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NONPARAMETRIC QUASI-LIKELIHOOD1

By Jeng-Min Chiou and Hans-Georg Müller

National Chung Cheng University and University of California, Davis

The quasi-likelihood function proposed by Wedderburn broadened the
scope of generalized linear models by specifying the variance function in-
stead of the entire distribution. However, complete specification of variance
functions in the quasi-likelihood approach may not be realistic. We define
a nonparametric quasi-likelihood by replacing the specified variance func-
tion in the conventional quasi-likelihood with a nonparametric variance
function estimate. This nonparametric variance function estimate is based
on squared residuals from an initial model fit. The rate of convergence of
the nonparametric variance function estimator is derived. It is shown that
the asymptotic limiting distribution of the vector of regression parameter
estimates is the same as for the quasi-likelihood estimates obtained under
correct specification of the variance function, thus establishing the asymp-
totic efficiency of the nonparametric quasi-likelihood estimates. We propose
bandwidth selection strategies based on deviance and Pearson’s chi-square
statistic. It is demonstrated in simulations that for finite samples the pro-
posed nonparametric quasi-likelihood method can improve upon extended
quasi-likelihood or pseudo-likelihood methods where the variance function
is assumed to fall into a parametric class with unknown parameters. We il-
lustrate the proposed methods with applications to dental data and cherry
tree data.

1. Introduction. Generalized linear models (GLMs) were introduced by
Nelder and Wedderburn (1972) as a unifying concept. An important exten-
sion proposed by Wedderburn (1974) is the quasi-likelihood function, which
requires assumptions on the first two moments only, rather than the entire
distribution of the data. The quasi-likelihood approach is useful because in
many situations the exact distribution of the observations is unknown. More-
over, a quasi-likelihood function has statistical properties similar to those of
a log-likelihood function.

Since the variance function is an essential determinant of the quasi-likeli-
hood, its specification is an important problem in the quasi-likelihood ap-
proach. In many applications, it is a priori unclear how the variance function
should be specified. However, efficient inference for the regression parame-
ters relies on correct variance functions. Nelder and Pregibon (1987) proposed
an extended quasi-likelihood function which incorporates the estimation of
variance functions in a parametric setting. This parametric approach broad-
ened the use of quasi-likelihood functions by assuming a parametric form of
the variance function. Another parametric approach is the pseudo-likelihood
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method of variance function estimation introduced by Carroll and Ruppert
(1982). These two approaches were compared by Davidian and Carroll (1988)
and Nelder and Lee (1992); see also McCullagh and Nelder (1989).

In this study, we extend the quasi-likelihood approach for the situation of a
known link function by defining a nonparametric quasi-likelihood suitable for
situations where the variance function is unknown but can be assumed to be
smooth. The nonparametric quasi-likelihood is obtained by substituting a non-
parametrically estimated variance function in lieu of the true variance func-
tion in the usual definition of the quasi-likelihood. The nonparametric vari-
ance function estimate which is used in the nonparametric quasi-likelihood
is then obtained by smoothing squared residuals obtained from a previous
model fit which are centered at the estimated means. As a smoothing method,
we choose local polynomial fitting by locally weighted least squares, a long
established smoothing method which is described in detail in Fan and Gij-
bels (1996). Other smoothing methods such as kernel smoothers or smoothing
splines could be used equally well. The estimates of the regression param-
eters are then obtained by maximizing this nonparametric quasi-likelihood.
Typically, this procedure is iterated by using the updated model parameters
in order to obtain new residuals and estimated means and thus an updated
nonparametric variance function estimate, which then in turn can be used to
obtain improved parameter estimates.

We establish consistency and rate of convergence of the corresponding vari-
ance function estimators in Theorem 4.1, and the asymptotic efficiency of the
nonparametric quasi-likelihood estimators (NQLEs) for the parameter vector
in Theorem 4.2 (Section 4). More details on the iterations and in particular
the proposed bandwidth selectors are provided in Section 5. The finite sample
behavior of the proposed estimators is investigated in Section 6 by means of
simulation studies. This includes comparisons with parametric variance func-
tion estimators, which form the core of the extended quasi-likelihood and the
pseudo-likelihood methods. We demonstrate that the proposed nonparametric
quasi-likelihood (NQL) method leads to improvements upon the parametric
quasi-likelihood methods. Section 7 contains illustrative examples where the
nonparametric quasi-likelihood method is applied to dental data concerning
the relation between force and electrical activity in the chewing muscle and
to two-dimensional data on the volume of cherry trees. All proofs and auxil-
iary results are compiled in Section 8. In Section 2, the main assumptions of
the proposed nonparametric quasi-likelihood model are introduced, and the
nonparametric variance function estimators are defined in Section 3.

2. Nonparametric quasi-likelihood model. A nonparametric quasi-
likelihood model can be written as follows:

�M1� Yi = g�xTi β� + εi�
where g�·� is denoted as the link function following Weisberg and Welsh
(1994). We note that g�·� is often referred to as the inverse link function in
the literature on generalized linear models. Furthermore, xi is the nonrandom
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p-dimensional predictor variable corresponding to the ith observation Yi, β
is the p-dimensional vector of regression parameters to be estimated, and the
errors εi are independent, satisfying Eεi = 0, Eε2

i <∞ and var�ε2
i � > 0.

(M2) There exists a function σ2�·�, σ2�·� ≥ γ > 0 for a γ > 0, such that

var�εi� = var�Yi� = σ2(g�xTi β�) = σ2�EYi��
The variance of the observations is a function of the mean, referred to
as the variance function.

Throughout it is assumed that the link function is given and the variance
function is unknown and is to be estimated. Further model assumptions are
as follows. A smoothness assumption:

(M3) The link function g�·� is three times and the variance function σ2�·� is
twice continuously differentiable with bounded derivatives.

A moment assumption necessary for obtaining uniform consistency of the
variance function estimator, as well as bounds for replacing the estimated
variance function in the nonparametric quasi-score function:

(M4) There exists a function µ4�·� such that Eε4
i = µ4�EYi�. The function

µ4�·� is continuous; furthermore, there exists a s > 2 such that max1≤i≤n
Eε2s

i < c <∞ for some c > 0.
(M5) There exists a M> 0 such that max1≤i≤n 	xi	 ≤M<∞� for all n�

We assume that the covariates xi are fixed, and (M5) ensures that the
linear predictors are bounded. Furthermore, given the link function g and
the parameter vector β, we assume that 
x1� x2� � � � � xn� form a sequence of
designs such that the means µi = g�xTi β� are generated by a “design density”
fµ which is assumed to satisfy the following conditions:

(M6) The support of fµ is a compact interval,
∫
fµ�u�du = 1, and fµ is twice

continuously differentiable, satisfying 0 < inf fµ�·� ≤ supfµ�·� < ∞.
The design points 
x1� x2� � � � � xn� are chosen in such a way that the
values µi = g�xTi β� satisfy∫ µi

−∞
fµ�u�du = i− 1

n− 1
for all n�

This also includes discrete or binary predictors in cases where the number
of combinations of levels of the predictor variables is large. Assumption (M6)
will be needed for asymptotic approximations of sums by integrals.

(M7) There exists a positive definite matrix � such that, as n→ ∞,

1
n
�DTV−1D� → ��

Here,D is the n×pmatrix of full rank with elementsDir = g′�ηi�xi�r−1�,
ηi = xTi β for 1 ≤ i ≤ n and 1 ≤ r ≤ p, setting xi0 = 1, and V−1 is a
diagonal matrix with elements 
σ2�µi��−1 for 1 ≤ i ≤ n.
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This condition is needed to obtain the asymptotic covariance matrix of the
nonparametric quasi-likelihood estimators β̂∗.

