 ∈ W with w0⊥B (and w′

0ϑ0 �= 0). Suppose w.l.o.g. that w′
0ϑ0 > 0.

Then the event of no type I and no type III error is given by E�ϑ0� = G ∪F+
with G = �SL ≤ pS2Fp�n−a� α� and F+ = �SV ≤ �p−1�S2Fp−1� n−a� α�∩�w′

0ϑ̂ ≥
−S��p− 1��w′

0�A′A�−w0�−1Fp−1� n−a� α�1/2�. Now conditioning on w′
0ϑ̂ = t, t ∈

R, and on S = s yields that the corresponding sets E�ϑ0 � t� s� are unimodal
in t ∈ R with mode at t0 = 0 (for each s > 0). This may be verified by applying
a suitable orthogonal transformation on model and hypotheses as in Finner
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(1990). Defining g�γ � t� s� = Pγϑ0
�X ∈ E�γϑ0 � t� s� � w′

0ϑ̂ = t�S = s�,
we obtain that g is independent of γ ∈ �0�∞�. But since limγ→0 Pγϑ0

�X ∈
E�γϑ0�� > 1−α and limγ→∞Pγϑ0

�X ∈ E�γϑ0�� = 1−α, we obtain directional
error control similarly as in Section 2.

Example 3.4 [Fisher’s least significance difference test (LSD-test) for k = 3
means, Fisher (1935)]. Let Xij, j = 1� � � � � ni, i = 1�2�3, be independent
normal variates with EXij = ϑi and VarXij = σ2 > 0 and let S2 be the usual
estimator for σ2 with ν degrees of freedom. Consider the problem of testing all
pairwise hypotheses Hij� ϑi = ϑj versus Kij� ϑi �= ϑj, 1 ≤ i < j ≤ 3. Fisher’s
LSD test rejects Hij if the global hypothesis H123� ϑ1 = ϑ2 = ϑ3 is rejected by
the corresponding F-test and if Hij is rejected by the corresponding two-sided
t-test. As in Example 3.1 we complement this closed F-test procedure with
directional decisions: if Hij is rejected we decide for ϑi < ϑj (ϑi > ϑj) if the
corresponding t-statistic tij = �1/ni + 1/nj�−1/2�Xi −Xj�/S is less (greater)
than −tν� α/2 �tν� α/2�.

Since the three pair-hypotheses build a subset of all contrast hypotheses
Hw� w′ϑ = 0, w ∈ V2 = �w ∈ R

3 \ �0�� w′13 = 0, w′w = 1�, directional error
control of the modified S-method implies directional error control of Fisher’s
LSD-test.

4. Concluding remarks. Directional error control remains an open prob-
lem for more complex situations than described in this paper. Prominent ex-
amples are stepwise procedures for the many–one problem and all pairwise
comparisons. The main difficulty is the more complex structure of the event
E�ϑ� of no false rejection by the corresponding directional multiple test pro-
cedure. Moreover, the basic test statistics are no longer independent or condi-
tionally independent. In general there seems to be no simple statistic which is
appropriate for conditioning such that the resulting conditional sets show up
a unimodal structure. One idea might be to look for a subset of E�ϑ� which is
big enough (such that the corresponding probabilities approach limits greater
than or equal to 1 − α at the boundaries of hypothesis and parameter space)
and unimodal in a suitable direction of the sample space. Unfortunately, we
have not been successful in finding such unimodal structures except for some
special cases mentioned in the introduction.

A solution of these problems is also important for the construction of confi-
dence sets being compatible with the results of the multiple test procedures.
In Stefansson, Kim and Hsu (1988) one can find the sentence “� � �a confidence
set which generates a stepwise multiple comparisons procedure is given, dis-
pelling a long-standing myth [Lehmann (1986), page 388], that stepwise pro-
cedures have no confidence sets.” We do not believe that this “myth” is due to
the short remark of Lehmann in his book on testing statistical hypotheses.
In connection with stepwise procedures for pairwise comparisons, Lehmann
(1986) writes, “It is a disadvantage of the remaining truly (stagewise) pro-
cedures of this section that they do not permit such an inversion.” In fact,
for stepwise procedures for all comparisons of k ≥ 4 means, it is not known
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whether there exist any useful confidence intervals. In any case, if there ex-
ist some, they will differ drastically from Tukey’s simultaneous intervals, for
example.

APPENDIX

Lemma A.1. Let g� R → �0�1� be left-continuous and unimodal and let
t0 ∈ R be such that g is nondecreasing (nonincreasing) for t ≤ t0 �t > t0�.
Define G1�t� = g�t� − g�−∞� for t ∈ 91 = �−∞� t0� and G2�t� = g�t0+� − g�t�
for t ∈ 92 = �t0�∞� and let F� R → �0�1� be a cdf. Then∫

R

gdF = g�−∞� +F�t0��g�t0� − g�t0+�� −
∫
91

FdG1 +
∫
92

FdG2�

Proof. Define finite measures µi� νi� i = 1�2 via

µ1��−∞� t�� = G1�t�� ν1��−∞� t�� = F�t�� t ∈ 91�

µ2��t0� t�� = G2�t�� ν2��t0� t�� = F�t� −F�t0�� t ∈ 92�

Then the assertion follows easily by integration by parts, that is,∫
9i

νi��−∞� t��dµi�t�=µi�9i�νi�9i�−
∫
9i

µi��−∞� t��dνi�t� for i=1�2� ✷

Lemma A.2. Let �PT
ϑ� ϑ ∈ �� denote a one-parameter exponential family

with respect to a σ-finite measure ν with natural parameter space � and sup-
pose that the cdf’s

F�x � ϑ� = Pϑ�T ≤ x�
are nonincreasing in ϑ ∈ �. Then −F′�x � ϑ� = −�d/dϑ�F�x � ϑ� is TP2.

Proof. First note that F′�x � ϑ� = ∫
�−∞� x��u−EϑT�dPT

ϑ�u�, where EϑT =∫
udPT

ϑ�u�, ϑ ∈ ◦
�. So it follows immediately that −F′�x � ϑ� is TP2 iff

∀x1� x2 ∈ R� x1 < x2� ∀ϑ1�ϑ2 ∈ ◦
��ϑ1 < ϑ2�∫

�−∞� x1�
�u1 −Eϑ2

T�dPT
ϑ2
�u1�

∫
�x1� x2�

�u2 −Eϑ1
T�dPT

ϑ1
�u2�

≤
∫
�−∞� x1�

�u1 −Eϑ1
T�dPT

ϑ1
�u1�

∫
�x1� x2�

�u2 −Eϑ2
T�dPT

ϑ2
�u2��

Since F�x � ϑ� is nonincreasing in ϑ ∈ �, EϑT is nondecreasing in ϑ. This

yields for u1 < u2, ϑ1 < ϑ2, ϑ1, ϑ2 ∈ ◦
��

�u1 −Eϑ2
T��u2 −Eϑ1

T� = u1u2 − u2Eϑ2
T− u1Eϑ1

T+Eϑ1
TEϑ2

T

≤ u1u2 − u2Eϑ1
T− u1Eϑ2

T+Eϑ1
TEϑ2

T

= �u1 −Eϑ1
T��u2 −Eϑ2

T��
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Hence, integrating with respect to u1 ∈ �−∞� x1�, u2 ∈ �x1� x2� yields the
assertion. ✷
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