Following Wedderburn’s (1974) quasi-likelihood approach with known vari-
ance function σ2�·�, the quasi-likelihood is

Q�µ�y� =
n∑
i=1

∫ µi
yi

yi − t
σ2�t� dt�(2.1)

In the case of unknown variance function, we propose to replace the variance
function σ2�·� in (2.1) with a nonparametrically estimated variance function
estimator σ2

n�·�. Then a nonparametric quasi-likelihood is

Q∗�µ�y� =
n∑
i=1

∫ µi
yi

yi − t
σ2
n�t�

dt�(2.2)

The nonparametric quasi-score function U∗�β� for this nonparametric quasi-
likelihood is then

U∗�β� =
n∑
i=1

yi − µi
σ2
n�µi�

g′�ηi�xi

= DTV−1
n �y− µ��

(2.3)

where xi = �1� xi1� xi2� � � � � xi�p−1��T, V−1
n is a diagonal matrix with elements


σ2
n�µi��−1 for 1 ≤ i ≤ n and D is defined in (M7). The nonparametric quasi-

likelihood estimator (NQLE) β̂∗ of β is a solution of the estimating equation

U∗�β� = 0�(2.4)

To obtain β̂∗, the Newton–Raphson method with scoring can be applied itera-
tively until convergence occurs, see Section 5 for more details. A nonparametric
quasi-deviance is then naturally defined as

D�y�µ�σ2
n� = −2

n∑
i=1

∫ µi
yi

yi − t
σ2
n�t�

dt�(2.5)

A noteworthy feature is that this nonparametric quasi-deviance is “scaled”
as compared to the (nonscaled) quasi-deviance in a generalized linear model
since the dispersion parameter is absorbed into the nonparametric variance
function. Consequently, the nonparametric quasi-deviance, D�y�µ�σ2

n�, can
be used as a goodness-of-fit statistic in a straightforward manner with its
expected value approximately equal to the degrees of freedom. A “nonpara-
metric” Pearson chi-square statistic, X2�y�µ�σ2

n�, is defined likewise as

X2�y�µ�σ2
n� =

n∑
i=1

�yi − µi�2

σ2
n�µi�

(2.6)

and can be used as a goodness-of-fit statistic, too. Not to have to worry about
overdispersion is one of the advantages of the nonparametric quasi-likelihood
approach. The case of an unknown link function has been discussed recently
in Chiou and Müller (1998).
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3. Nonparametric variance function estimation in quasi-likelihood
models. A consistent variance function estimator is essential in nonpara-
metric quasi-likelihood; otherwise, the NQLE β̂∗ will not be efficient and
goodness-of-fit statistics and statistical inferences may not be valid. The pro-
posed nonparametric variance function estimator is motivated by the local av-
eraging of squared residuals. Methods for variance function estimation have
been proposed based on differencing schemes with the aim of asymptotically
eliminating the effect of a smooth mean function [compare Hall and Carroll
(1989), Hall, Kay and Titterington (1990) and Müller and Stadtmüller (1987)].
Squared generalized differences are then smoothed to obtain the variance
function estimate. An alternative is to smooth squared residuals, which are
obtained from a prior nonparametric regression fit [see Silverman (1985), Fan
and Gijbels (1996) and Ruppert, Wand, Holst and Hössjer (1997)]. Most of
these estimators can be viewed as local quadratic forms, applied to the vectors
of data falling into the smoothing window [Müller and Stadtmüller (1993)].
We use here the approach of obtaining squared residuals from a previous fit of
the model and then smoothing them by applying the local polynomial smooth-
ing method. The estimation of variance functions by local polynomial fitting of
squared residuals obtained from a nonparametric regression fit was studied
in detail by Ruppert, Wand, Holst and Hössjer (1997).

For our main results, the choice of a smoothing method is incidental and any
reasonable smoother could be used in lieu of local polynomial fitting. Our basic
idea is to combine the quasi-likelihood approach in estimating the regression
coefficients with nonparametric regression techniques to obtain the variance
function estimates.

From (M1) and (M2), ε2
i = �Yi−µi�2 and E�ε2

i � = σ2�µi�, and we can write
a variance function model as follows:

ε2
i = σ2�µi� + δi� i = 1�2� � � � � n�(3.1)

where δi is an error term with Eδi = 0.
Let I be a compact interval, I ⊂ int
support�fµ��, where int
A� denotes

the interior of a set A, such that there exists a ρ > 0 and for any x ∈ I it
holds that �x − ρ� x + ρ� ⊂ support�fµ�. We consider only u ∈ I to avoid the
consideration of boundary effects. [We note that the following results can be
extended to cover the case I = support�fµ� which increases the technical and
notational burden.] Let

σ2
n�u� =

n∑
i=1

Wni�u�ε2
i �(3.2)

where

Wni�u� =Wni�u�µ1� µ2� � � � � µn�(3.3)

are local linear weight functions. The weight functions Wni�·� are derived
from fitting local polynomials by weighted least squares or by using kernel
estimators. Other smoothers could be used as well. If we fit local lines and
use a nonnegative kernel K as the weight function, we find the following
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explicit form for the weights Wni�u� [see, e.g., Fan and Gijbels (1996)]:

Wni�u� =
�1/nb�K��µi − u�/b�
An�2�u� − �µi − u�An�1�u��

An�0�u�An�2�u� −A2
n�1�u�

�(3.4)

where

An�j�u� =
1
nb

n∑
i=1

K

(
µi − u
b

)
�µi − u�j� j = 0�1�2�(3.5)

The basic assumptions on the kernel function K in (3.4) and (3.5) are

(K1) support�K� = �−1�1�, ∫ 1
−1K�v�dv = 1, K is continuously differentiable

on �−1�1�, Lipschitz�−1�1�� K�v� =K�−v�, K ≥ 0.

Note that (K1) implies that
∫
vjK�v�dv = 0 for odd j, and

∫
vjK�v�dv <∞

for even j, and also that K is bounded.
The basic requirements for the sequence of bandwidths b = b�n� > 0 are

(K2) b→ 0, nb2 → ∞ as n→ ∞�
A further assumption on the sequence of bandwidths is needed for uniform

convergence results. Assume that for a constant r with 2 < r < s, where s is
as in (M4), it holds that

(K3) lim inf
n→∞

(
nb

log n

)1/2

n−2/r > 0�

Since the µi in (3.2) are actually unknown, the ε2
i are not observable. There-

fore, we need to replace the µi, ε
2
i and Wni�u� in (3.2) with estimated values

µ̂i, ε̂
2
i and Ŵni�u�, respectively, where

µ̂i = g�xTi β̂∗��(3.6)

ε̂2
i = �Yi − µ̂i�2(3.7)

and

Ŵni�u� =Wni�u� µ̂1� µ̂2� � � � � µ̂n��(3.8)

Here, β̂∗ is the NQLE of β. Given 
�µ̂i� ε̂i�, i = 1�2� � � � � n�, the nonparametric
estimators of the variance function are constructed by

σ̂2
n�u� =

n∑
i=1

Ŵni�u� ε̂2
i �(3.9)

where

Ŵni�u� =
�1/nb�K��µ̂i − u�/b�
Ân�2�u� − �µ̂i − u�Ân�1�u��

Ân�0�u�Ân�2�u� − Â2
n�1�u�

(3.10)

and

Ân� j�u� =
1
nb

n∑
i=1

K

(
µ̂i − u
b

)
�µ̂i − u�j� j = 0�1�2�(3.11)
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The smoothing step is not difficult because it is a univariate smoothing pro-
cedure even for the case of multiple predictor variables. The common “curse-
of-dimensionality” in nonparametric regression is therefore not a problem.

4. Asymptotic properties. We aim to show that when the variance func-
tion is unknown and is replaced with consistent nonparametric variance func-
tion estimates, the

√
n-consistency and the asymptotic normality properties

of the NQLE of β are the same as those for the quasi-likelihood estimator of
β obtained under a correctly specified variance function. Consistency of the
nonparametric variance function estimates plays a central role in obtaining
the asymptotic results. Proofs of the following results and required auxiliary
results can be found in Section 8. First, in Lemma 4.1, we show that σ2

n�u� as
defined in (3.2) is a consistent estimator when the “design points” µi, evalu-
ated at the true values of the parameter vector β, are not contaminated with
errors. Based on this result, we then proceed to show the consistency of σ̂2

n�u�.

Lemma 4.1. Under (M1)–(M6) and (K1)–(K3),

sup
u∈I

∣∣Eσ2
n�u� − σ2�u�∣∣ = O�b2��(4.1)

sup
u∈I
E
[�σ2

n�u� − σ2�u��2] = O(
1
nb

+ b4
)
�(4.2)

sup
u∈I

∣∣σ2
n�u� − σ2�u�∣∣ = Op

([
log n
nb

]1/2

+ b2
)
�(4.3)

where σ2
n�u� =

∑n
i=1Wni�u�ε2

i as defined in (3.2).

Since the µi and the ε2
i in (3.2) are unknown and need to be replaced with

the µ̂i and the ε̂2
i as in (3.9), the smoothing scatterplot data 
�µ̂i� ε̂2

i �� for
obtaining σ̂2

n�·� are contaminated with errors. For general results on nonpara-
metric regression with errors in variables, see, for example, Fan and Truong
(1993). The following result demonstrates uniform convergence of σ̂2

n�u� to-
ward σ2�u� in this situation, provided a

√
n-consistent initial estimator for

the parameters β is available.

Theorem 4.1. Under (M1)–(M6) and (K1)–(K3), if 	β̂ − β	 = Op�1/
√
n�,

then, for u ∈ I,

sup
u∈I

∣∣σ̂2
n�u� − σ2�u�∣∣ = Op

([
log n
nb

]1/2

+ b2 + 1√
nb

)
�(4.4)

where σ̂2
n�u� =

∑n
i=1 Ŵni�u�ε̂2

i as defined in (3.9).

The main result demonstrating asymptotic efficiency of the NQLE β̂∗ is the
following theorem.
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Theorem 4.2. In a nonparametric quasi-likelihood model, assume that
(M1)–(M7) and (K1)–(K3) are satisfied, and that the variance function is esti-
mated by σ̂2

n�·� in (3.9). The estimates σ̂2
n�·� are truncated below by a sequence

ζn > 0, where ζn → 0. This sequence satisfies

(K4) b/ζn → 0, nb2ζ2
n → ∞ and nbζ2

n/ log n→ ∞�
Then the NQLE β̂∗ in (2.4) is asymptotically normally distributed such that,

as n→ ∞,
√
n
(
β̂∗ − β) →D Np�0� �−1��(4.5)

where � = limn→∞�1/n�DTV−1D, as defined in (M7).

Note that (4.5) implies that the NQLE β̂∗ has the same asymptotic dis-
tribution as the QLE obtained with known variance function [see McCullagh
(1983)]. A practical way to utilize the distribution of the NQLEs is obtained
as a consequence of Theorem 4.2.

Corollary 4.1. Under the assumptions of Theorem 4.2, let β̂∗ be the
NQLE (2.4) and let

�̂−1 = n �D̂TV̂−1D̂�−1�(4.6)

where D̂ = �D̂ir�1≤i≤n�1≤r≤p with D̂ir = g′�xTi β̂∗�xi�r−1�, setting xi0 = 1, and

V̂−1 = diag�
σ̂2
n�µ̂i��−1�1≤i≤n with µ̂i = g�xTi β̂∗�. Then,

�̂−1 →p �
−1�(4.7)

β̂∗ ∼Np

(
β� �D̂TV̂−1D̂�−1)�(4.8)

for large n.

Based on the limiting distribution and the covariance matrix of the NQLE
β̂∗, we can develop an asymptotic test for the class of hypotheses:

H0� 0β = ζ0 versus H1n� 0β = ζ1n�(4.9)

where 0 is am×p matrix of rankm, and ζ0 and ζ1n arem×1 vectors,m ≤ p.
Consider the test statistics

Tn = n�0β̂∗ − ζ0�T�0�̂−10T�−1�0β̂∗ − ζ0��(4.10)

Note that under the null hypothesis H0, Tn →D χ
2
m where χ2

m has a central
χ2 distribution with m degrees of freedom. On the other hand, under the al-
ternativesH1n, Tn →D χ

2
m�ρ2� where χ2

m�ρ2� has a noncentral χ2 distribution
with m degrees of freedom and noncentrality parameter ρ2 by assuming that

n�ζ1n − ζ0�T�0�̂−10T�−1�ζ1n − ζ0� → ρ2�

for a fixed real constant ρ. The null hypothesis H0 in (4.9) is rejected at level
α if Tn > χ2

m�α, where χ2
m�α is the 100�1−α�% quantile of the corresponding χ2
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distribution with m degrees of freedom. Moreover, a 100�1 − α�% confidence
region for β is given by 
β� n�β̂∗ − β�T�̂�β̂∗ − β� ≤ χ2

p�1−α��

5. Iterative estimation and automatic bandwidth selection. For the
practical implementation of NQLEs, we propose an iterative updating proce-
dure for estimating the regression parameter β and the variance function
σ2�·�. The updating steps alternate between a Newton–Raphson scoring step
and a smoothing step. We introduce a generic notation S for smoothing scat-
terplot data �µ̂i� σ̃2

i � based on weight functions Ŵni�u� such that

S
(
u� b� �µ̂i� σ̃2

i �� i = 1�2� � � � � n
) = n∑

i=1

Ŵni�u�σ̃2
i �(5.1)

where b is the bandwidth, Ŵni�u� = Wni�u� µ̂1� µ̂2� � � � � µ̂n� as in (3.8) and
(3.10), (3.11), µ̂i = xTi β̂ and σ̃2

i = �yi − µ̂i�2.
The two-stage iterative estimating procedure can be summarized as follows.

1. For an assumed variance function σ2�·�, the parameter estimates β̂∗ are
obtained by the standard quasi-likelihood approach. For the initial step,
we can simply use constant variance functions σ2�·� ≡ 1. This will lead to√
n-consistent parameter estimates.

2. For fixed β, nonparametric variance function estimates σ̂2
n are obtained by

σ̂2
n�u� = S�u� b� �µ̂i� σ̃2

i �� i = 1�2� � � � � n� as defined in (5.1).

Based on the two-stage iterative estimating procedure, β is first estimated
pretending that σ2�·� is known, then σ2�·� is estimated pretending β is known.
This iterative procedure is continued until some convergence criterion is met.
We note that step 1 corresponds to maximizing a likelihood while step 2 is a
univariate smoothing step. This smoothing step requires a bandwidth choice,
which generally is known to determine to a large extent the quality of the
estimated curve. Without a carefully chosen bandwidth, good estimates of the
variance function cannot be obtained: goodness-of-fit statistics may be mis-
leading, and the parameter estimates may be adversely affected. It is possible
to use conventional bandwidth selection schemes, such as cross-validation and
plug-in methods in this context.

We propose a new bandwidth selection method based on the goodness-of-
fit statistics which leads to good practical results. The motivation of the pro-
posed method derives from the asymptotic results that both the expected value
of nonparametric quasi-deviance, E�D�, and Pearson’s chi-square statistic,
E�X2�, are approximately equal to the degrees of freedom, n− p. Since both
D and X2 depend on the estimated variance, this equality can be utilized for
bandwidth choice as follows.

Let µ̂b denote the estimated value of µ where the nonparametric variance
function estimates are smoothed with the bandwidth b. Define

GD
(
b� µ̂b� σ̂2

n�µ̂b�
) = ∣∣D�y� µ̂b� σ̂2

n�µ̂b�� − �n− p�∣∣�(5.2)
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where D is defined in (2.5), as a measure of the discrepancy between the
nonparametric quasi-deviance and its approximated expected value, where
the estimates µ̂b and σ̂2

n�µ̂b� both depend on the bandwidth b. The “optimal”
bandwidth is then chosen as

b̂opt�D = arg min
b

GD
(
b� µ̂b� σ̂2

n�µ̂b�
)
�(5.3)

Analogously, the bandwidth choice criterion can be based on Pearson’sX2 (2.6)
with

b̂opt�P = arg min
b

GP
(
b� µ̂b� σ̂2

n�µ̂b�
)
�(5.4)

where

GP
(
b� µ̂b� σ̂2

n�µ̂b�
) = ∣∣X2�y� µ̂b� σ̂2

n�µ̂b�� − �n− p�∣∣�(5.5)

We use newly estimated optimal bandwidths for each iteration where the vari-
ance function is updated.

The proposed methods and in particular bandwidth choices are also of po-
tential interest for image smoothing. In the context of multinomial smoothing,
Titterington (1985), Section 3.4, has suggested bandwidth choices which are
closely related to (5.5). These bandwidths minimize the difference between
the Pearson’s χ2 distance of the data and the smoothed estimates and the ex-
pected value of this Pearson’s χ2. This bandwidth selection method was further
explored in Thompson, Brown, Kay and Titterington (1991).

6. Simulation studies. Simulation studies were performed to investi-
gate the effect of variance function estimation in quasi-likelihood models. The
underlying data distributions were overdispersed Poisson and Binomial. Four
methods were compared in the simulation study, namely (a) the standard
quasi-likelihood (QL) method where the variance function is assumed known,
the best possible method, which serves as a gold standard; (b) the extended
quasi-likelihood (EQL) method, with the common power-of-the-mean variance
function, var�yi� = φ�Eyi�λ (correctly parameterized for overdispersed Poisson
but incorrect for Binomial); (c) the pseudo-likelihood (PL) method, also with
power-of-the-mean variance function; (d) the nonparametric quasi-likelihood
(NQL) method. We implemented both deviance and Pearson based bandwidth
selectors (5.3) and (5.4) and found that they perform very similarly with a
slight advantage for deviance-based bandwidth selection. Therefore, the re-
sults reported here use this selector. Thus, the implementation of NQL as
studied in this simulation is fully automatic and does not require a bandwidth
choice by the user.

For each iteration, 1000 Monte Carlo runs were made with a univariate
predictor variable. We generated overdispersed Poisson data via a Gamma–
Poisson mixture. The link function µi = eηi was chosen, ηi = β0 + β1xi, with
β0 = 3, β1 = 4, and the dispersion parameter was φ = 5, so that var�yi� = 5µi.
The sample size was n = 100 with design points xi = i/n, i = 1� � � � �100.
The results for the parameter estimates β̂0 and β̂1 are in Table 1. The gold
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Table 1

Simulation results of the estimated regression parameters (β0 = 3, β1 = 4) for overdispersed
Poisson data

Estimated Sample Relative†

Parameter Method∗ mean std. err. Bias MSE MSE

β̂0 QL 3.0012 0.0519 0.0012 0.002694 1.0000
EQL 3.0001 0.0522 0.0001 0.002722 1.0104
PL 2.9994 0.0523 −0.0006 0.002736 1.0156

NQL 2.9998 0.0549 −0.0002 0.003009 1.1169
β̂1 QL 3.9989 0.0647 −0.0011 0.004182 1.0000

EQL 4.0002 0.0653 0.0002 0.004262 1.0191
PL 4.0013 0.0651 0.0013 0.004245 1.0151

NQL 3.9999 0.0701 −0.0001 0.004909 1.1738

∗QL: quasi-likelihood, EQL: extended quasi-likelihood. PL: pseudo-likelihood. NQL: nonparamet-
ric quasi-likelihood.
† Relative performance as compared to QL, measured by the ratio of MSE to QL.

standard is the QL method with a correct variance function. The EQL and
PL methods do predictably well here since they were implemented with the
power-of-the-mean variance function, which happens to be the correct type of
variance function. The NQL method does less well here as it hedges against
a host of other possible smooth alternatives.

Another criterion is how well the asymptotic approximations made for in-
ference are justified for the various methods. The empirical coverage frequen-
cies and average lengths for 90% and 95% asymptotic confidence intervals
for single parameters constructed via Corollary 4.1 are shown in Table 2. The
performance of the nonparametric method is seen to be surprisingly good both
in terms of coverage probabilities and lengths, given that the other methods
have the advantage of operating with true or correctly parameterized variance
function.

Table 2
Coverage of confidence intervals for regression parameters for overdispersed Poisson data

90% asymptotic confidence 95% asymptotic confidence

Percent at Percent at Percent at Percent at
Parameter Method miss-left miss-right length miss-left miss-right length

β̂0 QL 4.60 4.40 0.1708 2.30 2.10 0.2034
EQL 4.40 4.50 0.1734 2.30 2.20 0.2066
PL 4.40 4.60 0.1740 2.30 2.50 0.2074

NQL 4.30 4.60 0.1668 2.30 3.10 0.1987
β̂1 QL 4.60 4.90 0.2132 1.90 1.80 0.2540

EQL 4.80 4.80 0.2175 1.80 1.80 0.2591
PL 4.90 4.80 0.2178 2.00 2.00 0.2595

NQL 4.60 4.50 0.2043 2.30 2.10 0.2434
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Table 3
Simulation results of the estimated regression parameters �β0 = 4, β1 = −6� for Binomial data

Estimated Sample Relative
Parameter Method mean std. err. Bias MSE MSE

β̂0 QL 3.9796 0.1281 −0.0204 0.016837 1.0000
EQL 3.9792 0.1501 −0.0208 0.022960 1.3637
PL 3.9791 0.1501 −0.0209 0.022965 1.3640

NQL 3.9807 0.1374 −0.0193 0.019245 1.1430
β̂1 QL −5.9666 0.1678 0.0334 0.029272 1.0000

EQL −5.9661 0.1943 0.0339 0.038903 1.3290
PL −5.9659 0.1943 0.0341 0.038915 1.3294

NQL −5.9678 0.1793 0.0322 0.033171 1.1332

As a second example we consider the case of binomial data where the power-
of-the-mean variance function model does not apply. Here the underlying vari-
ance function is var�yi� = µi�1 − µi�, and the power-of-the-mean versions of
EQL and PL are expected to do less well. The link function was chosen as
a logit link µi = eηi/�1 + eηi�, ηi = β0 + β1xi, β0 = 4, β1 = −6, dispersion
parameter φ = 1, sample size n = 100 with design points

xi = �0�90 − 0�0025i�1
1≤i≤80� +
(
0�70 − 0�035�i− 80�)1
81≤i≤100��

The results for the parameter estimates are in Table 3 (analogous to Table 1).
Again, QL serves as a gold standard since it uses the correct variance function.
In this setting, EQL and PL methods perform noticeably worse than the NQL
method, showing clearly the limitations of these parametric variance function
model approaches. The behavior in terms of confidence intervals is comparable
among the methods (see Table 4) but NQL again emerges as the winner in
terms of lengths of confidence intervals.

Table 4
Coverage of confidence intervals for regression parameters for Binomial data

90% asymptotic confidence 95% asymptotic confidence

Percent at Percent at Percent at Percent at
Parameter Method miss-left miss-right length miss-left miss-right length

β̂0 QL 3.60 6.50 0.4395 1.60 3.70 0.5237
EQL 4.10 5.90 0.5359 2.00 3.30 0.6386
PL 4.10 5.90 0.5356 2.00 3.30 0.6382

NQL 3.60 7.00 0.4159 2.10 3.30 0.4955
β̂1 QL 6.80 2.80 0.5754 3.80 1.60 0.6856

EQL 6.00 3.90 0.6958 3.60 1.90 0.8291
PL 6.00 3.90 0.6955 3.60 1.90 0.8287

NQL 6.90 3.20 0.5511 3.90 1.80 0.6566
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7. Examples. As a first example, we consider data from a sample of
n = 150 subjects who were asked to adjust the force exercised by the chewing
muscle in such a way as to achieve a fixed given force as measured by an
intraoral probe. Then the intramuscular voltage generated during the mus-
cular contraction constitutes the measurement of the dependent variable. So
voltage is a function of force. The relationship is clearly nonlinear, as can been
seen from the scatterplot in Figure 1. These data were previously discussed
in Müller (1988), pages 36–38.

The link µ = η2/3 was assumed from previous investigations. Applying
the NQL iteration algorithm to these data then led to the estimated linear
predictor

β̂0 + β̂1x = −1948 + 14x�

where β̂0 has a standard error of 175.8, and β̂1 has a standard error of 0.221.
Bandwidth selection was based on the deviance criterion (5.3). Figure 2 shows
that the estimated variance function is strictly monotone increasing. The
shape of the variance function indicates that a power-of-the-mean variance
function model does not appear to be adequate for these data. The data fit
obtained with the NQL method is shown as a solid curve in Figure 1.

As a second example, we consider data on a sample of felled black cherry
trees with measurements of diameter in inches, height in inches and volume
in cubic feet [Ryan, Joiner and Ryan (1985)]. The diameters were measured
4 ft. 6 in. above ground level. The purpose of collecting the measurements
on the felled trees was to provide a way of predicting the volume of timber

Fig. 1. Nonparametric quasi-likelihood model with link g�η� = η2/3 for dental data. The scat-
terplot is observed Voltage versus Force, and the fitted curve corresponds to NQL model fits.
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Fig. 2. Nonparametric quasi-likelihood model with link g�η� = η2/3 for dental data. Fitted
curve corresponds to nonparametric variance function estimates based on local averages of squared
residuals.

from their height and diameter measurements. This data set was discussed
by Atkinson (1987). One suggestion was to take a power( 1

3 ) transformation
on the response variable. We compare this suggestion of a multiple linear
regression where we include a transformed response variable with the non-
parametric quasi-likelihood approach. The parameter estimates obtained with
the transformation approach are shown in Table 5, and the corresponding fits
in Figure 3. The coefficient of determination is R2 = 0�9777 which is very
high.

Figure 3 indicates that the power( 1
3 ) transformation on the response vari-

able fits the data well, overall. We examine the assumption of a constant vari-
ance function after using the transformation by applying the nonparametric
quasi-likelihood approach with the link function g�η� = η3 which corresponds

Table 5

Estimated regression coefficients for cherry tree data by multiple linear regression model with
transformed response volume, by the power� 1

3 � transformation

Variable Estimate Std. err. Chi-Square Pr > Chi

(Intercept) −0.0854 0.1843 0.21 0.6468
Diameter 0.1515 0.0056 731.90 0.0000
Height 0.0145 0.0028 21.82 0.0000

Note. MSE = 0�08283 �d�f� = 28�, R2 = 0�9777.
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Fig. 3. Multiple linear regression model with transformed response volume 1
3 for cherry tree data.

Upper: Observed values of volume 1
3 versus fitted values of volume 1

3 . Lower: Observed values of
volume versus fitted values of volume 1

3 .
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Table 6

Regression coefficients for cherry tree data: nonparametric quasi-likelihood model with link
g�η�=η3 (deviance based bandwidth selection)

Variable Estimate Std. err. Chi-Square Pr > Chi

(Intercept) −0.0511 0.1364 0.14 0.7083
Diameter 0.1513 0.0051 880.11 0.0000

Height 0.0141 0.0024 34.52 0.0000

Note. D = 27�95, X2 = 27�86, �d�f� = 28�, MSE = 6�5844. Bandwidth for variance = 64.57 based
on deviance.

to the power( 1
3 ) transformation of the response volume in the multiple linear

regression. The results are presented in Table 6, and Figures 4 and 5.
The variance function in Figure 5 is monotone increasing. As diameter

and/or the height increase linearly, the prediction of volume is less precise
because of the increasing variance. In short, it is harder to predict the vol-
umes of larger trees, and confidence intervals and other inference procedures
should be adapted accordingly.

8. Proofs and auxiliary results. Define Fµ�t� =
∫ t

0 fµ�z�dz. Then F−1
µ

exists and, according to (M6),

µi = F−1
µ

(
i− 1
n− 1

)
�(8.1)

Let

νn = νn�u� =
n∑
i=1

1
�µi−u�≤b��(8.2)

where b = b�n� > 0 is a sequence of bandwidths. Then νn�u� denotes the
number of “observations” centered around u within the bandwidth b. It follows
from the assumptions on the design density in (M6) that there are constants
0 < C1 < C2 <∞ such that for sufficiently large n,

C1 ≤ νn
nb

≤ C2(8.3)

uniformly in u ∈ I.

Lemma 8.1. For u ∈ I, let An�j�u� = �1/nb�∑n
i=1K��µi − u�/b��µi − u�j

as defined in (3.5). Let αj = ∫
vjK�v�dv < ∞� Note α0 = 1 by (K1). Under

(M6) and (K1), (K2),

An�j�u� =



bjαjfµ�u� +O�bj+2� +O

(
bj−1

n

)
� for j = 0�2�4� � � � �

bj+1αj+1f
′
µ�u� +O�bj+2� +O

(
bj−1

n

)
� for j = 1�3�5� � � � �
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Fig. 4. Nonparametric quasi-likelihood model with link g�η� = η3 for cherry tree data (band-
width selection based on nonparametric quasi-deviance). Upper: Fitted curve corresponds to NQL
model fits. Lower: Observed versus fitted values of volume.
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Fig. 5. Nonparametric quasi-likelihood model with link g�η� = η3 for cherry tree data (band-
width selection based on nonparametric quasi-deviance). Upper: Residual plot. Lower: Curve cor-
responds to smoothed variance function estimates based on local averages of squared residuals.
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Proof. Note max1≤i≤n �µi − µi−1� = O�1/n� under the assumption (M6).
By a first-order Taylor series expansion, for all n,

sup
u∈I

max
1<i≤n

∣∣∣∣K
(
µi − u
b

)
−K

(
µi−1 − u
b

)∣∣∣∣ = O
(

1
nb

)
�

Furthermore, for any u ∈ I and 1 < i ≤ n,

K

(
µi − u
b

)
�µi − u�j −K

(
µi−1 − u
b

)
�µi−1 − u�j = O

(
bj−1

n

)
�

Let v = �γ − u�/b and z = Fµ�γ�. Then, dz = bfµ�u+ bv�dv. Using the above
result for Riemann sum approximation and (K1), (K2), it follows that

An�j�u� =
1
b

n∑
i=1

1
n
K

(
F−1
µ

(�i− 1�/�n− 1�)− u
b

)(
F−1
µ

(
i− 1
n− 1

)
− u

)j

=
∫ 1

0

1
b
K

(
F−1
µ �z� − u
b

)(
F−1
µ �z� − u)j dz+ 1

b
O�nb�O

(
bj−1

n2

)
�

whence the result follows. ✷

Lemma 8.2. For u ∈ I and 1 ≤ i ≤ n, let

?ni�u� = An�2�u� − �µi − u�1
�µi−u�≤b�An�1�u��(8.4)

@n�u� = An�0�u�An�2�u� −A2
n�1�u��(8.5)

where An�j�u� are defined in (3.5). Then, under (M6) and (K1), (K2),

?ni�u� = b2α2fµ�u� +O�b3��(8.6)

@n�u� = b2α2f
2
µ�u� +O�b4� +O

(
b

n

)
�(8.7)

The proof follows immediately from Lemma 8.1.

Lemma 8.3. For u ∈ I and 1 ≤ i ≤ n, Wni�u� is defined in (3.4). Then,
under (M6) and (K1), (K2),

n∑
i=1

Wni�u��µi − u�q =
{

1� for q = 0�
0� for q = 1,

(8.8)

Wni�u� =
1
nb
K

(
µi − u
b

)/
fµ�u� +O

(
1
n

)
�(8.9)

Proof. The first property is referred to as the discrete moment conditions.
These can be easily verified by replacingWni�u� with the explicit form in (3.4).
The second property follows from Lemma 8.2. ✷
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Lemma 8.4. For u ∈ I, let An�j�u� and Ân� j�u� be as defined in (3.5)
and (3.11). Under (K1) and (K2), if max1≤i≤n �µ̂i − µi� = Op�1/

√
n�, then

Ân� j�u� = An�j�u� +Op
(
bj−1

√
n

)
�(8.10)

For the proof, apply (K1), (K2) and the mean value theorem.

Lemma 8.5. For any u ∈ I and 1 ≤ i ≤ n, let

?̂ni�u� = Ân�2�u� − �µ̂i − u�1
�µ̂i−u�≤b�Ân�1�u��(8.11)

@̂n�u� = Ân�0�u�Ân�2�u� − Â2
n�1�u��(8.12)

where Ân� j�u� are defined in (3.11). Under (K1) and (K2), if max1≤i≤n �µ̂i−µi� =
Op�1/

√
n�, then

?̂ni�u� = ?ni�u� +O
(
b√
n

)
�(8.13)

@̂n�u� = @n�u� +O
(
b√
n

)
�(8.14)

Proof. The result follows since for any u ∈ I and 1 ≤ i ≤ n,

?̂ni�u� =
(
An�2�u� +Op

(
b√
n

))

−
(
�µi − u�1
�µi−u�≤b� +Op

(
1√
n

))(
An�1�u� +Op

(
1√
n

))

and

@̂n�u� =
(
An�0�u� +Op

(
1√
nb

))(
An�2�u� +Op

(
b√
n

))

−
(
An�1�u� +Op

(
1√
n

))2

� ✷

Lemma 8.6. Under (M1)–(M4), if β̂ is a
√
n-consistent estimator of β in

the sense that

	β̂− β	 = Op
(

1√
n

)
�

then

max
1≤i≤n

�µ̂i − µi� = Op
(

1√
n

)
�(8.15)

where µ̂i = g�xTi β̂� for i = 1�2� � � � � n.
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Proof. Let ηi = xTi β. Then, by uniform boundedness of xi, �η̂i − ηi� =
Op�n−1/2� uniformly in i, 1 ≤ i ≤ n. The result follows from (M4). ✷

Lemma 8.7. Let Wni�·� and Ŵni�·� be the weight functions defined in (3.4)
and (3.10). Under (M6) and (K1), (K2), if 	β̂− β	 = Op�1/

√
n�, then

sup
u∈I

max
1≤i≤n

∣∣Ŵni�u� −Wni�u�
∣∣ = Op

(
1

nb2
√
n

)
�(8.16)

Proof. For any u ∈ I and 1 ≤ i ≤ n, let

0ni�u� =K
(
µi − u
b

)
?ni�u��

0̂ni�u� =K
(
µ̂i − u
b

)
?̂ni�u��

where ?ni�u� and ?̂ni�u� are as in (8.4) and (8.11). Then, for any u ∈ I and
1 ≤ i ≤ n, using Lemmas 8.5 and 8.6,

sup
u∈I

max
1≤i≤n

∣∣0̂ni�u� − 0ni�u�∣∣
= sup
u∈I

max
1≤i≤n

∣∣∣∣
(
K

(
µi − u
b

)
+Op

(
1√
nb

))(
?ni�u� +Op

(
b√
n

))

−K
(
µi − u
b

)
?ni�u�

∣∣∣∣
= Op

(
b√
n

)
�

Using @n�u� and @̂n�u� defined in (8.5) and (8.12), it follows that

sup
u∈I

max
1≤i≤n

∣∣∣∣Ŵni�u� −Wni�u�
∣∣∣∣

= sup
u∈I

max
1≤i≤n

1
nb

∣∣∣∣ 0̂ni�u�@̂n�u�
− 0ni�u�
@n�u�

∣∣∣∣
= sup
u∈I

max
1≤i≤n

1
nb

∣∣∣∣ Op�b/
√
n�

@n�u� +Op�b/
√
n� −

0ni�u�Op�b/
√
n�

@2
n�u� + @n�u�Op�b/

√
n�

∣∣∣∣
= Op

(
1

nb2
√
n

)
� ✷

Lemma 8.8. Under (M1)–(M6),

sup
u∈I

1
nb

n∑
i=1

ε2
i1
�µi−u�≤b� = Op

([
log n
nb

]1/2)
+O�1��(8.17)

where µi = g�xTi β�.
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Proof. Let wi�u� = �1/nb�1
�µi−u�≤b�. Then

n∑
i=1

wi�u�ε2
i ≤

∣∣∣∣
n∑
i=1

wi�u�
(
ε2
i − σ2�µi�

)∣∣∣∣+
n∑
i=1

∣∣wi�u�∣∣σ2�µi��

By the boundedness condition of σ2�·�, the second term on the right-hand
side is O�1�. For the first term, we proceed as in Lemma 5.2 in Müller and
Stadtmüller (1987), noting that Eε2

i = σ2�µi�. ✷

Proof of Lemma 4.1. For the bias part, by (M4) and with suitable mean
values ζi, for any u ∈ I,

∣∣Eσ2
n�u� − σ2�u�∣∣ = n∑

i=1

Wni�u�
(�σ2�u��′�µi − u� + �σ2�ζi��′′�µi − u�2)

≤
n∑
i=1

∣∣Wni�u�
∣∣ ∣∣�σ2�ζi��′′ − �σ2�u��′′∣∣ �µi − u�2 +O�b2�

= O�b2��
For the mean squared errors, we note that var�σ2

n�u�� = O�1/nb�, which
together with the above implies the result.

For the stochastic part, Lemma 6.3 in Müller and Zhao (1995) can be applied
by letting

η�µi� = δi −Eδi = ε2
i − σ2�µi��

Then η�µi�, i = 1�2� � � � � n� are independent random variables with E�η�µi��
= 0 and

ϕ�µi� = E�η2�µi�� = E�ε4
i � −

(
σ2�µi�

)2
�

for a function ϕ�·�. By (M4), the inequalities supu∈I �ϕ�u�� <∞ andE��η�µi��s�
< c < ∞ hold. By combining (M2), (M4) and (M5), we find that var�ε2

i � > 0,
ϕ�µi� > 0, ϕ is continuous and µi are in a compact subset of R. This implies
that infu∈I �ϕ�u�� > 0� Combining these observations with (M6), we find that
the assumptions of Lemma 6.3 in Müller and Zhao (1995) are satisfied. This
leads to

sup
u∈I

∣∣σ2
n�u� −Eσ2

n�u�
∣∣ = Op

([
log n
nb

]1/2)
�

For any u ∈ I,∣∣σ2
n�u� − σ2�u�∣∣ ≤ ∣∣σ2

n�u� −Eσ2
n�u�

∣∣+ ∣∣Eσ2
n�u� − σ2�u�∣∣�

which completes the proof. ✷

Proof of Theorem 4.1. By decomposition, σ̂2
n�u� in (3.9) can be written as

n∑
i=1

Ŵni�u� ε̂2
i =

n∑
i=1

[
Wni�u� +

(
Ŵni�u� −Wni�u�

)] [
εi + �ε̂i − εi�

]2
�
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Using σ2
n�u� in (3.2),

sup
u∈I

∣∣∣∣
n∑
i=1

Ŵni�u� ε̂2
i − σ2

n�u�
∣∣∣∣ ≤ sup

u∈I

n∑
i=1

∣∣Ŵni�u� −Wni�u�
∣∣ε2
i

+ sup
u∈I

n∑
i=1

∣∣Wni�u�
∣∣�ε̂i − εi�2

+ sup
u∈I

n∑
i=1

∣∣Ŵni�u� −Wni�u�
∣∣�ε̂i − εi�2

+ 2 sup
u∈I

n∑
i=1

∣∣Wni�u�εi�ε̂i − εi�
∣∣

+ 2 sup
u∈I

n∑
i=1

∣∣�Ŵni�u� −Wni�u��εi�ε̂i − εi�
∣∣

= I+ II+ III+ IV+V�
Now, consider the terms I–V individually. Using Lemmas 8.7, 8.8 and (K3),

I = sup
u∈I

n∑
i=1

∣∣Ŵni�u� −Wni�u�
∣∣ε2
i

≤
{
sup
u∈I

max
1≤i≤n

∣∣Ŵni�u� −Wni�u�
∣∣} sup
u∈I

( n∑
i=1

ε2
i1
�µi−u�≤b�

)

= Op
(

1
b
√
n

)
�

Writing ε̂i = yi−µ̂i = εi+µi−µ̂i and using (8.15), that is, max1≤i≤n �ε̂i−εi� =
Op�1/

√
n�, along with (8.9),

II = sup
u∈I

n∑
i=1

∣∣Wni�u�
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(

1
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)
�

Similarly, using (8.15) and (8.7),

III = sup
u∈I

n∑
i=1

∣∣Ŵni�u� −Wni�u�
∣∣�ε̂i − εi�2
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�µ̂i−u�≤b�

= Op
(

1
nb

√
n

)
�
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Let W+
ni�u� = max�0� Wni�u�� and W−

ni�u� = max�0� −Wni�u��. The
Cauchy–Schwarz inequality, Lemma 8.8 and the bound for II imply

1
2
IV ≤ sup

u∈I

n∑
i=1

(
W+
ni�u� +W−

ni�u�
)�εi� �ε̂i − εi�

≤ sup
u∈I

( n∑
i=1

W+
ni�u� ε2

i

)1/2

sup
u∈I

( n∑
i=1

W+
ni�u��ε̂i − εi�2

)1/2

+ sup
u∈I

( n∑
i=1

W−
ni�u� ε2

i

)1/2

sup
u∈I

( n∑
i=1

W−
ni�u� �ε̂i − εi�2

)1/2

≤ sup
u∈I

(
max
1≤i≤n

W+
ni�u�

)1/2
sup
u∈I

( n∑
i=1

ε2
i1
�µi−u�≤b�

)1/2

Op

(
1√
n

)

+ sup
u∈I

(
max
1≤i≤n

W−
ni�u�

)1/2
sup
u∈I

( n∑
i=1

ε2
i1
�µi−u�≤b�

)1/2
Op

(
1√
n

)

= Op
(

1√
n

)
�

Let w+
ni�u� = �Ŵni�u� −Wni�u��+ and w−

ni�u� = �Ŵni�u� −Wni�u��−. The
Cauchy–Schwarz inequality, Lemma 8.8 and the bound for III imply

1
2
V ≤ sup

u∈I

( n∑
i=1

w+
ni�u� ε2

i

)1/2

sup
u∈I

( n∑
i=1

w+
ni�u��ε̂i − εi�2

)1/2

+ sup
u∈I

( n∑
i=1

w−
ni�u�ε2

i

)1/2

sup
u∈I

( n∑
i=1

w−
ni�u��ε̂i − εi�2

)1/2

= Op
(

1
nb

)
�

Hence, I + II + III + IV +V = Op�1/b
√
n�. By Lemma 8.6 and Slutsky’s

theorem, the proof is complete. ✷

Proof of Theorem 4.2. The proof of the theorem follows the proof of Mc-
Cullagh (1983) for the asymptotic normality of quasi-likelihood. Let U�β� be
the quasi-score function, Iβ be the “observed” quasi-information matrix of β
with correctly specified variance function σ2�·� and iβ be the expected value
of Iβ. Then, with Q�µ�y� defined in (2.1),

U�β� = ∂Q�µ�y�
∂β

=
n∑
i=1

�yi − µi�
g′�ηi�
σ2�µi�

xi = DTV−1�Y− µ��(8.18)
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Iβ = −∂
2Q�µ�y�
∂β∂βT

= −∂U�β�
∂η

∂η

∂βT

=
n∑
i=1

g′�ηi�2

σ2�µi�
xix

T
i(8.19)

+
n∑
i=1

�yi − µi�
{
g′�ηi�2�σ2�µi��′

�σ2�µi��2
− g

′′�ηi�
σ2�µi�

}
xix

T
i �

iβ =
n∑
i=1

g′�ηi�2

σ2�µi�
xix

T
i = DTV−1D�(8.20)

where xi = �1� xi1� xi2� � � � � xi�p−1��T, and D, V, and � are defined in (M7). A
QL estimator β̂ of β is obtained by solving U�β̂� = 0. By a first-order Taylor
series expansion in �β̂− β�, the equation can be written as

U�β� − Iβ̄�β̂− β� = 0�(8.21)

Here,

Iβ̄ =
n∑
i=1

g′�η̄i�2

σ2�µ̄i�
xix

T
i +

n∑
i=1

�yi − µ̄i�
{
g′�η̄i�2�σ2�µ̄i��′

�σ2�µ̄i��2
− g

′′�η̄i�
σ2�µ̄i�

}
xix

T
i �(8.22)

and U�β� is as in (8.18) with η̄i = xTi β̄, µ̄i = g�η̄i�, and Iβ̄, the “observed”
nonparametric quasi-information matrix, is evaluated at a vector β̄ lying on
the line segment joining β and β̂. Under (M1)–(M5) and (M7), (8.21) leads to
the result of (9) in McCullagh (1983), implying

√
n�β̂− β� →D Np�0� �−1�(8.23)

where β̂ is a QLE of β and � is defined in (M7).
A NQLE β̂∗ is obtained by solving the nonparametric quasi-score equation

[see (2.3)] U∗�β̂∗� = 0. By a first-order Taylor series expansion in �β̂∗ −β�, the
estimating equation U∗�β̂∗� = 0 as in (2.3) can be written as

U∗�β� − I∗
β̄
�β̂∗ − β� = 0�(8.24)

Here

I∗
β̄
=

n∑
i=1

g′�η̄i�2

σ̂2
n�µ̄i�

xix
T
i +

n∑
i=1

�yi − µ̄i�
{
g′�η̄i�2�σ̂2

n�µ̄i��′
�σ̂2
n�µ̄i��2

− g
′′�η̄i�
σ̂2
n�µ̄i�

}
xix

T
i �(8.25)

where I∗
β̄

is the “observed” nonparametric quasi-information matrix evaluated

at β̄ lying on the line segment joining β and β̂∗. To infer the asymptotic
limiting distribution of the solution β̂∗ of (8.24), we aim to show that it is the
same as that of the solution β̂ of (8.21). This follows if

√
n�β̂∗ − β̂� = op�1�.

For this it is sufficient to prove U∗�β� −U�β� = op�
√
n� and I∗

β̄
− Iβ̄ = op�n�.
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Since the estimating equation is highly nonlinear, an iterative procedure to
obtain the solution β̂∗ is necessary. As an initial step, initial variance func-
tion estimates are assigned to obtain the one-step estimated vector of the
regression coefficients. Although the initial variance function estimates may
be misspecified, a

√
n-consistent estimator β̂∗ of β is still obtained, but with

loss of efficiency. Details regarding the estimation of misspecified general-
ized linear models can be found in Fahrmeir (1990). Therefore, the vector
of the mean value β̄ in I∗β as in (8.25) satisfies 	β̄ − β	 = Op�1/

√
n�, and

it follows by Theorem 4.1 that max1≤i≤n �σ̂2
n�µ̄i� − σ2�µ̄i�� = Op�αn� where

αn = b2 + ��log n�/nb�1/2 + 1/
√
nb, σ̂2

n�u� = Ŵni�u��yi − µ̄i�2, with Ŵni�u� =
Wni�u� µ̄1� µ̄2� � � � � µ̄n�, µ̄i = g�η̄i�, and η̄i = xTi β̄.

To simplify the notations, let

Ai =
1

σ̂2
n�µ̄i�

− 1
σ2�µ̄i�

and Bi =
�σ̂2
n�µ̄i��′

�σ̂2
n�µ̄i��2

− �σ2�µ̄i��′
�σ2�µ̄i��2

�

With the lower bound σ̂2
n�·� ≥ ζn, we have max1≤i≤n �Ai� = Op�αn/ζn�. Fur-

thermore, by extending Theorem 4.1, we obtain max1≤i≤n �Bi� = Op�αn/ζnb�.
Under the boundedness conditions of (M3) and (M5), and by (8.22) and (8.25),
we then have

1
n

(
I∗
β̄
− Iβ̄

) = 1
n

n∑
i=1

Ai g
′�η̄i�2xix

T
i

+ 1
n

n∑
i=1

�yi − µ̄i�
{
Bi g

′�η̄i�2 −Ai g′′�η̄i�
}
xix

T
i

≤ 1
n

n∑
i=1

max
1≤i≤n

�Ai� +
1
n

n∑
i=1

∣∣yi − µ̄i∣∣( max
1≤i≤n

�Bi� + max
1≤i≤n

�Ai�
)

= op�1��

(8.26)

using (K4).
Similarly, by (M3) and (M5), we find by a Taylor expansion of 1/σ2�·� and

some algebra that

1√
n

(
U∗�β� −U�β�) = 1√

n

n∑
i=1

�yi − µi�
(
g′�ηi�
σ2
n�µi�

− g
′�ηi�
σ2�µi�

)
xi

= Op
(

1
ζn

√
n

n∑
i=1

�yi − µi�
(
σ2�µi� − σ2

n�µi�
))
�

The desired result

1
ζn

√
n

n∑
i=1

εi
(
σ2�µi� − σ2

n�µi�
) = op�1��(8.27)



62 J.-M. CHIOU AND H.-G. MÜLLER

where εi = yi − µi, will follow if we show that

1
n
E



[
n∑
i=1

εi

(
σ2�µi� − σ2

n�µi�
)]2




= 1
n

n∑
i=1

{
E

[
ε2
i

(
σ2�µi� − σ2

n�µi�
)2

]}
(8.28)

+ 2
n

∑
1≤j<k≤n

{
E

[
εj

(
σ2�µj� − σ2

n�µj�
)
εk

(
σ2�µk� − σ2

n�µk�
)]}

is op�ζ2
n�. For this, let σ2

n�u��−i� = σ2
n�u�−Wni�u�ε2

i be the leave-one-point-out
variance function estimator. By a straightforward extension of Lemma 4.1, we
find for all 1 ≤ i ≤ n,

E
[
σ2
n�u��−i� − σ2�u�] = O(

1
nb

+ b2
)

and

E
[�σ2

n�u��−i� − σ2�u��2] = O(
1
nb

+ b4
)
�

By substituting σ2
n�µi� with �σ2

n�µi��−i� +Wni�µi�ε2
i �, we have, for all 1 ≤

i ≤ n,

E

[
ε2
i

(
σ2�µi� − σ2

n�µi�
)2

]

= Eε2
i E

[�σ2
n�u��−i� − σ2�u��2]+Wni�µi�2 Eε6

i

+ 2Wni�µi� Eε4
i E

[
σ2
n�u��−i� − σ2�u�

]

= O
(

1
nb

+ b4
)
+O

(
1
n2b2

)
+O

(
1
nb

)
O

(
1
nb

+ b2
)
�

Let σ2
n�u��−j�−k� = σ2

n�u� − Wnj�u�ε2
j −Wnk�u�ε2

k, j < k, be the leave-two-
points-out variance function estimator. By substituting σ2

n�µi� with
�σ2
n�µi��−j�−k� +Wnj�µi�ε2

j +Wnk�µi�ε2
k�, for all 1 ≤ i ≤ n and 1 ≤ j < k ≤ n,

we obtain

E
[
εj

(
σ2�µj� − σ2

n�µj�
)
εk

(
σ2�µk� − σ2

n�µk�
)]

=Wnj�µi�Wnk�µk� Eε3
j Eε

3
k

= O
(

1
n2b2

)
�
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This implies with (K4) that the terms in (8.28) are indeed of order op�ζ2
n�,

and (8.27) follows. We infer

1√
n

(
U∗�β� −U�β�) = op�1��(8.29)

By (8.29) and (8.26), we get from (8.24),

U∗�β� − I∗
β̄
�β̂∗ − β� = U�β� − Iβ̄�β̂∗ − β� + op�

√
n��

Comparing to (8.21) and (12) and (13) in McCullagh (1983), we finally arrive
at

√
n�β̂∗ − β� = √

n�β̂− β� + op�1�� ✷
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Ryan, T., Joiner, B. and Ryan, B. (1985). Minitab Student Handbook, 2nd ed. Duxbury, Belmont,
CA.

Silverman, B. W. (1985). Some aspects of the spline smoothing approach to non-parametric re-
gression curve fitting (with discussion). J. Roy. Statist. Soc. Ser. B 47 1–52.

Thompson, A. M., Brown, J. C., Kay, J. W. and Titterington, D. M. (1991). A study of methods
of choosing the smoothing parameter in image restoration by regularization. IEEE
Trans. Pattern Recognition Machine Intell. 13 326–338.

Titterington, D. M. (1985). Common structure of smoothing techniques in statistics. Internat.
Statist. Rev. 53 141–170.

Wedderburn, R. W. M. (1974). Quasi-likelihood functions, generalized linear models and Gauss–
Newton method. Biometrika 61 439–447.

Weisberg, S. and Welsh, A. H. (1994). Adapting for the missing link. Ann. Statist. 22 1674–1700.

Department of Mathematics
National Chung Cheng University
Minghsiung
Chiayi 621
Taiwan
E-mail: jmchiou@math.ccu.edu.tw

Division of Statistics
1 Shields Avenue
University of California
Davis, California 95616
E-mail: mueller@wald.ucdavis.edu


